Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.961
Filtrar
1.
Sci Rep ; 14(1): 11402, 2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762561

RESUMEN

Despite the therapeutic potential of chemogenetics, the method lacks comprehensive preclinical validation, hindering its progression to human clinical trials. We aimed to validate a robust but simple in vivo efficacy assay in rats which could support chemogenetic drug discovery by providing a quick, simple and reliable animal model. Key methodological parameters such as adeno-associated virus (AAV) serotype, actuator drug, dose, and application routes were investigated by measuring the food-intake-reducing effect of chemogenetic inhibition of the lateral hypothalamus (LH) by hM4D(Gi) designer receptor stimulation. Subcutaneous deschloroclozapine in rats transfected with AAV9 resulted in a substantial reduction of food-intake, comparable to the efficacy of exenatide. We estimated that the effect of deschloroclozapine lasts 1-3 h post-administration. AAV5, oral administration of deschloroclozapine, and clozapine-N-oxide were also effective but with slightly less potency. The strongest effect on food-intake occurred within the first 30 min after re-feeding, suggesting this as the optimal experimental endpoint. This study demonstrates that general chemogenetic silencing of the LH can be utilized as an optimal, fast and reliable in vivo experimental model for conducting preclinical proof-of-concept studies in order to validate the in vivo effectiveness of novel chemogenetic treatments. We also hypothesize based on our results that universal LH silencing with existing and human translatable genetic neuroengineering techniques might be a viable strategy to affect food intake and influence obesity.


Asunto(s)
Clozapina , Dependovirus , Ingestión de Alimentos , Área Hipotalámica Lateral , Prueba de Estudio Conceptual , Animales , Clozapina/análogos & derivados , Clozapina/farmacología , Ratas , Ingestión de Alimentos/efectos de los fármacos , Área Hipotalámica Lateral/efectos de los fármacos , Dependovirus/genética , Masculino , Exenatida/farmacología , Humanos
2.
BMC Vet Res ; 20(1): 211, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762728

RESUMEN

Beneficial weight-loss properties of glucagon-like peptide-1 receptor agonists (GLP-1RA) in obese people, with corresponding improvements in cardiometabolic risk factors, are well established. OKV-119 is an investigational drug delivery system that is being developed for the long-term delivery of the GLP-1RA exenatide to feline patients. The purpose of this study was to evaluate the drug release characteristics of subcutaneous OKV-119 implants configured to release exenatide for 84 days. Following a 7-day acclimation period, five purpose-bred cats were implanted with OKV-119 protypes and observed for a 112-day study period. Food intake, weekly plasma exenatide concentrations and body weight were measured. Exenatide plasma concentrations were detected at the first measured timepoint (Day 7) and maintained above baseline for over 84 Days. Over the first 28 days, reduced caloric intake and a reduction in body weight were observed in four of five cats. In these cats, a body weight reduction of at least 5% was maintained throughout the 112-day study period. This study demonstrates that a single OKV-119 implant can deliver the GLP-1RA exenatide for a months long duration. Results suggest that exposure to exenatide plasma concentrations ranging from 1.5 ng/ml to 4 ng/ml are sufficient for inducing weight loss in cats.


Asunto(s)
Exenatida , Animales , Exenatida/administración & dosificación , Exenatida/farmacocinética , Exenatida/farmacología , Gatos , Masculino , Femenino , Sistemas de Liberación de Medicamentos/veterinaria , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacocinética , Peso Corporal , Liberación de Fármacos , Implantes de Medicamentos , Ingestión de Alimentos/efectos de los fármacos , Ponzoñas/administración & dosificación , Ponzoñas/farmacocinética , Receptor del Péptido 1 Similar al Glucagón/agonistas
3.
Med Oncol ; 41(6): 138, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38705935

RESUMEN

Breast cancer (BC) is associated with type 2 diabetes mellitus (T2DM) and obesity. Glucagon-like peptide (GLP)-1 regulates post-prandial insulin secretion, satiety, and gastric emptying. Several GLP-1 analogs have been FDA-approved for the treatment of T2DM and obesity. Moreover, GLP-1 regulates various metabolic activities across different tissues by activating metabolic signaling pathways like adenosine monophosphate (AMP) activated protein kinase (AMPK), and AKT. Rewiring metabolic pathways is a recognized hallmark of cancer, regulated by several cancer-related pathways, including AKT and AMPK. As GLP-1 regulates AKT and AMPK, we hypothesized that it alters BC cells' metabolism, thus inhibiting proliferation. The effect of the GLP-1 analogs exendin-4 (Ex4) and liraglutide on viability, AMPK signaling and metabolism of BC cell lines were assessed. Viability of BC cells was evaluated using colony formation and MTT/XTT assays. Activation of AMPK and related signaling effects were evaluated using western blot. Metabolism effects were measured for glucose, lactate and ATP. Exendin-4 and liraglutide activated AMPK in a cAMP-dependent manner. Blocking Ex4-induced activation of AMPK by inhibition of AMPK restored cell viability. Interestingly, Ex4 and liraglutide reduced the levels of glycolytic metabolites and decreased ATP production, suggesting that GLP-1 analogs impair glycolysis. Notably, inhibiting AMPK reversed the decline in ATP levels, highlighting the role of AMPK in this process. These results establish a novel signaling pathway for GLP-1 in BC cells through cAMP and AMPK modulation affecting proliferation and metabolism. This study suggests that GLP-1 analogs should be considered for diabetic patients with BC.


Asunto(s)
Neoplasias de la Mama , Exenatida , Péptido 1 Similar al Glucagón , Liraglutida , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Exenatida/farmacología , Femenino , Liraglutida/farmacología , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/análogos & derivados , Línea Celular Tumoral , Proteínas Quinasas Activadas por AMP/metabolismo , Transducción de Señal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Efecto Warburg en Oncología/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ponzoñas/farmacología , Adenilato Quinasa/metabolismo , Péptidos/farmacología
4.
Mol Med ; 30(1): 58, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720283

RESUMEN

BACKGROUND: Vascular calcification (VC) is a complication in diabetes mellitus (DM) patients. Osteogenic phenotype switching of vascular smooth muscle cells (VSMCs) plays a critical role in diabetes-related VC. Mitophagy can inhibit phenotype switching in VSMCs. This study aimed to investigate the role of the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin 4 (EX4) in mitophagy-induced phenotype switching. MATERIALS AND METHODS: The status of VC in T2DM mice was monitored using Von Kossa and Alizarin Red S (ARS) staining in mouse aortic tissue. Human aortic smooth muscle cells were cultured in high glucose (HG) and ß-glycerophosphate (ß-GP) conditioned medium. Accumulation of LC3B and p62 was detected in the mitochondrial fraction. The effect of EX4 in vitro and in vivo was investigated by knocking down AMPKα1. RESULTS: In diabetic VC mice, EX4 decreased the percentage of von Kossa/ARS positive area. EX4 inhibited osteogenic differentiation of HG/ß-GP-induced VSMCs. In HG/ß-GP-induced VSMCs, the number of mitophagosomes was increased, whereas the addition of EX4 restored mitochondrial function, increased the number of mitophagosome-lysosome fusions, and reduced p62 in mitochondrial frictions. EX4 increased the phosphorylation of AMPKα (Thr172) and ULK1 (Ser555) in HG/ß-GP-induced VSMCs. After knockdown of AMPKα1, ULK1 could not be activated by EX4. The accumulation of LC3B and p62 could not be reduced after AMPKα1 knockdown. Knockdown of AMPKα1 negated the therapeutic effects of EX4 on VC of diabetic mice. CONCLUSION: EX4 could promote mitophagy by activating the AMPK signaling pathway, attenuate insufficient mitophagy, and thus inhibit the osteogenic phenotype switching of VSMCs.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Exenatida , Receptor del Péptido 1 Similar al Glucagón , Mitofagia , Transducción de Señal , Calcificación Vascular , Animales , Mitofagia/efectos de los fármacos , Calcificación Vascular/etiología , Calcificación Vascular/metabolismo , Calcificación Vascular/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Ratones , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Humanos , Exenatida/farmacología , Exenatida/uso terapéutico , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
5.
JAAPA ; 37(5): 12-14, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38662894

RESUMEN

ABSTRACT: Glucagon-like peptide 1 agonists (GLP1s) and the novel glucose-dependent insulinotropic polypeptide/glucagon-like peptide 1 agonist are effective drugs for reducing A1C and weight in patients with type 2 diabetes. However, clinicians may find it difficult to discern which drug to prescribe in specific clinical scenarios. This article discusses evidence-based clinical use of these drugs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Péptido 1 Similar al Glucagón , Hipoglucemiantes , Pérdida de Peso , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Pérdida de Peso/efectos de los fármacos , Péptido 1 Similar al Glucagón/agonistas , Hipoglucemiantes/uso terapéutico , Liraglutida/uso terapéutico , Polipéptido Inhibidor Gástrico/uso terapéutico , Polipéptido Inhibidor Gástrico/agonistas , Exenatida/uso terapéutico , Exenatida/administración & dosificación , Péptidos/uso terapéutico , Hemoglobina Glucada , Receptor del Péptido 1 Similar al Glucagón/agonistas
6.
Neuropharmacology ; 252: 109946, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599494

RESUMEN

The spontaneous firing activity of nigral dopaminergic neurons is associated with some important roles including modulation of dopamine release, expression of tyrosine hydroxylase (TH), as well as neuronal survival. The decreased neuroactivity of nigral dopaminergic neurons has been revealed in Parkinson's disease. Central glucagon-like peptide-1 (GLP-1) functions as a neurotransmitter or neuromodulator to exert multiple brain functions. Although morphological studies revealed the expression of GLP-1 receptors (GLP-1Rs) in the substantia nigra pars compacta, the possible modulation of GLP-1 on spontaneous firing activity of nigral dopaminergic neurons is unknown. The present extracellular in vivo single unit recordings revealed that GLP-1R agonist exendin-4 significantly increased the spontaneous firing rate and decreased the firing regularity of partial nigral dopaminergic neurons of adult male C57BL/6 mice. Blockade of GLP-1Rs by exendin (9-39) decreased the firing rate of nigral dopaminergic neurons suggesting the involvement of endogenous GLP-1 in the modulation of firing activity. Furthermore, the PKA and the transient receptor potential canonical (TRPC) 4/5 channels are involved in activation of GLP-1Rs-induced excitatory effects of nigral dopaminergic neurons. Under parkinsonian state, both the exogenous and endogenous GLP-1 could still induce excitatory effects on the surviving nigral dopaminergic neurons. As the mild excitatory stimuli exert neuroprotective effects on nigral dopaminergic neurons, the present GLP-1-induced excitatory effects may partially contribute to its antiparkinsonian effects.


Asunto(s)
Potenciales de Acción , Neuronas Dopaminérgicas , Exenatida , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Ratones Endogámicos C57BL , Sustancia Negra , Animales , Masculino , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Exenatida/farmacología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Ratones , Ponzoñas/farmacología , Péptidos/farmacología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/fisiopatología , Fragmentos de Péptidos/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
7.
Am J Physiol Endocrinol Metab ; 326(5): E567-E576, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38477664

RESUMEN

Signaling through prostaglandin E2 EP3 receptor (EP3) actively contributes to the ß-cell dysfunction of type 2 diabetes (T2D). In T2D models, full-body EP3 knockout mice have a significantly worse metabolic phenotype than wild-type controls due to hyperphagia and severe insulin resistance resulting from loss of EP3 in extra-pancreatic tissues, masking any potential beneficial effects of EP3 loss in the ß cell. We hypothesized ß-cell-specific EP3 knockout (EP3 ßKO) mice would be protected from high-fat diet (HFD)-induced glucose intolerance, phenocopying mice lacking the EP3 effector, Gαz, which is much more limited in its tissue distribution. When fed a HFD for 16 wk, though, EP3 ßKO mice were partially, but not fully, protected from glucose intolerance. In addition, exendin-4, an analog of the incretin hormone, glucagon-like peptide 1, more strongly potentiated glucose-stimulated insulin secretion in islets from both control diet- and HFD-fed EP3 ßKO mice as compared with wild-type controls, with no effect of ß-cell-specific EP3 loss on islet insulin content or markers of replication and survival. However, after 26 wk of diet feeding, islets from both control diet- and HFD-fed EP3 ßKO mice secreted significantly less insulin as a percent of content in response to stimulatory glucose, with or without exendin-4, with elevated total insulin content unrelated to markers of ß-cell replication and survival, revealing severe ß-cell dysfunction. Our results suggest that EP3 serves a critical role in temporally regulating ß-cell function along the progression to T2D and that there exist Gαz-independent mechanisms behind its effects.NEW & NOTEWORTHY The EP3 receptor is a strong inhibitor of ß-cell function and replication, suggesting it as a potential therapeutic target for the disease. Yet, EP3 has protective roles in extrapancreatic tissues. To address this, we designed ß-cell-specific EP3 knockout mice and subjected them to high-fat diet feeding to induce glucose intolerance. The negative metabolic phenotype of full-body knockout mice was ablated, and EP3 loss improved glucose tolerance, with converse effects on islet insulin secretion and content.


Asunto(s)
Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Células Secretoras de Insulina , Animales , Ratones , Secreción de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Exenatida/farmacología , Intolerancia a la Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidad/metabolismo , Glucosa/metabolismo , Ratones Noqueados , Prostaglandinas/metabolismo , Prostaglandinas/farmacología
8.
J Endocrinol ; 261(2)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38451873

RESUMEN

The glucagon-like peptide 1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) that emerged as a pharmacologic target in cardiometabolic disease, including diabetes and obesity, over 30 years ago. The subsequent widespread clinical use of GLP-1R agonists, including exenatide, liraglutide, and semaglutide, has made the GLP-1R a preeminent model for understanding basic GPCR biology, including the emergent field of biased agonism. Recent data demonstrate that the dual GLP-1R/glucose dependent insulinotropic polypeptide receptor (GIPR) agonist tirzepatide exhibits a biased signaling profile characterized by preferential Gαs activation over ß-arrestin recruitment, which appears to contribute to its insulinotropic and body-weight reducing effects in preclinical models. This constitutes a major finding in which nuanced, mechanistic receptor signaling dynamics in vitro mediate real-world clinical differentiation within a drug class. Because of the striking bench-top-to-bed side relevance of this biased signaling phenomenon, we have undertaken a review of the emerging data detailing biased agonism at the GLP-1R. In this review, we introduce the core concept of biased agonism followed by a detailed consideration of the key mechanisms, including ligand-mediated bias, receptor-mediated bias, and systems/cell-type bias. Current industry programs are largely, if not entirely, focused on developing biased ligands, and so we have dedicated a section of the review to a brief meta-analysis of compounds reported to drive biased signaling, with a consideration of the structural determinants of receptor-ligand interactions. In this work, we aim to assess the current knowledge regarding signaling bias at the GLP-1R and how these ideas might be leveraged in future optimization.


Asunto(s)
Liraglutida , Receptores Acoplados a Proteínas G , Ligandos , Liraglutida/farmacología , Exenatida/farmacología , Transducción de Señal , Receptor del Péptido 1 Similar al Glucagón/agonistas
9.
Eur J Endocrinol ; 190(4): 257-265, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38450721

RESUMEN

IMPORTANCE: A major issue in the management of craniopharyngioma-related obesity (CRO) is the ineffectiveness of the current therapeutic approaches. OBJECTIVE: To study the efficacy of glucagon-like peptide-1 analogs compared with placebo in adults with obesity CRO. DESIGN: A double-blind multicenter superiority randomized clinical in trial in two parallel arms. SETTING: Eleven French University Hospital Centers. PARTICIPANTS: Adults with CRO (body mass index > 30 kg/m²) without the sign of recurrence of craniopharyngioma in the past year. INTERVENTIONS: Exenatide or placebo injected subcutaneously twice a day during 26 weeks. MAIN OUTCOMES AND MEASURES: The primary outcome was the mean change in body weight at week 26 in the intention-to-treat population. Secondary outcomes were eating behavior, calories intake, energy expenditure, cardiovascular, metabolic risk factor, quality of life, and the tolerance profile. RESULTS: At week 26, weight decreased from baseline by a mean of -3.8 (SD 4.3) kg for exenatide and -1.6 (3.8) kg for placebo. The adjusted mean treatment difference was -3.1 kg (95% confidence interval [CI] -7.0 to 0.7, P = 0.11). Results were compatible with a higher reduction of hunger score with exenatide compared with placebo (estimated treatment difference in change from baseline to week 26: -2.3, 95% CI -4.5 to -0.2), while all other outcomes did not significantly differ between groups. Adverse events were more common with exenatide versus placebo, and occurred in, respectively, 19 (95%) participants (108 events) and 14 (70%) participants (54 events). CONCLUSIONS AND RELEVANCE: Combined with intensive lifestyle interventions, a 26-week treatment with exenatide was not demonstrated superior to placebo to treat craniopharyngioma-related obesity.


Asunto(s)
Craneofaringioma , Neoplasias Hipofisarias , Adulto , Humanos , Exenatida/uso terapéutico , Hipoglucemiantes/uso terapéutico , Calidad de Vida , Craneofaringioma/complicaciones , Craneofaringioma/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Pérdida de Peso , Conducta Alimentaria , Neoplasias Hipofisarias/tratamiento farmacológico , Método Doble Ciego
10.
Diabetes Obes Metab ; 26(6): 2209-2228, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38505997

RESUMEN

AIM: The cardiovascular benefits provided by glucagon-like peptide-1 receptor agonists (GLP-1RAs) extend beyond weight reduction and glycaemic control. One possible mechanism may relate to blood pressure (BP) reduction. We aim to quantify the BP-lowering effects of GLP1-RAs. METHODS: A comprehensive database search for placebo-controlled randomized controlled trials on GLP-1RA treatment was conducted until December 2023. Data extraction and quality assessment were carried out, employing a robust statistical analysis using a random effects model to determine outcomes with a mean difference (MD) in mmHg and 95% confidence intervals (CIs). The primary endpoint was the mean difference in systolic BP (SBP) and diastolic BP. Subgroup analyses and meta-regressions were done to account for covariates. RESULTS: Compared with placebo, GLP-1RAs modestly reduced SBP [semaglutide: MD -3.40 (95% CI -4.22 to -2.59, p < .001); liraglutide: MD -2.61 (95% CI -3.48 to -1.74, p < .001); dulaglutide: MD -1.46 (95% CI -2.20 to -0.72, p < .001); and exenatide: MD -3.36 (95% CI -3.63 to -3.10, p < .001)]. This benefit consistently increased with longer treatment durations. Diastolic BP reduction was only significant in the exenatide group [MD -0.94 (95% CI -1.78 to -0.1), p = .03]. Among semaglutide cohorts, mean changes in glycated haemoglobin and mean changes in body mass index were directly associated with SBP reduction. CONCLUSION: Patients on GLP-1RA experienced modest SBP lowering compared with placebo. This observed effect was associated with weight/body mass index reduction and better glycaemic control, which suggests that BP-lowering is an indirect effect of GLP-1RA and unlikely to be responsible for the benefits.


Asunto(s)
Presión Sanguínea , Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón , Hipoglucemiantes , Humanos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Presión Sanguínea/efectos de los fármacos , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/sangre , Ensayos Clínicos Controlados Aleatorios como Asunto , Liraglutida/uso terapéutico , Péptidos Similares al Glucagón/uso terapéutico , Péptidos Similares al Glucagón/análogos & derivados , Exenatida/uso terapéutico , Exenatida/farmacología , Fragmentos Fc de Inmunoglobulinas/uso terapéutico , Proteínas Recombinantes de Fusión/uso terapéutico , Agonistas Receptor de Péptidos Similares al Glucagón
11.
Eur Neuropsychopharmacol ; 82: 82-91, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508100

RESUMEN

INTRODUCTION: The study addresses concerns about potential psychiatric side effects of Glucagon-like peptide-1 receptor agonists (GLP-1 RA). AIM: The aim of this work was to analyse adverse drug reports (ADRs) from the Food and Drug Administration Adverse Events Reporting System (FAERS) using metformin and orlistat as comparators. METHODS: Descriptive and pharmacovigilance disproportionality analyses was performed. RESULTS: A total of 209,354 ADRs were reported, including 59,300 serious cases. Of those, a total of 5378 psychiatric disorder cases, including 383 'serious' cases related to selected ADRs were registered during 2005-2023. After unmasking, 271 cases where individual GLP-1 RA were implicated showing liraglutide (n = 90; Reported Odds Ratio (ROR) = 1.64), exenatide (n = 67; ROR = 0.80), semaglutide (n = 61; ROR = 2.03), dulaglutide (n = 45; ROR = 0.84), tirzepatide (n = 5; ROR = 1.76) and albiglutide (n = 2; ROR = 0.04). A greater association between these ADRs with metformin was observed, but not orlistat. With regards to selected preferred terms (PTs), 42 deaths including 13 completed suicides were recorded. Suicidal ideation was recorded in n = 236 cases for 6/7 GLP-1 RA (excluding lixisenatide). DISCUSSION: Suicide/self-injury reports pertaining to semaglutide; tirzepatide; and liraglutide were characterised, although lower than metformin. It is postulated that rapid weight loss achieved with GLP-1 RA can trigger significant emotional, biological, and psychological responses, hence possibly impacting on suicidal and self-injurious ideations. CONCLUSIONS: With the current pharmacovigilance approach, no causality link between suicidal ideation and use of any GLP-1 RA can be inferred. There is a need for further research and vigilance in GLP-1 RA prescribing, particularly in patients with co-existing psychiatric disorders.


Asunto(s)
Fármacos Antiobesidad , Receptor del Péptido 1 Similar al Glucagón , Farmacovigilancia , Conducta Autodestructiva , Ideación Suicida , Humanos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Masculino , Femenino , Adulto , Persona de Mediana Edad , Conducta Autodestructiva/epidemiología , Fármacos Antiobesidad/efectos adversos , Fármacos Antiobesidad/uso terapéutico , Sistemas de Registro de Reacción Adversa a Medicamentos/estadística & datos numéricos , Metformina/efectos adversos , Metformina/uso terapéutico , Pérdida de Peso/efectos de los fármacos , Anciano , Liraglutida/uso terapéutico , Liraglutida/efectos adversos , Orlistat/efectos adversos , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/uso terapéutico , Exenatida/uso terapéutico , Exenatida/efectos adversos , Adulto Joven , Agonistas Receptor de Péptidos Similares al Glucagón
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167060, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354757

RESUMEN

Kidney tubules are mostly responsible for pathogenesis of diabetic kidney disease. Actively reabsorption of iron, high rate of lipid metabolism and exposure to concentrated redox-active compounds constructed the three main pillars of ferroptosis in tubular cells. However, limited evidence has indicated that ferroptosis is indispensable for diabetic tubular injury. Glucagon-like peptide-1 receptor agonist (GLP-1RA) processed strong benefits on kidney outcomes in people with diabetes. Moreover, GLP-1RA may have additive effects by improving dysmetabolism besides glucose control and weight loss. Therefore, the present study aimed at exploring the benefits of exendin-4, a high affinity GLP-1RA on kidney tubular dysregulation in diabetes and the possible mechanisms involved, with focus on ferroptosis and adenosine 5'-monophosphate-activated protein kinase (AMPK)-mitochondrial lipid metabolism pathway. Our data revealed that exendin-4 treatment markedly improved kidney structure and function by reducing iron overload, oxidative stress, and ACSL4-driven lipid peroxidation taken place in diabetic kidney tubules, along with reduced GPX4 expression and GSH content. AMPK signaling was identified as the downstream target of exendin-4, and enhancement of AMPK triggered the transmit of its downstream signal to activate fatty acid oxidation in mitochondria and suppress lipid synthesis and glycolysis, and ultimately alleviated toxic lipid accumulation and ferroptosis. Further study suggested that exendin-4 was taken up by tubular cells via macropinocytosis. The protective effect of exendin-4 on tubular ferroptosis was abolished by macropinocytosis blockade. Taken together, present work demonstrated the beneficial effects of GLP-1RA treatment on kidney tubular protection in diabetes by suppressing ferroptosis through enhancing AMPK-fatty acid metabolic signaling via macropinocytosis.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ferroptosis , Humanos , Exenatida/farmacología , Exenatida/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Agonistas Receptor de Péptidos Similares al Glucagón , Nefropatías Diabéticas/patología , Metabolismo de los Lípidos , Ácidos Grasos , Lípidos
13.
Pediatr Obes ; 19(5): e13105, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38339799

RESUMEN

INTRODUCTION: Whilst glucagon-like peptide-1 receptor agonists (GLP1-RAs) are effective for treating adolescent obesity, weight loss maintenance (WLM; preventing weight regain) remains a challenge. Our goal was to investigate appetite/satiety hormones and eating behaviours that may predict WLM with exenatide (a GLP1-RA) versus placebo in adolescents with severe obesity. METHODS: Adolescents who had ≥5% body mass index (BMI) reduction with meal replacement therapy were randomized to 52 weeks of once-weekly exenatide extended release or placebo. In this secondary analysis, eating behaviours and appetite/satiety regulation hormones post-meal replacement therapy (pre-randomization to exenatide or placebo) were evaluated as possible predictors of WLM. Percent change in BMI from randomization to 52 weeks served as the primary measure of WLM. RESULTS: The analysis included 66 adolescents (mean age 16.0 years; 47% female). Lower leptin response to meal testing was associated with greater WLM in terms of BMI percent change in those receiving exenatide compared to placebo (p = 0.007) after adjusting for sex, age and BMI. There were no other significant predictors of WLM. CONCLUSIONS: Prior to exenatide, lower leptin response to meals was associated with improved WLM with exenatide compared to placebo. The mostly null findings of this study suggest that GLP1-RA treatment may produce similar WLM for adolescents with obesity regardless of age, BMI, sex and eating behaviours.


Asunto(s)
Diabetes Mellitus Tipo 2 , Obesidad Mórbida , Obesidad Infantil , Adolescente , Humanos , Femenino , Masculino , Obesidad Mórbida/tratamiento farmacológico , Exenatida/uso terapéutico , Leptina , Apetito , Obesidad Infantil/tratamiento farmacológico , Pérdida de Peso , Conducta Alimentaria , Hipoglucemiantes , Diabetes Mellitus Tipo 2/tratamiento farmacológico
14.
Eur J Pharmacol ; 968: 176419, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38360293

RESUMEN

Glucagon-like peptide-1 receptor (GLP-1R) is a prime drug target for type 2 diabetes and obesity. The ligand initiated GLP-1R interaction with G protein has been well studied, but not with ß-arrestin 1/2. Therefore, bioluminescence resonance energy transfer (BRET), mutagenesis and an operational model were used to evaluate the roles of 85 extracellular surface residues on GLP-1R in ß-arrestin 1/2 recruitment triggered by three representative GLP-1R agonists (GLP-1, exendin-4 and oxyntomodulin). Residues selectively regulated ß-arrestin 1/2 recruitment for diverse ligands, and ß-arrestin isoforms were identified. Mutation of residues K130-S136, L142 and Y145 on the transmembrane helix 1 (TM1)-extracellular domain (ECD) linker decreased ß-arrestin 1 recruitment but increased ß-arrestin 2 recruitment. Other extracellular loop (ECL) mutations, including P137A, Q211A, D222A and M303A selectively affected ß-arrestin 1 recruitment while D215A, L217A, Q221A, S223A, Y289A, S301A, F381A and I382A involved more in ß-arrestin 2 recruitment for the ligands. Oxyntomodulin engaged more broadly with GLP-1R extracellular surface to drive ß-arrestin 1/2 recruitment than GLP-1 and exendin-4; I147, W214 and L218 involved in ß-arrestin 1 recruitment, while L141, D215, L218, D293 and F381 in ß-arrestin 2 recruitment for oxyntomodulin particularly. Additionally, the non-conserved residues on ß-arrestin 1/2 C-domains contributed to interaction with GLP-1R. Further proteomic profiling of GLP-1R stably expressed cell line upon ligand stimulation with or without ß-arrestin 1/2 overexpression demonstrated both commonly and biasedly regulated proteins and pathways associated with cognate ligands and ß-arrestins. Our study offers valuable information about ligand induced ß-arrestin recruitment mediated by GLP-1R and consequent intracellular signaling events.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , beta-Arrestina 1/metabolismo , Exenatida/farmacología , Arrestina beta 2/genética , Arrestina beta 2/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Ligandos , Oxintomodulina/farmacología , Proteómica , Péptido 1 Similar al Glucagón/metabolismo , beta-Arrestinas/metabolismo
15.
Eur J Pharm Sci ; 195: 106718, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38316168

RESUMEN

To ensure therapeutic equivalence between the long-acting injectable (LAI) products, additional PK metrics other than Cmax and AUC were considered necessary. However, regarding the selection of additional PK metrics for bioequivalence (BE) assessment of exenatide LAI, a discrepancy existed between EMA's and USFDA's product-specific guidance. The EMA recommends that both the maximum plasma concentration in the initial-release phase (Cmax,1) and the extended-release phase (Cmax,2) should be determined. Nevertheless, the USFDA recommends the use of the partial area under the curve (i.e., the area under the curve from week 4 to the last sampling point; pAUC4w-t). The focus of this study was to compare the sensitivity of different PK metrics, including Cmax,1, Cmax,2, pAUC4w-t, early and late pAUC metrics truncated at different time points (three, four, five, six and seven weeks), to formulation-related parameters and pharmacodynamic (PD) markers of glycemic control. A sensitivity analysis was conducted using the published PK/PD model of exenatide LAI. The results indicated that Cmax,1 and Cmax,2 exhibited comparable sensitivities. AUC4w-t was sensitive to changes in detecting the differences in formulation-related parameters and PD markers of glycemic control, but did not provide superior sensitivity performance compared to Cmax,1 and Cmax,2. Among all tested PK metrics, AUC7w-t was found to be the most sensitive. The optimal cut-off time point for the pAUC should be set at the time of maximum plasma concentration in the extended-release phase (approximately 6-7 weeks). These results may provide useful insights into the selection of appropriate PK metrics for BE determination of exenatide LAI.


Asunto(s)
Equivalencia Terapéutica , Estados Unidos , Exenatida , United States Food and Drug Administration , Área Bajo la Curva , Estudios Cruzados
16.
Obes Rev ; 25(5): e13704, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38355887

RESUMEN

This systematic review and meta-analysis evaluated the efficacy of anti-obesity agents for hormonal, reproductive, metabolic, and psychological outcomes in polycystic ovary syndrome (PCOS) to inform the 2023 update of the International Evidence-based Guideline on PCOS. We searched Medline, EMBASE, PsycInfo, and CINAHL until July 2022 with a 10-year limit to focus on newer agents. Eleven trials (545 and 451 participants in intervention and control arms respectively, 12 comparisons) were included. On descriptive analyses, most agents improved anthropometric outcomes; liraglutide, semaglutide and orlistat appeared superior to placebo for anthropometric outcomes. Meta-analyses were possible for two comparisons (exenatide vs. metformin and orlistat + combined oral contraceptive pill [COCP] vs. COCP alone). On meta-analysis, no differences were identified between exenatide versus metformin for anthropometric, biochemical hyperandrogenism, and metabolic outcomes, other than lower fasting blood glucose more with metformin than exenatide (MD: 0.10 mmol/L, CI 0.02-0.17, I2 = 18%, 2 trials). Orlistat + COCP did not improve metabolic outcomes compared with COCP alone (fasting insulin MD: -8.65 pmol/L, -33.55 to 16.26, I2 = 67%, 2 trials). Published data examining the effects of anti-obesity agents in women with PCOS are very limited. The role of these agents in PCOS should be a high priority for future research.


Asunto(s)
Fármacos Antiobesidad , Metformina , Síndrome del Ovario Poliquístico , Femenino , Humanos , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Fármacos Antiobesidad/uso terapéutico , Anticonceptivos Orales Combinados/uso terapéutico , Orlistat/uso terapéutico , Exenatida/uso terapéutico , Metformina/uso terapéutico , Hipoglucemiantes/uso terapéutico
17.
Physiol Behav ; 276: 114484, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331374

RESUMEN

It is well documented that estrogens inhibit fluid intake. Most of this research, however, has focused on fluid intake in response to dipsogenic hormone and/or drug treatments in euhydrated rats. Additional research is needed to fully characterize the fluid intake effects of estradiol in response to true hypovolemia. As such, the goals of this series of experiments were to provide a detailed analysis of water intake in response to water deprivation in ovariectomized female rats treated with estradiol. In addition, these experiments also tested if activation of estrogen receptor alpha is sufficient to reduce water intake stimulated by water deprivation and tested for a role of glucagon like peptide-1 in the estrogenic control of water intake. As expected, estradiol reduced water intake in response to 24 and 48 h of water deprivation. The reduction in water intake was associated with a reduction in drinking burst number, with no change in drinking burst size. Pharmacological activation of estrogen receptor alpha reduced intake. Finally, estradiol-treatment caused a leftward shift in the behavioral dose response curve of exendin-4, the glucagon like peptide-1 agonist. While the highest dose of exendin-4 reduced 10 min intake in both oil and estradiol-treated rats, the intermediate dose only reduced intake in rats treated with estradiol. Together, this series of experiments extends previous research by providing a more thorough behavioral analysis of the anti-dipsogenic effect of estradiol in dehydrated rats, in addition to identifying the glucagon like peptide-1 system as a potential bioregulator involved in the underlying mechanisms by which estradiol reduces water intake in the female rat.


Asunto(s)
Ingestión de Líquidos , Péptido 1 Similar al Glucagón , Animales , Femenino , Ratas , Deshidratación , Ingestión de Líquidos/efectos de los fármacos , Estradiol/farmacología , Receptor alfa de Estrógeno , Exenatida/farmacología , Péptido 1 Similar al Glucagón/farmacología , Factores de Transcripción
18.
Diabetes Care ; 47(4): 712-719, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38363873

RESUMEN

OBJECTIVE: To assess risk of anaphylaxis among patients with type 2 diabetes mellitus who are initiating therapy with a glucagon-like peptide 1 receptor agonist (GLP-1 RA), with a focus on those starting lixisenatide therapy. RESEARCH DESIGN AND METHODS: A cohort study was conducted in three large, U.S. claims databases (2017-2021). Adult (aged ≥18 years) new users of a GLP-1 RA who had type 2 diabetes mellitus and ≥6 months enrollment in the database before GLP-1 RA initiation (start of follow-up) were included. GLP-1 RAs evaluated were lixisenatide, an insulin glargine/lixisenatide fixed-ratio combination (FRC), exenatide, liraglutide or insulin degludec/liraglutide FRC, dulaglutide, and semaglutide (injectable and oral). The first anaphylaxis event during follow-up was identified using a validated algorithm. Incidence rates (IRs) and 95% CIs were calculated within each medication cohort. The unadjusted IR ratio (IRR) comparing anaphylaxis rates in the lixisenatide cohort with all other GLP-1 RAs combined was analyzed post hoc. RESULTS: There were 696,089 new users with 456,612 person-years of exposure to GLP-1 RAs. Baseline demographics, comorbidities, and use of other prescription medications in the 6 months before the index date were similar across medication cohorts. IRs (95% CIs) per 10,000 person-years were 1.0 (0.0-5.6) for lixisenatide, 6.0 (3.6-9.4) for exenatide, 5.1 (3.7-7.0) for liraglutide, 3.9 (3.1-4.8) for dulaglutide, and 3.6 (2.6-4.9) for semaglutide. The IRR (95% CI) for the anaphylaxis rate for the lixisenatide cohort compared with the pooled other GLP-1 RA cohort was 0.24 (0.01-1.35). CONCLUSIONS: Anaphylaxis is rare with GLP-1 RAs. Lixisenatide is unlikely to confer higher risk of anaphylaxis than other GLP-1 RAs.


Asunto(s)
Anafilaxia , Diabetes Mellitus Tipo 2 , Adulto , Humanos , Adolescente , Exenatida/efectos adversos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Liraglutida/efectos adversos , Agonistas Receptor de Péptidos Similares al Glucagón , Estudios de Cohortes , Anafilaxia/tratamiento farmacológico , Hipoglucemiantes/efectos adversos , Péptido 1 Similar al Glucagón/uso terapéutico , Receptor del Péptido 1 Similar al Glucagón/agonistas
19.
Diabetes Obes Metab ; 26(4): 1395-1406, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38287130

RESUMEN

AIM: Novel long-acting drugs for type 2 diabetes mellitus may optimize patient compliance and glycaemic control. Exendin-4-IgG4-Fc (E4F4) is a long-acting glucagon-like peptide-1 receptor agonist. This first-in-human study investigated the safety, tolerability, pharmacokinetic, pharmacodynamic and immunogenicity profiles of a single subcutaneous injection of E4F4 in healthy subjects. METHODS: This single-centre, randomized, double-blind, placebo-controlled phase 1 clinical trial included 96 subjects in 10 sequential cohorts that were provided successively higher doses of E4F4 (0.45, 0.9, 1.8, 3.15, 4.5, 6.3, 8.1, 10.35, 12.6 and 14.85 mg) or placebo (ChinaDrugTrials.org.cn: ChiCTR2100049732). The primary endpoint was safety and tolerability of E4F4. Secondary endpoints were pharmacokinetic, pharmacodynamic and immunogenicity profiles of E4F4. Safety data to day 15 after the final subject in a cohort had been dosed were reviewed before commencing the next dose level. RESULTS: E4F4 was safe and well tolerated among healthy Chinese participants in this study. There was no obvious dose-dependent relationship between frequency, severity or causality of treatment-emergent adverse events. Cmax and area under the curve of E4F4 were dose proportional over the 0.45-14.85 mg dose range. Median Tmax and t1/2 ranged from 146 to 210 h and 199 to 252 h, respectively, across E4F4 doses, with no dose-dependent trends. For the intravenous glucose tolerance test, area under the curve of glucose in plasma from time 0 to 180 min showed a dose-response relationship in the 1.8-10.35 mg dose range, with an increased response at the higher doses. CONCLUSION: E4F4 exhibited an acceptable safety profile and linear pharmacokinetics in healthy subjects. The recommended phase 2 dose is 4.5-10.35 mg once every 2 weeks.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Exenatida/efectos adversos , Voluntarios Sanos , Área Bajo la Curva , Prueba de Tolerancia a la Glucosa , Método Doble Ciego , Relación Dosis-Respuesta a Droga
20.
Eye (Lond) ; 38(7): 1374-1379, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38212401

RESUMEN

BACKGROUND: Cognitive function can be affected in conditions with raised intracranial pressure (ICP) such as idiopathic intracranial hypertension (IIH). Drugs used off label to treat raised ICP also have cognitive side effects, underscoring the unmet need for effective therapeutics which reduce ICP without worsening cognition. The Glucagon Like Peptide-1 (GLP-1) receptor agonist, exenatide, has been shown to significantly reduce ICP in IIH, therefore this study aimed to determine the effects of exenatide on cognition in IIH. METHODS: This was an exploratory study of the IIH:Pressure trial (ISTCRN 12678718). Women with IIH and telemetric ICP monitors (n = 15) were treated with exenatide (n = 7) or placebo (n = 8) for 12 weeks. Cognitive function was tested using the National Institute of Health Toolbox Cognitive Battery at baseline and 12 weeks. RESULTS: Cognitive performance was impaired in fluid intelligence ((T-score of 50 = population mean), mean (SD) 37.20 (9.87)), attention (33.93 (7.15)) and executive function (38.07 (14.61)). After 12-weeks there was no evidence that exenatide compromised cognition (no differences between exenatide and placebo). Cognition improved in exenatide treated patients in fluid intelligence (baseline 38.4 (8.2), 12 weeks 52.9 (6.6), p = 0.0005), processing speed (baseline 43.7 (9.4), 12 weeks 58.4 (10.4), p = 0.0058) and episodic memory (baseline 49.4 (5.3), 12 weeks 62.1 (13.2), p = 0.0315). CONCLUSIONS: In patients with raised ICP due to IIH, exenatide, a drug emerging as an ICP lowering agent, does not adversely impact cognition. This is encouraging and has potential to be relevant when considering prescribing choices to lower ICP.


Asunto(s)
Cognición , Exenatida , Receptor del Péptido 1 Similar al Glucagón , Presión Intracraneal , Seudotumor Cerebral , Humanos , Exenatida/uso terapéutico , Exenatida/farmacología , Femenino , Adulto , Receptor del Péptido 1 Similar al Glucagón/agonistas , Seudotumor Cerebral/tratamiento farmacológico , Seudotumor Cerebral/fisiopatología , Cognición/efectos de los fármacos , Presión Intracraneal/efectos de los fármacos , Método Doble Ciego , Persona de Mediana Edad , Péptidos/uso terapéutico , Péptidos/farmacología , Ponzoñas/uso terapéutico , Adulto Joven , Hipoglucemiantes/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA