Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.289
Filtrar
1.
Sci Rep ; 14(1): 10835, 2024 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-38736022

RESUMEN

Research on the relationships between oligoelements (OE) and the development of cancer or its prevention is a field that is gaining increasing relevance. The aim was to evaluate OE and their interactions with oncology treatments (cytarabine or etoposide) to determine the effects of this combination on biogenic amines and oxidative stress biomarkers in the brain regions of young Wistar rats. Dopamine (DA), 5-Hydroxyindoleacetic acid (5-Hiaa), Glutathione (Gsh), Tiobarbituric acid reactive substances (TBARS) and Ca+2, Mg+2 ATPase enzyme activity were measured in brain regions tissues using spectrophometric and fluorometric methods previously validated. The combination of oligoelements and cytarabine increased dopamine in the striatum but decreased it in cerebellum/medulla-oblongata, whereas the combination of oligoelements and etoposide reduced lipid peroxidation. These results suggest that supplementation with oligoelements modifies the effects of cytarabine and etoposide by redox pathways, and may become promising therapeutic targets in patients with cancer.


Asunto(s)
Encéfalo , Citarabina , Dopamina , Etopósido , Estrés Oxidativo , Ratas Wistar , Animales , Etopósido/farmacología , Estrés Oxidativo/efectos de los fármacos , Citarabina/farmacología , Dopamina/metabolismo , Ratas , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Masculino , Peroxidación de Lípido/efectos de los fármacos , Suplementos Dietéticos , Glutatión/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731850

RESUMEN

When new antitumor therapy drugs are discovered, it is essential to address new target molecules from the point of view of chemical structure and to carry out efficient and systematic evaluation. In the case of natural products and derived compounds, it is of special importance to investigate chemomodulation to further explore antitumoral pharmacological activities. In this work, the compound podophyllic aldehyde, a cyclolignan derived from the chemomodulation of the natural product podophyllotoxin, has been evaluated for its viability, influence on the cell cycle, and effects on intracellular signaling. We used functional proteomics characterization for the evaluation. Compared with the FDA-approved drug etoposide (another podophyllotoxin derivative), we found interesting results regarding the cytotoxicity of podophyllic aldehyde. In addition, we were able to observe the effect of mitotic arrest in the treated cells. The use of podophyllic aldehyde resulted in increased cytotoxicity in solid tumor cell lines, compared to etoposide, and blocked the cycle more successfully than etoposide. High-throughput analysis of the deregulated proteins revealed a selective antimitotic mechanism of action of podophyllic aldehyde in the HT-29 cell line, in contrast with other solid and hematological tumor lines. Also, the apoptotic profile of podophyllic aldehyde was deciphered. The cell death mechanism is activated independently of the cell cycle profile. The results of these targeted analyses have also shown a significant response to the signaling of kinases, key proteins involved in signaling cascades for cell proliferation or metastasis. Thanks to this comprehensive analysis of podophyllic aldehyde, remarkable cytotoxic, antimitotic, and other antitumoral features have been discovered that will repurpose this compound for further chemical transformations and antitumoral analysis.


Asunto(s)
Ciclo Celular , Podofilotoxina , Proteómica , Humanos , Podofilotoxina/farmacología , Podofilotoxina/análogos & derivados , Podofilotoxina/química , Proteómica/métodos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Etopósido/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Células HT29 , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
3.
Mol Cell Biol ; 44(5): 194-208, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38769646

RESUMEN

Cellular senescence is a dynamic biological process triggered by sublethal cell damage and driven by specific changes in gene expression programs. We recently identified ANKRD1 (ankyrin repeat domain 1) as a protein strongly elevated after triggering senescence in fibroblasts. Here, we set out to investigate the mechanisms driving the elevated production of ANKRD1 in the early stages of senescence. Our results indicated that the rise in ANKRD1 levels after triggering senescence using etoposide (Eto) was the result of moderate increases in transcription and translation, and robust mRNA stabilization. Antisense oligomer (ASO) pulldown followed by mass spectrometry revealed a specific interaction of the RNA-binding protein RBMS1 with ANKRD1 mRNA that was confirmed by ribonucleoprotein immunoprecipitation analysis. RBMS1 abundance decreased in the nucleus and increased in the cytoplasm during Eto-induced senescence; in agreement with the hypothesis that RBMS1 may participate in post-transcriptional stabilization of ANKRD1 mRNA, silencing RBMS1 reduced, while overexpressing RBMS1 enhanced ANKRD1 mRNA half-life after Eto treatment. A segment proximal to the ANKRD1 coding region was identified as binding RBMS1 and conferring RBMS1-dependent increased expression of a heterologous reporter. We propose that RBMS1 increases expression of ANKRD1 during the early stages of senescence by stabilizing ANKRD1 mRNA.


Asunto(s)
Senescencia Celular , Proteínas Nucleares , Estabilidad del ARN , ARN Mensajero , Proteínas de Unión al ARN , Proteínas Represoras , Humanos , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Estabilidad del ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Etopósido/farmacología , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Núcleo Celular/metabolismo , Línea Celular , Proteínas Musculares
4.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674157

RESUMEN

Protein tyrosine phosphatase receptor type E (PTPRE) is a member of the "classical" protein tyrosine phosphatase subfamily and regulates a variety of cellular processes in a tissue-specific manner by antagonizing the function of protein tyrosine kinases. PTPRE plays a tumorigenic role in different human cancer cells, but its role in retinoblastoma (RB), the most common malignant eye cancer in children, remains to be elucidated. Etoposide-resistant RB cell lines and RB patients display significant higher PTPRE expression levels compared to chemosensitive counterparts and the healthy human retina, respectively. PTPRE promotor methylation analyses revealed that PTPRE expression in RB is not regulated via this mechanism. Lentiviral PTPRE knockdown (KD) induced a significant decrease in growth kinetics, cell viability, and anchorage-independent growth of etoposide-resistant Y79 and WERI RB cells. Caspase-dependent apoptosis rates were significantly increased and a re-sensitization for etoposide could be observed after PTPRE depletion. In vivo chicken chorioallantoic membrane (CAM) assays revealed decreased tumor formation capacity as well as reduced tumor size and weight following PTPRE KD. Expression levels of miR631 were significantly downregulated in etoposide-resistant RB cells and patients. Transient miR631 overexpression resulted in significantly decreased PTPRE levels and concomitantly decreased proliferation and increased apoptosis levels in etoposide-resistant RB cells. These impacts mirror PTPRE KD effects, indicating a regulation of PTPRE via this miR. Additionally, PTPRE KD led to altered phosphorylation of protein kinase SGK3 and-dependent on the cell line-AKT and ERK1/2, suggesting potential PTPRE downstream signaling pathways. In summary, these results indicate an oncogenic role of PTPRE in chemoresistant retinoblastoma.


Asunto(s)
Apoptosis , Resistencia a Antineoplásicos , Etopósido , Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/metabolismo , Retinoblastoma/genética , Retinoblastoma/patología , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Animales , Apoptosis/efectos de los fármacos , Etopósido/farmacología , Etopósido/uso terapéutico , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/genética , Neoplasias de la Retina/patología , Neoplasias de la Retina/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino
5.
J Med Chem ; 67(9): 7301-7311, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38635879

RESUMEN

Although the selective and effective clearance of senescent cancer cells can improve cancer treatment, their development is confronted by many challenges. As part of efforts designed to overcome these problems, prodrugs, whose design is based on senescence-associated ß-galactosidase (SA-ß-gal), have been developed to selectively eliminate senescent cells. However, chemotherapies relying on targeted molecular inhibitors as senolytic drugs can induce drug resistance. In the current investigation, we devised a new strategy for selective degradation of target proteins in senescent cancer cells that utilizes a prodrug composed of the SA-ß-gal substrate galactose (galacto) and the proteolysis-targeting chimeras (PROTACs) as senolytic agents. Prodrugs Gal-ARV-771 and Gal-MS99 were found to display senolytic indexes higher than those of ARV-771 and MS99. Significantly, results of in vivo studies utilizing a human lung A549 xenograft mouse model demonstrated that concomitant treatment with etoposide and Gal-ARV-771 leads to a significant inhibition of tumor growth without eliciting significant toxicity.


Asunto(s)
Senescencia Celular , Galactosa , Profármacos , Proteolisis , Humanos , Animales , Senescencia Celular/efectos de los fármacos , Galactosa/química , Galactosa/farmacología , Profármacos/farmacología , Profármacos/química , Profármacos/uso terapéutico , Ratones , Proteolisis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , beta-Galactosidasa/metabolismo , Ratones Desnudos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células A549 , Etopósido/farmacología , Senoterapéuticos/farmacología , Senoterapéuticos/química , Quimera Dirigida a la Proteólisis
6.
Ann Agric Environ Med ; 31(1): 37-46, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38549475

RESUMEN

INTRODUCTION AND OBJECTIVE: Including additional compounds that disturb the energy metabolism of cancer cells in advanced cancer therapy regimens may be an approach to overcome the problem of drug resistance and the therapeutic effectiveness of classic chemotherapeutics. One of the compounds that decouple oxidative phosphorylation, and thus alter the activity of energy-producing pathways, is 2,4-DNP (2,4- dinitrophenol). OBJECTIVE: The aim of the study was to assess the ability of the 2,4-DNP to sensitize prostate cancer cells to the action of cisplatin and etoposide, or to intensify their action. MATERIAL AND METHODS: The research was carried out on three prostate cancer cell lines (LNCaP, PC-3, DU-145. To assess the effect of cisplatin or etoposide with 2,4-DNP on prostate cancer cells, MTT assay, analysis of the cell cycle and apoptosis detection was performed. Oxidative stress was investigated by CellRox fluorescence staining and expression of genes related to antioxidant defence. In addition, analysis was conducted of the expression of genes related to cell cycle inhibition, transporters associated with multi-drug resistance and DNA repair. RESULTS: The study showed that the simultaneous incubation of 2,4-DNP with cisplatin or etoposide enhances the cytotoxic effect of the chemotherapeutic agent only in LNCaP cells (oxidative phenotype). CONCLUSIONS: The enhanced cytotoxic effect of chemotherapeutics by 2,4-DNP may be the result of disturbed redox balance, reduced ability of cells to repair DNA, and the oxidative metabolic phenotype of prostate cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata , Masculino , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Etopósido/farmacología , Etopósido/uso terapéutico , 2,4-Dinitrofenol/farmacología , 2,4-Dinitrofenol/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Línea Celular , Apoptosis , Línea Celular Tumoral
7.
J Clin Invest ; 134(10)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451729

RESUMEN

Development of effective strategies to manage the inevitable acquired resistance to osimertinib, a third-generation EGFR inhibitor for the treatment of EGFR-mutant (EGFRm) non-small cell lung cancer (NSCLC), is urgently needed. This study reports that DNA topoisomerase II (Topo II) inhibitors, doxorubicin and etoposide, synergistically decreased cell survival, with enhanced induction of DNA damage and apoptosis in osimertinib-resistant cells; suppressed the growth of osimertinib-resistant tumors; and delayed the emergence of osimertinib-acquired resistance. Mechanistically, osimertinib decreased Topo IIα levels in EGFRm NSCLC cells by facilitating FBXW7-mediated proteasomal degradation, resulting in induction of DNA damage; these effects were lost in osimertinib-resistant cell lines that possess elevated levels of Topo IIα. Increased Topo IIα levels were also detected in the majority of tissue samples from patients with NSCLC after relapse from EGFR tyrosine kinase inhibitor treatment. Enforced expression of an ectopic TOP2A gene in sensitive EGFRm NSCLC cells conferred resistance to osimertinib, whereas knockdown of TOP2A in osimertinib-resistant cell lines restored their susceptibility to osimertinib-induced DNA damage and apoptosis. Together, these results reveal an essential role of Topo IIα inhibition in mediating the therapeutic efficacy of osimertinib against EGFRm NSCLC, providing scientific rationale for targeting Topo II to manage acquired resistance to osimertinib.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Carcinoma de Pulmón de Células no Pequeñas , ADN-Topoisomerasas de Tipo II , Resistencia a Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Inhibidores de Topoisomerasa II , Humanos , Acrilamidas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Compuestos de Anilina/farmacología , Receptores ErbB/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Línea Celular Tumoral , Inhibidores de Topoisomerasa II/farmacología , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Animales , Ratones , Mutación , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores , Sinergismo Farmacológico , Daño del ADN , Piperazinas/farmacología , Etopósido/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Biol Chem ; 405(5): 341-349, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38424700

RESUMEN

Therapy-related leukemia carries a poor prognosis, and leukemia after chemotherapy is a growing risk in clinic, whose mechanism is still not well understood. Ikaros transcription factor is an important regulator in hematopoietic cells development and differentiation. In the absence of Ikaros, lymphoid cell differentiation is blocked at an extremely early stage, and myeloid cell differentiation is also significantly affected. In this work, we showed that chemotherapeutic drug etoposide reduced the protein levels of several isoforms of Ikaros including IK1, IK2 and IK4, but not IK6 or IK7, by accelerating protein degradation, in leukemic cells. To investigate the molecular mechanism of Ikaros degradation induced by etoposide, immunoprecipitation coupled with LC-MS/MS analysis was conducted to identify changes in protein interaction with Ikaros before and after etoposide treatment, which uncovered KCTD5 protein. Our further study demonstrates that KCTD5 is the key stabilizing factor of Ikaros and chemotherapeutic drug etoposide induces Ikaros protein degradation through decreasing the interaction of Ikaros with KCTD5. These results suggest that etoposide may induce leukemic transformation by downregulating Ikaros via KCTD5, and our work may provide insights to attenuate the negative impact of chemotherapy on hematopoiesis.


Asunto(s)
Etopósido , Factor de Transcripción Ikaros , Factor de Transcripción Ikaros/metabolismo , Etopósido/farmacología , Humanos , Proteolisis/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología
9.
J Pharmacol Exp Ther ; 389(2): 186-196, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38508753

RESUMEN

DNA topoisomerase IIß (TOP2ß/180; 180 kDa) is a nuclear enzyme that regulates DNA topology by generation of short-lived DNA double-strand breaks, primarily during transcription. TOP2ß/180 can be a target for DNA damage-stabilizing anticancer drugs, whose efficacy is often limited by chemoresistance. Our laboratory previously demonstrated reduced levels of TOP2ß/180 (and the paralog TOP2α/170) in an acquired etoposide-resistant human leukemia (K562) clonal cell line, K/VP.5, in part due to overexpression of microRNA-9-3p/5p impacting post-transcriptional events. To evaluate the effect on drug sensitivity upon reduction/elimination of TOP2ß/180, a premature stop codon was generated at the TOP2ß/180 gene exon 19/intron 19 boundary (AGAA//GTAA→ATAG//GTAA) in parental K562 cells (which contain four TOP2ß/180 alleles) by CRISPR/Cas9 editing with homology-directed repair to disrupt production of full-length TOP2ß/180. Gene-edited clones were identified and verified by quantitative polymerase chain reaction and Sanger sequencing, respectively. Characterization of TOP2ß/180 gene-edited clones, with one or all four TOP2ß/180 alleles mutated, revealed partial or complete loss of TOP2ß mRNA/protein, respectively. The loss of TOP2ß/180 protein correlated with decreased (2-{4-[(7-chloro-2-quinoxalinyl)oxy]phenoxy}propionic acid)-induced DNA damage and partial resistance in growth inhibition assays. Partial resistance to mitoxantrone was also noted in the gene-edited clone with all four TOP2ß/180 alleles modified. No cross-resistance to etoposide or mAMSA was noted in the gene-edited clones. Results demonstrated the role of TOP2ß/180 in drug sensitivity/resistance in K562 cells and revealed differential paralog activity of TOP2-targeted agents. SIGNIFICANCE STATEMENT: Data indicated that CRISPR/Cas9 editing of the exon 19/intron 19 boundary in the TOP2ß/180 gene to introduce a premature stop codon resulted in partial to complete disruption of TOP2ß/180 expression in human leukemia (K562) cells depending on the number of edited alleles. Edited clones were partially resistant to mitoxantrone and XK469, while lacking resistance to etoposide and mAMSA. Results demonstrated the import of TOP2ß/180 in drug sensitivity/resistance in K562 cells and revealed differential paralog activity of TOP2-targeted agents.


Asunto(s)
Antineoplásicos , Leucemia , Humanos , Etopósido/farmacología , Células K562 , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Mitoxantrona , Sistemas CRISPR-Cas/genética , Codón sin Sentido , Antineoplásicos/farmacología , ADN , Fenotipo
10.
Bioorg Chem ; 145: 107223, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387399

RESUMEN

Herein, we envisioned the design and synthesis of novel pyrazolopyrimidines (confirmed by elemental analysis, 1H and 13C NMR, and mass spectra) as multitarget-directed drug candidates acting as EGFR/TOPO II inhibitors, DNA intercalators, and apoptosis inducers. The target diphenyl-tethered pyrazolopyrimidines were synthesized starting from the reaction of phenyl hydrazine and ethoxymethylenemalononitrile to give aminopyrazole-carbonitrile 2. The latter hydrolysis with NaOH and subsequent reaction with 4-chlorobenzaldhyde afforded the corresponding pyrazolo[3,4-d]pyrimidin-4-ol 4. Chlorination of 4 with POCl3 and sequential reaction with different amines afforded the target compounds in good yields (up to 73 %). The growth inhibition % of the new derivatives (6a-m) was investigated against different cancer and normal cells and the IC50 values of the most promising candidates were estimated for HNO97, MDA-MB-468, FaDu, and HeLa cancer cells. The frontier derivatives (6a, 6i, 6k, 6l, and 6m) were pursued for their EGFR inhibitory activity. Compound 6l decreased EGFR protein concentration by a 6.10-fold change, compared to imatinib as a reference standard. On the other side, compounds (6a, 6i, 6k, 6l, and 6m) underwent topoisomerase II (TOPO II) inhibitory assay. In particular, compounds 6a and 6l exhibited IC50s of 17.89 and 19.39 µM, respectively, surpassing etoposide with IC50 of 20.82 µM. Besides, the DNA fragmentation images described the great potential of both candidates 6a and 6l in inducing DNA degradation at lower concentrations compared to etoposide and doxorubicin. Moreover, compound 6l, with the most promising EGFR/TOPO II inhibition and DNA intercalation, was selected for further investigation for its apoptosis induction ability by measuring caspases 3, 7, 8, and 9, Bax, p53, MMP2, MMP9, and BCL-2 proteins. Additionally, molecular docking was used to explain the SAR results based on the differences in the molecular features of the investigated congeners and the target receptors' topology.


Asunto(s)
Antineoplásicos , Compuestos de Bifenilo , Humanos , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Antineoplásicos/química , Etopósido/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , Proliferación Celular , Inhibidores de Topoisomerasa II , Apoptosis , Receptores ErbB/metabolismo , ADN , Ensayos de Selección de Medicamentos Antitumorales
11.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38339011

RESUMEN

In childhood, retinoblastoma (RB) is the most common primary tumor in the eye. Long term therapeutic management with etoposide of this life-threatening condition may have diminishing effectiveness since RB cells can develop cytostatic resistance to this drug. To determine whether changes in receptor-mediated control of Ca2+ signaling are associated with resistance development, fluorescence calcium imaging, semi-quantitative RT-qPCR analyses, and trypan blue dye exclusion staining patterns are compared in WERI-ETOR (etoposide-insensitive) and WERI-Rb1 (etoposide-sensitive) cells. The cannabinoid receptor agonist 1 (CNR1) WIN55,212-2 (40 µM), or the transient receptor potential melastatin 8 (TRPM8) agonist icilin (40 µM) elicit similar large Ca2+ transients in both cell line types. On the other hand, NGF (100 ng/mL) induces larger rises in WERI-ETOR cells than in WERI-Rb1 cells, and its lethality is larger in WERI-Rb1 cells than in WERI-ETOR cells. NGF and WIN55,212-2 induced additive Ca2+ transients in both cell types. However, following pretreatment with both NGF and WIN55,212-2, TRPM8 gene expression declines and icilin-induced Ca2+ transients are completely blocked only in WERI-ETOR cells. Furthermore, CNR1 gene expression levels are larger in WERI-ETOR cells than those in WERI-Rb1 cells. Therefore, the development of etoposide insensitivity may be associated with rises in CNR1 gene expression, which in turn suppress TRPM8 gene expression through crosstalk.


Asunto(s)
Receptor de Factor de Crecimiento Nervioso , Neoplasias de la Retina , Retinoblastoma , Canales Catiónicos TRPM , Humanos , Línea Celular , Etopósido/farmacología , Etopósido/uso terapéutico , Proteínas de la Membrana/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Neoplasias de la Retina/tratamiento farmacológico , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Receptor Cannabinoide CB1/metabolismo
12.
Sci Rep ; 14(1): 4271, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383692

RESUMEN

Circulating endothelial cells (CEC) are arising as biomarkers for vascular diseases. However, whether they can be utilized as markers of endothelial cell (EC) senescence in vivo remains unknown. Here, we present a protocol to isolate circulating endothelial cells for a characterization of their senescent signature. Further, we characterize different models of EC senescence induction in vitro and show similar patterns of senescence being upregulated in CECs of aged patients as compared to young volunteers. Replication-(ageing), etoposide-(DNA damage) and angiotensin II-(ROS) induced senescence models showed the expected cell morphology and proliferation-reduction effects. Expression of senescence-associated secretory phenotype markers was specifically upregulated in replication-induced EC senescence. All models showed reduced telomere lengths and induction of the INK4a/ARF locus. Additional p14ARF-p21 pathway activation was observed in replication- and etoposide-induced EC senescence. Next, we established a combined magnetic activated- and fluorescence activated cell sorting (MACS-FACS) based protocol for CEC isolation. Interestingly, CECs isolated from aged volunteers showed similar senescence marker patterns as replication- and etoposide-induced senescence models. Here, we provide first proof of senescence in human blood derived circulating endothelial cells. These results hint towards an exciting future of using CECs as mirror cells for in vivo endothelial cell senescence, of particular interest in the context of endothelial dysfunction and cardiovascular diseases.


Asunto(s)
Células Endoteliales , Enfermedades Vasculares , Humanos , Anciano , Células Endoteliales/metabolismo , Etopósido/farmacología , Senescencia Celular , Envejecimiento , Enfermedades Vasculares/metabolismo
13.
Cancer Immunol Immunother ; 73(2): 25, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280079

RESUMEN

Macrophages constitute a major part of tumor microenvironment, and most of existing data demonstrate their ruling role in the development of anti-drug resistance of cancer cell. One of the most powerful protection system is based on heat shock proteins whose synthesis is triggered by activated Heat Shock Factor-1 (HSF1); the inhibition of the HSF1 with CL-43 sensitized A549 lung cancer cells to the anti-cancer effect of etoposide. Notably, analyzing A549 tumor xenografts in mice we observed nest-like pattern of co-localization of A549 cells demonstrating enhanced expression of HSF1 with macrophages, and decided to check whether the above arrangement has a functional value for both cell types. It was found that the incubation of A549 or DLD1 colon cancer cells with either human monocytes or THP1 monocyte-like cells activated HSF1 and increased resistance to etoposide. Importantly, the same effect was shown when primary cultures of colon tumors were incubated with THP1 cells or with human monocytes. To prove that HSF1 is implicated in enhanced resistance caused by monocytic cells, we generated an A549 cell subline devoid of HSF1 which did not respond to incubation with THP1 cells. The pharmacological inhibition of HSF1 with CL-43 also abolished the effect of THP1 cells on primary tumor cells, highlighting a new target of tumor-associated macrophages in a cell proteostasis mechanism.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Animales , Humanos , Ratones , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Resistencia a Medicamentos , Etopósido/farmacología , Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico , Factores de Transcripción/metabolismo , Macrófagos Asociados a Tumores/metabolismo
14.
Nucleic Acids Res ; 52(6): 3050-3068, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38224452

RESUMEN

RNA-binding proteins emerge as effectors of the DNA damage response (DDR). The multifunctional non-POU domain-containing octamer-binding protein NONO/p54nrb marks nuclear paraspeckles in unperturbed cells, but also undergoes re-localization to the nucleolus upon induction of DNA double-strand breaks (DSBs). However, NONO nucleolar re-localization is poorly understood. Here we show that the topoisomerase II inhibitor etoposide stimulates the production of RNA polymerase II-dependent, DNA damage-inducible antisense intergenic non-coding RNA (asincRNA) in human cancer cells. Such transcripts originate from distinct nucleolar intergenic spacer regions and form DNA-RNA hybrids to tether NONO to the nucleolus in an RNA recognition motif 1 domain-dependent manner. NONO occupancy at protein-coding gene promoters is reduced by etoposide, which attenuates pre-mRNA synthesis, enhances NONO binding to pre-mRNA transcripts and is accompanied by nucleolar detention of a subset of such transcripts. The depletion or mutation of NONO interferes with detention and prolongs DSB signalling. Together, we describe a nucleolar DDR pathway that shields NONO and aberrant transcripts from DSBs to promote DNA repair.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Etopósido/farmacología , Precursores del ARN/metabolismo , Factores de Transcripción/metabolismo , ADN , Proteínas de Unión al ARN/metabolismo
15.
Sci Rep ; 14(1): 1565, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238398

RESUMEN

Impaired spermatogenesis and male infertility are common consequences of chemotherapy drugs used in patients with testicular cancer. The present study investigated the effects of sodium alginate (NaAL) on testicular toxicity caused by bleomycin, etoposide, and cisplatin (BEP). Rats in group 1 received normal saline, while groups 2 and 3 were treated with 25 and 50 mg/kg of NaAL, respectively. Group 4 was treated with a 21-day cycle of BEP (0.5 mg/kg bleomycin, 5 mg/kg etoposide, and 1 mg/kg cisplatin), and groups 5 and 6 received BEP regimen plus 25 and 50 mg/kg of NaAL, respectively. Then, sperm parameters, testosterone levels, testicular histopathology and stereological parameters, testicular levels of malondialdehyde (MDA), nitric oxide (NO), and total antioxidant capacity (TAC), and the expression of apoptosis-associated genes including Bcl2, Bax, Caspase3, p53, and TNF-α were evaluated. Our findings revealed that NaAL improved sperm parameters, testosterone levels, histopathology, and stereology parameters in BEP-administrated rats. NaAL also improved testis antioxidant status by enhancing TAC and ameliorating MDA and NO. Further, modifications to the expression of Bcl2, Bax, Caspase3, p53, and TNF-α suggested that NaAL alleviated BEP-induced apoptosis and inflammation. Collectively, NaAL protects rats' testes against BEP-evoked toxicity damage through the modulation of nitro-oxidative stress, apoptosis, and inflammation.


Asunto(s)
Cisplatino , Neoplasias Testiculares , Humanos , Masculino , Ratas , Animales , Cisplatino/toxicidad , Cisplatino/metabolismo , Etopósido/farmacología , Neoplasias Testiculares/patología , Bleomicina/toxicidad , Bleomicina/metabolismo , Antioxidantes/metabolismo , Alginatos/farmacología , Alginatos/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Semen/metabolismo , Testosterona/metabolismo , Estrés Oxidativo , Apoptosis , Inflamación/inducido químicamente
16.
Stem Cells ; 42(2): 158-171, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37962865

RESUMEN

Hematopoietic stem cells (HSC) from cord blood can be applied as an alternative to bone marrow in transplantation to treat hematological diseases. Umbilical cord blood (UCB) consists of cycling and non-cycling CD34+/CD45low cells needed for long-term and short-term engraftment. After sorting and subsequent in vitro culture, quiescent HSCs enter the cell cycle. This enables the analysis of HSCs in 2 different cell cycle stages and the comparison of their responses to different genotoxic noxae. To analyze different mechanisms of DNA damage induction in cells, 2 different genotoxins were compared: etoposide, a topoisomerase II inhibitor that targets mitosis in the S/G2-phase of the cell cycle and the alkylating nitrosamine N-Nitroso-N-methylurea (MNU), which leads to the formation of methyl DNA adducts resulting in DNA double breaks during DNA replication and persistent mutations. Cycling cells recovered after treatment even with higher concentrations of etoposide (1.5µM/ 5µM/10µM), while sorted cells treated with MNU (0.1mM/0.3mM/0.5mM/1mM/3Mm/ 5mM) recovered after treatment with the lower MNU concentrations whereas high MNU concentrations resulted in apoptosis activation. Quiescent cells were not affected by etoposide treatment showing no damage upon entry into the cell cycle. Treatment with MNU, similarly to the cycling cells, resulted in a dose-dependent cell death. In conclusion, we found that depending on the genotoxic trigger and the cycling status, CD34+cells have distinct responses to DNA damage. Cycling cells employ both DDR and apoptosis mechanisms to prevent damage accumulation. Quiescent cells predominantly undergo apoptosis upon damage, but their cell cycle status protects them from certain genotoxic insults.


Asunto(s)
Sangre Fetal , Células Madre Hematopoyéticas , Sangre Fetal/metabolismo , Etopósido/farmacología , Etopósido/metabolismo , Células Madre Hematopoyéticas/metabolismo , Daño del ADN , Reparación del ADN , Noxas/metabolismo
17.
J Adv Res ; 55: 33-44, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36822389

RESUMEN

INTRODUCTION: Antibiotic-resistant bacterial infections, such as Pseudomonas aeruginosa and Staphylococcus aureus, are prevalent in lung cancer patients, resulting in poor clinical outcomes and high mortality. Etoposide (ETO) is an FDA-approved chemotherapy drug that kills cancer cells by damaging DNA through oxidative stress. However, it is unclear if ETO can cause unintentional side effects on tumor-associated microbial pathogens, such as inducing antibiotic resistance. OBJECTIVES: We aimed to show that prolonged ETO treatment could unintendedly confer fluoroquinolone antibiotic resistance to P. aeruginosa, and evaluate the effect of tumor-associated P. aeruginosa on tumor progression. METHODS: We employed experimental evolution assay to treat P. aeruginosa with prolonged ETO exposure, evaluated the ciprofloxacin resistance, and elucidated the gene mutations by DNA sequencing. We also established a lung tumor-P. aeruginosa bacterial model to study the role of ETO-evolved intra-tumoral bacteria in tumor progression using immunostaining and confocal microscopy. RESULTS: ETO could generate oxidative stress and lead to gene mutations in P. aeruginosa, especially the gyrase (gyrA) gene, resulting in acquired fluoroquinolone resistance. We further demonstrated using a microfluidic-based lung tumor-P. aeruginosa coculture model that bacteria can evolve ciprofloxacin (CIP) resistance in a tumor microenvironment. Moreover, ETO-induced CIP-resistant (EICR) mutants could form multicellular biofilms which protected tumor cells from ETO killing and enabled tumor progression. CONCLUSION: Overall, our preclinical proof-of-concept provides insights into how anti-cancer chemotherapy could inadvertently allow tumor-associated bacteria to acquire antibiotic resistance mutations and shed new light on the development of novel anti-cancer treatments based on anti-bacterial strategies.


Asunto(s)
Neoplasias Pulmonares , Infecciones por Pseudomonas , Humanos , Fluoroquinolonas/farmacología , Antibacterianos/farmacología , Etopósido/farmacología , Etopósido/uso terapéutico , Pruebas de Sensibilidad Microbiana , Ciprofloxacina/farmacología , Infecciones por Pseudomonas/microbiología , Estrés Oxidativo , Neoplasias Pulmonares/tratamiento farmacológico , Microambiente Tumoral
18.
Nucleic Acids Res ; 52(3): 1313-1324, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38038260

RESUMEN

Type II topoisomerases effect topological changes in DNA by cutting a single duplex, passing a second duplex through the break, and resealing the broken strand in an ATP-coupled reaction cycle. Curiously, most type II topoisomerases (topos II, IV and VI) catalyze DNA transformations that are energetically favorable, such as the removal of superhelical strain; why ATP is required for such reactions is unknown. Here, using human topoisomerase IIß (hTOP2ß) as a model, we show that the ATPase domains of the enzyme are not required for DNA strand passage, but that their loss elevates the enzyme's propensity for DNA damage. The unstructured C-terminal domains (CTDs) of hTOP2ß strongly potentiate strand passage activity in ATPase-less enzymes, as do cleavage-prone mutations that confer hypersensitivity to the chemotherapeutic agent etoposide. The presence of either the CTD or the mutations lead ATPase-less enzymes to promote even greater levels of DNA cleavage in vitro, as well as in vivo. By contrast, aberrant cleavage phenotypes of these topo II variants is significantly repressed when the ATPase domains are present. Our findings are consistent with the proposal that type II topoisomerases acquired ATPase function to maintain high levels of catalytic activity while minimizing inappropriate DNA damage.


Asunto(s)
ADN-Topoisomerasas de Tipo II , ADN , Humanos , Adenosina Trifosfatasas/genética , Adenosina Trifosfato , ADN/genética , ADN-Topoisomerasas de Tipo II/genética , Etopósido/farmacología , Daño del ADN
19.
Eur J Pharm Sci ; 193: 106686, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38159687

RESUMEN

As part of our efforts geared towards developing mechanism-based cancer sensitizing agents, we have previously synthesized and characterized novel deazaflavin analogs as potent tyrosyl DNA phosphodiesterase 2 (TDP2) inhibitors for combination treatments with topoisomerase II (TOP2) poisons. Interestingly, the sensitizing effect of a few analogs toward TOP2 poison etoposide (ETP) was associated with a significant increase in intracellular drug accumulation, which could be an alternative mechanism to boost the clinical efficacy of ETP in cancer chemotherapies. Hence, we evaluated more deazaflavin TDP2 inhibitors for their impact on drug retention in cancer cells. We found that all but one tested TDP2 inhibitors substantially increased the ETP retention in DT40 cells. Particularly, we identified an exceptionally potent analog, ZW-1226, which at 3 nM increased the intracellular ETP by 13-fold. Significantly, ZW-1226 also stimulated cellular accumulation of two other anticancer drugs, TOP2 poison teniposide and antifolate pemetrexed, and produced an effect more pronounced than those of ABC transporter inhibitors verapamil and elacridar in human leukemic CCRF-CEM cells toward ETP. Lastly, ZW-1226 potentiated the action of ETP in the sensitive human CCRF-CEM cells and a few resistant non-small-cell lung cancer (NSCLC) cells, including H460 and H838 cells. Collectively, the results of this study strongly suggest that deazaflavin analog ZW-1226 could be an effective cancer sensitizing agent which warrants further investigation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Venenos , Humanos , Proteínas de Unión al ADN/genética , Hidrolasas Diéster Fosfóricas , Etopósido/farmacología , ADN-Topoisomerasas de Tipo II/genética
20.
Biochem Biophys Res Commun ; 693: 149384, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38113722

RESUMEN

The nucleolus serves a multifaceted role encompassing not only rRNA transcription and ribosome synthesis, but also the intricate orchestration of cell cycle regulation and the modulation of cellular senescence. G-patch domain containing 4 (GPATCH4) stands as one among the nucleolar proteins; however, its functional significances remain still unclear. In order to elucidate the functions of GPATCH4, we examined the effects of its dysfunction on cellular proliferation, alterations in nucleolar architecture, apoptotic events, and cellular senescence. Through experimentation conducted on cultured neuroblastoma SH-SY5Y cells, the reduction of GPATCH4 caused inhibition of cellular proliferation, concurrently fostering escalated apoptotic susceptibilities upon exposure to high-dose etoposide. In the realm of nucleolar morphology comparisons, a discernible decline was noted in the count of nucleoli per nucleus, concomitant with a significant expansion in the area occupied by individual nucleoli. Upon induction of senescence prompted by low-dose etoposide, GPATCH4 knockdown resulted in decreased cell viability and increased expression of senescence-associated markers, namely senescence-associated ß-galactosidase (SA-ß-GAL) and p16. Furthermore, GPATCH4 dysfunction elicited alterations in the gene expression profile of the ribosomal system. In sum, our findings showed that GPATCH4 is a pivotal nucleolar protein that regulates nucleolar morphology and is correlated with cell viability.


Asunto(s)
Neuroblastoma , Humanos , Etopósido/farmacología , Supervivencia Celular , Neuroblastoma/metabolismo , Nucléolo Celular/metabolismo , Senescencia Celular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA