Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 589
Filtrar
1.
Glob Chang Biol ; 30(6): e17345, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831686

RESUMEN

Observations from the California Current System (CalCS) indicate that the long-term trend in ocean acidification (OA) and the naturally occurring corrosive conditions for the CaCO3 mineral aragonite (saturation state Ω < 1) have a damaging effect on shelled pteropods, a keystone group of calcifying organisms in the CalCS. Concern is heightened by recent findings suggesting that shell formation and developmental progress are already impacted when Ω falls below 1.5. Here, we quantify the impact of low Ω conditions on pteropods using an individual-based model (IBM) with life-stage-specific mortality, growth, and behavior in a high-resolution regional hindcast simulation of the CalCS between 1984 and 2019. Special attention is paid to attributing this impact to different processes that lead to such low Ω conditions, namely natural variability, long-term trend, and extreme events. We find that much of the observed damage in the CalCS, and specifically >70% of the shell CaCO3 loss, is due to the pteropods' exposure to naturally occurring low Ω conditions as a result of their diel vertical migration (DVM). Over the hindcast period, their exposure to damaging waters (Ω < 1.5) increases from 9% to 49%, doubling their shell CaCO3 loss, and increasing their mortality by ~40%. Most of this increased exposure is due to the shoaling of low Ω waters driven by the long-term trend in OA. Extreme OA events amplify this increase by ~40%. Our approach can quantify the health of pteropod populations under shifting environmental conditions, and attribute changes in fitness or population structure to changes in the stressor landscape across hierarchical time scales.


Asunto(s)
Carbonato de Calcio , Agua de Mar , Carbonato de Calcio/análisis , Animales , Agua de Mar/química , California , Exoesqueleto/química , Concentración de Iones de Hidrógeno , Movimientos del Agua , Gastrópodos/fisiología , Gastrópodos/crecimiento & desarrollo , Cambio Climático
2.
Sci Rep ; 14(1): 13469, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866846

RESUMEN

Caudofoveata are molluscs that protect their vermiform body with a scleritome, a mosaic of unconnected blade/lanceolate-shaped aragonite sclerites. For the species Falcidens gutturosus and Scutopus ventrolineatus we studied the crystallographic constitution and crystal orientation texture of the sclerites and the scleritome with electron-backscatter-diffraction (EBSD), laser-confocal-microscopy (LCM) and field-emission electron microscopy (FE-SEM) imaging. Each sclerite is an aragonite single crystal that is completely enveloped by an organic sheath. Adjacent sclerites overlap laterally and vertically are, however, not connected to each other. Sclerites are thickened in their central portion, relative to their periphery. Thickening increases also from sclerite tip towards its base. Accordingly, cross-sections through a sclerite are straight at its tip, curved and bent towards the sclerite base. Irrespective of curved sclerite morphologies, the aragonite lattice within the sclerite is coherent. Sclerite aragonite is not twinned. For each sclerite the crystallographic c-axis is parallel to the morphological long axis of the sclerite, the a-axis is perpendicular to its width and the b-axis is within the width of the sclerite. The single-crystalinity of the sclerites and their mode of organization in the scleritome is outstanding. Sclerite and aragonite arrangement in the scleritome is not given by a specific crystal growth mode, it is inherent to the secreting cells. We discuss that morphological characteristics of the sclerites and crystallographic preferred orientation (texture) of sclerite aragonite is not the result of competitive growth selection. It is generated by the templating effect of the organic substance of the secreting cells and associated extracellular biopolymers.


Asunto(s)
Exoesqueleto , Carbonato de Calcio , Moluscos , Animales , Exoesqueleto/química , Exoesqueleto/ultraestructura , Moluscos/química , Carbonato de Calcio/química , Cristalografía , Microscopía Electrónica de Rastreo
3.
ACS Nano ; 18(24): 15779-15789, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38833666

RESUMEN

The property of being stubborn and degradation resistant makes nanoplastic (NP) pollution a long-standing remaining challenge. Here, we apply a designed top-down strategy to leverage the natural hierarchical structure of waste crayfish shells with exposed functional groups for efficient NP capture. The crayfish shell-based organic skeleton with improved flexibility, strength (14.37 to 60.13 MPa), and toughness (24.61 to 278.98 MJ m-3) was prepared by purposefully removing the inorganic components of crayfish shells through a simple two-step acid-alkali treatment. Due to the activated functional groups (e.g., -NH2, -CONH-, and -OH) and ordered architectures with macropores and nanofibers, this porous crayfish shell exhibited effective removal capability of NPs (72.92 mg g-1) by physical interception and hydrogen bond/electrostatic interactions. Moreover, the sustainability and stability of this porous crayfish shell were demonstrated by the maintained high-capture performance after five cycles. Finally, we provided a postprocessing approach that could convert both porous crayfish shell and NPs into a tough flat sheet. Thus, our feasible top-down engineering strategy combined with promising posttreatment is a powerful contender for a recycling approach with broad application scenarios and clear economic advantages for simultaneously addressing both waste biomass and NP pollutants.


Asunto(s)
Exoesqueleto , Astacoidea , Animales , Adsorción , Porosidad , Exoesqueleto/química , Microplásticos/química , Tamaño de la Partícula , Propiedades de Superficie
4.
J Mech Behav Biomed Mater ; 155: 106570, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38762971

RESUMEN

Living organisms form complex mineralized composite architectures that perform a variety of essential functions. These materials are commonly utilized for load-bearing purposes such as structural stability and mechanical strength in combination with high toughness and deformability, which are well demonstrated in various highly mineralized molluscan shell ultrastructures. Here, the mineral components provide the general stiffness to the composites, and the organic interfaces play a key role in providing these biogenic architectures with mechanical superiority. Although numerous studies employed state-of-the-art methods to measure and/or model and/or simulate the mechanical behavior of molluscan shells, our understanding of their performance is limited. This is partially due to the lack of the most fundamental knowledge of their mechanical characteristics, particularly, the anisotropic elastic properties of the mineral components and of the tissues they form. In fact, elastic constants of biogenic calcium carbonate, one of the most common biominerals in nature, is unknown for any organism. In this work, we employ the ultrasonic pulse-echo method to report the elasticity tensor of two common ultrastructural motifs in molluscan shells: the prismatic and the nacreous architectures made of biogenic calcite and aragonite, respectively. The outcome of this research not only provides information necessary for fundamental understanding of biological materials formation and performance, but also yields textbook knowledge on biogenic calcium carbonate required for future structural/crystallographic, theoretical and computational studies.


Asunto(s)
Exoesqueleto , Carbonato de Calcio , Elasticidad , Carbonato de Calcio/química , Exoesqueleto/química , Exoesqueleto/metabolismo , Animales , Ensayo de Materiales , Moluscos/química , Fenómenos Biomecánicos , Nácar/química
5.
Sci Rep ; 14(1): 10309, 2024 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705929

RESUMEN

Aplacophoran molluscs are shell-less and have a worm-like body which is covered by biomineralized sclerites. We investigated sclerite crystallography and the sclerite mosaic of the Solenogastres species Dorymenia sarsii, Anamenia gorgonophila, and Simrothiella margaritacea with electron-backscattered-diffraction (EBSD), laser-confocal-microscopy and FE-SEM imaging. The soft tissue of the molluscs is covered by spicule-shaped, aragonitic sclerites. These are sub-parallel to the soft body of the organism. We find, for all three species, that individual sclerites are untwinned aragonite single crystals. For individual sclerites, aragonite c-axis is parallel to the morphological, long axis of the sclerite. Aragonite a- and b-axes are perpendicular to sclerite aragonite c-axis. For the scleritomes of the investigated species we find different sclerite and aragonite crystal arrangement patterns. For the A. gorgonophila scleritome, sclerite assembly is disordered such that sclerites with their morphological, long axis (always the aragonite c-axis) are pointing in many different directions, being, more or less, tangential to cuticle surface. For D. sarsii, the sclerite axes (equal to aragonite c-axes) show a stronger tendency to parallel arrangement, while for S. margaritacea, sclerite and aragonite organization is strongly structured into sequential rows of orthogonally alternating sclerite directions. The different arrangements are well reflected in the structured orientational distributions of aragonite a-, b-, c-axes across the EBSD-mapped parts of the scleritomes. We discuss that morphological and crystallographic preferred orientation (texture) is not generated by competitive growth selection (the crystals are not in contact), but is determined by templating on organic matter of the sclerite-secreting epithelial cells and associated papillae.


Asunto(s)
Moluscos , Animales , Moluscos/química , Carbonato de Calcio/química , Cristalografía/métodos , Biomineralización , Exoesqueleto/química , Microscopía Electrónica de Rastreo
6.
Sci Rep ; 14(1): 11627, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773279

RESUMEN

A new idea to alleviate environmental pollution is the development of low-cost adsorbents using natural minerals and fishery wastes to treat high concentrations of heavy metal pollutants in acid mine drainage (AMD). Adsorbent morphology, adsorptive and regenerative capacity, and application potential are limiting factors for their large-scale use. Oyster shells capable of releasing alkalinity were loaded on the surface of lignite to develop two composite adsorbents with different morphologies (powdery and globular) for the treatment of AMD containing Pb(II) and Cd(II). The results show that the ability of the adsorbent to treat AMD is closely related to its morphologies. The pseudo-second-order kinetic model and the Langmuir model are suitable to describe the adsorption process of OS-M(P), and the maximum adsorption saturation capacities of Pb(II) and Cd(II) are 332.6219 mg/g and 318.9854 mg/g, respectively. The pseudo-second-order kinetic model and the Freundlich model are suitable to describe the adsorption process of OS-M(G). A synergistic result of electrostatic adsorption, neutralization precipitation, ion exchange and complex reaction is achieved in the removal of Pb(II) and Cd(II) by two morphologies of adsorbents. The regeneration times (5 times) and recovery rate (75.75%) of OS-M(G) are higher than those of OS-M(P) (3 times) and recovery rate (20%). The ability of OS-M(G) to treat actual AMD wastewater is still better than that of OS-M(P). OS-M(G) can be used as a promising environmentally friendly adsorbent for the long-term remediation of AMD. This study provides a comprehensive picture of resource management and reuse opportunities for natural mineral and fishery wastes.


Asunto(s)
Exoesqueleto , Cadmio , Plomo , Minería , Ostreidae , Contaminantes Químicos del Agua , Plomo/química , Cadmio/química , Adsorción , Animales , Ostreidae/química , Exoesqueleto/química , Contaminantes Químicos del Agua/química , Cinética
7.
PLoS One ; 19(5): e0302945, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38776326

RESUMEN

Understanding past coastal variability is valuable for contextualizing modern changes in coastal settings, yet existing Holocene paleoceanographic records for the North American Pacific Coast commonly originate from offshore marine sediments and may not represent the dynamic coastal environment. A potential archive of eastern Pacific Coast environmental variability is the intertidal mussel species Mytilus californianus. Archaeologists have collected copious stable isotopic (δ18O and δ13C) data from M. californianus shells to study human history at California's Channel Islands. When analyzed together, these isotopic data provide windows into 9000 years of Holocene isotopic variability and M. californianus life history. Here we synthesize over 6000 δ18O and δ13C data points from 13 published studies to investigate M. californianus shell isotopic variability across ontogenetic, geographic, seasonal, and millennial scales. Our analyses show that M. californianus may grow and record environmental information more irregularly than expected due to the competing influences of calcification, ontogeny, metabolism, and habitat. Stable isotope profiles with five or more subsamples per shell recorded environmental information ranging from seasonal to millennial scales, depending on the number of shells analyzed and the resolution of isotopic subsampling. Individual shell profiles contained seasonal cycles and an accurate inferred annual temperature range of ~ 5°C, although ontogenetic growth reduction obscured seasonal signals as organisms aged. Collectively, the mussel shell record reflected millennial-scale climate variability and an overall 0.52‰ depletion in δ18Oshell from 8800 BP to the present. The archive also revealed local-scale oceanographic variability in the form of a warmer coastal mainland δ18Oshell signal (-0.32‰) compared to a cooler offshore islands δ18Oshell signal (0.33‰). While M. californianus is a promising coastal archive, we emphasize the need for high-resolution subsampling from multiple individuals to disentangle impacts of calcification, metabolism, ontogeny, and habitat and more accurately infer environmental and biological patterns recorded by an intertidal species.


Asunto(s)
Isótopos de Carbono , Mytilus , Isótopos de Oxígeno , Estaciones del Año , Animales , Mytilus/metabolismo , Mytilus/crecimiento & desarrollo , Isótopos de Oxígeno/análisis , Isótopos de Carbono/análisis , Clima , Rasgos de la Historia de Vida , Ecosistema , California , Exoesqueleto/química , Exoesqueleto/crecimiento & desarrollo , Exoesqueleto/metabolismo
8.
J Appl Biomater Funct Mater ; 22: 22808000241248887, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742818

RESUMEN

OBJECTIVE: Chitin a natural polymer is abundant in several sources such as shells of crustaceans, mollusks, insects, and fungi. Several possible attempts have been made to recover chitin because of its importance in biomedical applications in various forms such as hydrogel, nanoparticles, nanosheets, nanowires, etc. Among them, deep eutectic solvents have gained much consideration because of their eco-friendly and recyclable nature. However, several factors need to be addressed to obtain a pure form of chitin with a high yield. The development of an innovative system for the production of quality chitin is of prime importance and is still challenging. METHODS: The present study intended to develop a novel and robust approach to investigate chitin purity from various crustacean shell wastes using deep eutectic solvents. This investigation will assist in envisaging the important influencing parameters to obtain a pure form of chitin via a machine learning approach. Different machine learning algorithms have been proposed to model chitin purity by considering the enormous experimental dataset retrieved from previously conducted experiments. Several input variables have been selected to assess chitin purity as the output variable. RESULTS: The statistical criteria of the proposed model have been critically investigated and it was observed that the results indicate XGBoost has the maximum predictive accuracy of 0.95 compared with other selected models. The RMSE and MAE values were also minimal in the XGBoost model. In addition, it revealed better input variables to obtain pure chitin with minimal processing time. CONCLUSION: This study validates that machine learning paves the way for complex problems with substantial datasets and can be an inexpensive and time-saving model for analyzing chitin purity from crustacean shells.


Asunto(s)
Quitina , Crustáceos , Disolventes Eutécticos Profundos , Aprendizaje Automático , Quitina/química , Quitina/aislamiento & purificación , Animales , Crustáceos/química , Disolventes Eutécticos Profundos/química , Exoesqueleto/química
9.
Environ Res ; 252(Pt 3): 119048, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38697595

RESUMEN

Adsorption is considered an interesting option for removing antibiotics from the environment because of its simple design, low cost, and potential efficiency. In this work we evaluated three by-products (pine bark, oak ash, and mussel shell) as bio-adsorbents for the antibiotic azithromycin (AZM). Furthermore, they were added at doses of 48 t ha-1 to four different soils, then comparing AZM removal for soils with and without bio-adsorbents. Batch-type experiments were used, adding AZM concentrations between 2.5 and 600 µmol L-1 to the different bio-adsorbents and soil + bio-adsorbent mixtures. Regarding the bio-adsorbents, oak ash showed the best adsorption scores (9600 µmol kg-1, meaning >80% retention), followed by pine bark (8280 µmol kg-1, 69%) and mussel shell (between 3000 and 6000 µmol kg-1, 25-50% retention). Adsorption data were adjusted to different models (Linear, Freundlich and Langmuir), showing that just mussel shell presented an acceptable fitting to the Freundlich equation, while pine bark and oak ash did not present a good adjustment to any of the three models. Regarding desorption, the values were always below the detection limit, indicating a rather irreversible adsorption of AZM onto these three by-products. Furthermore, the results showed that when the lowest concentrations of AZM were added to the not amended soils they adsorbed 100% of the antibiotic, whereas when the highest concentrations of AZM were spread, the adsorption decreased to 55%. However, when any of the three bio-adsorbents was added to the soils, AZM adsorption reached 100% for all the antibiotic concentrations used. Desorption was null in all cases for both soils with and without bio-adsorbents. These results, corresponding to an investigation carried out for the first time for the antibiotic AZM, can be seen as relevant in the search of low-cost alternative treatments to face environmental pollution caused by this emerging contaminant.


Asunto(s)
Antibacterianos , Azitromicina , Bivalvos , Pinus , Corteza de la Planta , Quercus , Animales , Adsorción , Quercus/química , Corteza de la Planta/química , Antibacterianos/química , Antibacterianos/análisis , Azitromicina/química , Azitromicina/análisis , Pinus/química , Bivalvos/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Exoesqueleto/química
10.
Environ Res ; 252(Pt 4): 119065, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38723990

RESUMEN

The present research study combines chitin from shrimp waste with the oxide-rich metakaolin. Metakaolin is a blend of mixed oxides rich in silica and alumina with good adsorbent properties. The chitin@metakaolin (CHt@M.K.) composite was synthesized and characterized using FTIR, SEM, TGA, XRD and XPS techniques. Cr(VI) removal studies were compared for chitin and CHt@M.K. through adsorption. It was found that the adsorption capacity of CHt@M.K. is 278.88 mg/g, almost double that of chitin, at pH 5.0 in just 120 min of adsorption. Isotherm models like Langmuir, Freundlich, Temkin and Dubinin-Radushkevich were investigated to comprehend the adsorption process. It was revealed that Langmuir adsorption isotherm is most suitable to elucidate Cr(VI) adsorption on CHt@M.K. The adsorption kinetics indicate that pseudo first order was followed, indicating that the physisorption was the process that limited the sorption process rate. The positive enthalpy change (20.23 kJ/mol) and positive entropy change (0.083 kJ/mol K) showed that the adsorption process was endothermic and more random at the solid-liquid interface. The negative free energy change over entire temperature range was an indicator of spontaneity of the process. Apart from all these, the non-covalent interactions between Cr(VI) and composite were explained by quantum calculations based models.


Asunto(s)
Exoesqueleto , Quitina , Cromo , Contaminantes Químicos del Agua , Quitina/química , Animales , Cromo/química , Adsorción , Contaminantes Químicos del Agua/química , Exoesqueleto/química , Braquiuros/química , Cinética
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124309, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38663137

RESUMEN

Scorpion fluorescence under ultraviolet light is a well-known phenomenon, but its features under excitation in the UVA, UVB and UVC bands have not been characterized. Systematic fluorescence characterization revealed indistinguishable fluorescence spectra with a peak wavelength of 475 nm for whole exuviae from second-, third- and fifth-instar scorpions under different ultraviolet light ranges. In-depth investigations of the chelae, mesosoma, metasoma and telson of adult scorpions further indicated heterogeneity in the typical fluorescence spectrum within the visible light range and in the newly reported fluorescence spectrum with a peak wavelength of 320 nm within the ultraviolet light range, which both showed excitation wavelength-independent features. Dynamic fluorescence changes during the molting process of third-instar scorpions revealed the fluorescence heterogeneity-dependent recovery speed of scorpion exoskeletons. The typical fluorescence spectra of the molted chelae and telson rapidly recovered approximately 6 h after ecdysis under UVA light and approximately 36 h after ecdysis under UVB and UVC light. However, it took approximately 12 h and 24 h to obtain the typical fluorescence spectra of the molted metasoma and mesosoma, respectively, under UVA irradiation and 72 h to obtain the typical fluorescence spectra under UVB and UVC irradiation. The fluorescence heterogeneity-dependent fluorescence recovery of the scorpion exoskeleton was further confirmed by tissue section analysis of different segments from molting third-instar scorpions. These findings reveal novel scorpion fluorescence features and provide potential clues on the biological function of scorpion fluorescence.


Asunto(s)
Muda , Escorpiones , Espectrometría de Fluorescencia , Rayos Ultravioleta , Escorpiones/fisiología , Escorpiones/química , Animales , Muda/fisiología , Fluorescencia , Exoesqueleto/química
12.
J Environ Manage ; 359: 120782, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38669884

RESUMEN

Capturing CO2 using clamshell/eggshell-derived CaO adsorbent can not only reduce carbon emissions but also alleviate the impact of trash on the environment. However, organic acid was usually used, high-temperature calcination was often performed, and CO2 was inevitably released during preparing CaO adsorbents from shell wastes. In this work, CaO-based CO2 adsorbent was greenly prepared by calcium-induced hydrogenation of clamshell and eggshell wastes in one pot at room/moderate temperature. CO2 adsorption experiments were performed in a thermogravimetric analyzer (TGA). The adsorption performance of the adsorbents obtained from the mechanochemical reaction (BM-C/E-CaO) was superior to that of the adsorbents obtained from the thermochemical reaction (Cal-C/E-CaO). The CO2 adsorption capacity of BM-C-CaO at 650 °C is up to 36.82 wt%, but the adsorption decay rate of the sample after 20 carbonation/calcination cycles is only 30.17%. This study offers an alternative energy-saving method for greenly preparing CaO-based adsorbent from shell wastes.


Asunto(s)
Dióxido de Carbono , Tecnología Química Verde , Eliminación de Residuos , Tecnología Química Verde/métodos , Dióxido de Carbono/análisis , Dióxido de Carbono/química , Hidrogenación , Temperatura , Exoesqueleto/química , Cáscara de Huevo/química , Eliminación de Residuos/métodos , Adsorción
13.
Biomed Mater ; 19(3)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38626779

RESUMEN

It is well-established that multi-scale porous scaffolds can guide axonal growth and facilitate functional restoration after spinal cord injury (SCI). In this study, we developed a novel mussel shell-inspired conductive scaffold for SCI repair with ease of production, multi-scale porous structure, high flexibility, and excellent biocompatibility. By utilizing the reducing properties of polydopamine, non-conductive graphene oxide (GO) was converted into conductive reduced graphene oxide (rGO) and crosslinkedin situwithin the mussel shells.In vitroexperiments confirmed that this multi-scale porous Shell@PDA-GO could serve as structural cues for enhancing cell adhesion, differentiation, and maturation, as well as promoting the electrophysiological development of hippocampal neurons. After transplantation at the injury sites, the Shell@PDA-GO provided a pro-regenerative microenvironment, promoting endogenous neurogenesis, triggering neovascularization, and relieving glial fibrosis formation. Interestingly, the Shell@PDA-GO could induce the release of endogenous growth factors (NGF and NT-3), resulting in the complete regeneration of nerve fibers at 12 weeks. This work provides a feasible strategy for the exploration of conductive multi-scale patterned scaffold to repair SCI.


Asunto(s)
Materiales Biocompatibles , Bivalvos , Grafito , Regeneración Nerviosa , Polímeros , Traumatismos de la Médula Espinal , Andamios del Tejido , Animales , Traumatismos de la Médula Espinal/terapia , Andamios del Tejido/química , Porosidad , Grafito/química , Polímeros/química , Materiales Biocompatibles/química , Indoles/química , Exoesqueleto/química , Diferenciación Celular , Conductividad Eléctrica , Neuronas , Ratas , Ratas Sprague-Dawley , Adhesión Celular , Neurogénesis , Ingeniería de Tejidos/métodos , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/química , Hipocampo
14.
Langmuir ; 40(16): 8373-8392, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38606767

RESUMEN

Amorphous calcium carbonate (ACC) is an important precursor phase for the formation of aragonite crystals in the shells of Pinctada fucata. To identify the ACC-binding protein in the inner aragonite layer of the shell, extracts from the shell were used in the ACC-binding experiments. Semiquantitative analyses using liquid chromatography-mass spectrometry revealed that paramyosin was strongly associated with ACC in the shell. We discovered that paramyosin, a major component of the adductor muscle, was included in the myostracum, which is the microstructure of the shell attached to the adductor muscle. Purified paramyosin accumulates calcium carbonate and induces the prism structure of aragonite crystals, which is related to the morphology of prism aragonite crystals in the myostracum. Nuclear magnetic resonance measurements revealed that the Glu-rich region was bound to ACC. Activity of the Glu-rich region was stronger than that of the Asp-rich region. These results suggest that paramyosin in the adductor muscle is involved in the formation of aragonite prisms in the myostracum.


Asunto(s)
Exoesqueleto , Carbonato de Calcio , Pinctada , Tropomiosina , Animales , Pinctada/química , Pinctada/metabolismo , Carbonato de Calcio/química , Carbonato de Calcio/metabolismo , Exoesqueleto/química , Exoesqueleto/metabolismo , Tropomiosina/química , Tropomiosina/metabolismo
15.
Fish Shellfish Immunol ; 149: 109532, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579977

RESUMEN

C-type lectins (CTLs) execute critical functions in multiple immune responses of crustaceans as a member of pattern recognition receptors (PRRs) family. In this study, a novel CTL was identified from the exoskeleton of the oriental river prawn Macrobrachium nipponense (MnLec3). The full-length cDNA of MnLec3 was 1150 bp with an open reading frame of 723 bp, encoding 240 amino acids. MnLec3 protein contained a signal peptide and one single carbohydrate-recognition domain (CRD). MnLec3 transcripts were widely distributed at the exoskeleton all over the body. Significant up-regulation of MnLec3 in exoskeleton after Aeromonas hydrophila challenged suggested the involvement of MnLec3 as well as the possible function of the exoskeleton in immune response. In vitro tests with recombinant MnLec3 protein (rMnLec3) manifested that it had polysaccharide binding activity, a wide spectrum of bacterial binding activity and agglutination activity only for tested Gram-negative bacteria (Escherichia coli, Vibrio anguillarum and A. hydrophila). Moreover, rMnLec3 significantly promoted phagocytic ability of hemocytes against A. hydrophila in vivo. What's more, MnLec3 interference remarkably impaired the survivability of the prawns when infected with A. hydrophila. Collectively, these results ascertained that MnLec3 derived from exoskeleton took an essential part in immune defense of the prawns against invading bacteria as a PRR.


Asunto(s)
Aeromonas hydrophila , Secuencia de Aminoácidos , Proteínas de Artrópodos , Regulación de la Expresión Génica , Hemocitos , Inmunidad Innata , Lectinas Tipo C , Palaemonidae , Fagocitosis , Filogenia , Alineación de Secuencia , Animales , Palaemonidae/inmunología , Palaemonidae/genética , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Lectinas Tipo C/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Hemocitos/inmunología , Inmunidad Innata/genética , Aeromonas hydrophila/fisiología , Alineación de Secuencia/veterinaria , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica/veterinaria , Secuencia de Bases , Exoesqueleto/inmunología , Exoesqueleto/química
16.
Int J Biol Macromol ; 268(Pt 2): 131731, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649081

RESUMEN

In this work we have characterized and compared chitin sourced from exoskeleton of Tenebrio molitor larvae fed with polystyrene or plastic kitchen wrap combined with bran in the ratio 1: 1 with chitin sourced from larvae exoskeleton fed only with bran. Analysis of the frass by ATR-FTIR showed very similar spectra and confirmed degradation of the plastic feed components, while ATR-FTIR analysis of the exoskeleton verified the absence of any plastic residue. Deproteinization followed by demineralization produced 6.78-5.29 % chitin, showing that plastic (polystyrene or plastic kitchen wrap) in the larvae diet resulted in heavier insect exoskeleton, but yielded slightly less chitin, with the lowest value obtained for plastic kitchen wrap in the insect diet. The deacetylation degree of 98.17-98.61 % was determined from measured ATR-FTIR spectra. XRD analysis confirmed the presence of α-chitin with a crystallinity index of 66.5-62 % and crystallite size 4-5 nm. Thermogravimetric analysis showed similar degradation curves for all chitin samples, with two degradation steps. These results show that chitin sourced from exoskeleton of T. molitor larvae fed with plastic (polystyrene or plastic kitchen wrap) and contributing to significant biodegradation of major polluting materials can be a feasible and alternative source of chitin, further promoting a bio-circular economy.


Asunto(s)
Quitina , Poliestirenos , Tenebrio , Animales , Tenebrio/química , Quitina/química , Poliestirenos/química , Plásticos/química , Exoesqueleto/química , Larva , Espectroscopía Infrarroja por Transformada de Fourier
17.
Int J Biol Macromol ; 268(Pt 2): 131787, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657939

RESUMEN

Chitin oligosaccharides (CTOS) possess potential applications in food, medicine, and agriculture. However, lower mass transfer and catalytic efficiency are the main kinetic limitations for the production of CTOS from shrimp shell waste (SSW) and crystalline chitin. Chemical or physical methods are usually used for pretreatment to improve chitinase hydrolysis efficiency, but this is not eco-friendly and cost-effective. To address this challenge, a chitinase nanoreactor with the liquid-solid system (BcChiA1@ZIF-8) was manufactured to boost the one-step degradation of SSW and crystalline chitin. Compared with free enzyme, the catalytic efficiency of BcChiA1@ZIF-8 on colloidal chitin was significantly improved to 142 %. SSW and crystalline chitin can be directly degraded by BcChiA1@ZIF-8 without any pretreatments. The yield of N, N'-diacetylchitobiose [(GlcNAc)2] from SSW and N-acetyl-D-glucosamine (GlcNAc) from crystalline chitin was 2 times and 3.1 times than that of free enzyme, respectively. The reason was that BcChiA1@ZIF-8 with a liquid-solid system enlarged the interface area, increased the collision frequency between enzyme and substrate, and improved the large-substrates binding activity of chitinase. Moreover, the biphasic system exhibited excellent stability, and the design showed universal applicability. This strategy provided novel guidance for other polysaccharide biosynthesis and the conversion of environmental waste into carbohydrates.


Asunto(s)
Exoesqueleto , Quitina , Quitinasas , Oligosacáridos , Quitina/química , Quitina/metabolismo , Animales , Quitinasas/metabolismo , Quitinasas/química , Oligosacáridos/química , Exoesqueleto/química , Hidrólisis , Reactores Biológicos , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Crustáceos , Cinética , Residuos , Penaeidae/enzimología
18.
Int J Biol Macromol ; 268(Pt 2): 131855, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38679259

RESUMEN

In this work, chitin (CT) was isolated from shrimp shell waste (SSW) and was then phosphorylated using diammonium hydrogen phosphate (DAP) as a phosphorylating agent in the presence of urea. The prepared samples were characterized using Scanning Electron Microscopy (SEM) and EDX-element mapping, Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA/DTG), conductometric titration, Degree of Substitution (DS) and contact angle measurements. The results of characterization techniques reveal the successful extraction and phosphorylation of chitin. The charge content of the phosphorylated chitin (P-CT) was 1.510 mmol·kg-1, the degree of substitution of phosphorus groups grafted on the CT surface achieved the value of 0.33. The adsorption mechanisms appeared to involve electrostatic attachment, specific adsorption (CdO or hydroxyl binding), and ion exchange. Regarding the adsorption of Cd2+, the effect of the adsorbent mass, initial concentration of Cd2+, contact time, pH, and temperature were studied in batch experiments, and optimum values for each parameter were identified. The experimental results revealed that P-CT enhanced the Cd2+ removal capacity by 17.5 %. The kinetic analyses favored the pseudo-second-order model over the pseudo-first-order model for describing the adsorption process accurately. Langmuir model aptly represented the adsorption isotherms, suggesting unimolecular layer adsorption with a maximum capacity of 62.71 mg·g-1 under optimal conditions of 30 °C, 120 min, pH 8, and a P-CT dose of 3 g·L-1. Regeneration experiments evidenced that P-CT can be used for 6 cycles without significant removal capacity loss. Consequently, P-CT presents an efficient and cost-effective potential biosorbent for Cd2+ removal in wastewater treatment applications.


Asunto(s)
Cadmio , Quitina , Quitina/química , Quitina/aislamiento & purificación , Cadmio/química , Cadmio/aislamiento & purificación , Animales , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Exoesqueleto/química , Fosforilación , Concentración de Iones de Hidrógeno , Cinética , Temperatura , Purificación del Agua/métodos , Residuos , Espectroscopía Infrarroja por Transformada de Fourier
19.
Mar Biotechnol (NY) ; 26(3): 539-549, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38652191

RESUMEN

Many organisms incorporate inorganic solids into their tissues to improve functional and mechanical properties. The resulting mineralized tissues are called biominerals. Several studies have shown that nacreous biominerals induce osteoblastic extracellular mineralization. Among them, Pinctada margaritifera is well known for the ability of its organic matrix to stimulate bone cells. In this context, we aimed to study the effects of shell extracts from three other Pinctada species (Pinctada radiata, Pinctada maxima, and Pinctada fucata) on osteoblastic extracellular matrix mineralization, by using an in vitro model of mouse osteoblastic precursor cells (MC3T3-E1). For a better understanding of the Pinctada-bone mineralization relationship, we evaluated the effects of 4 other nacreous mollusks that are phylogenetically distant and distinct from the Pinctada genus. In addition, we tested 12 non-nacreous mollusks and one extra-group. Biomineral shell powders were prepared, and their organic matrix was partially extracted using ethanol. Firstly, the effect of these powders and extracts was assessed on the viability of MC3T3-E1. Our results indicated that neither the powder nor the ethanol-soluble matrix (ESM) affected cell viability at low concentrations. Then, we evaluated osteoblastic mineralization using Alizarin Red staining and we found a prominent MC3T3-E1 mineralization mainly induced by nacreous biominerals, especially those belonging to the Pinctada genus. However, few non-nacreous biominerals were also able to stimulate the extracellular mineralization. Overall, our findings validate the remarkable ability of CaCO3 biomineral extracts to promote bone mineralization. Nevertheless, further in vitro and in vivo studies are needed to uncover the mechanisms of action of biominerals in bone.


Asunto(s)
Exoesqueleto , Calcificación Fisiológica , Carbonato de Calcio , Osteoblastos , Pinctada , Animales , Ratones , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , Pinctada/metabolismo , Carbonato de Calcio/metabolismo , Carbonato de Calcio/química , Carbonato de Calcio/farmacología , Calcificación Fisiológica/efectos de los fármacos , Exoesqueleto/química , Supervivencia Celular/efectos de los fármacos , Línea Celular , Matriz Extracelular/metabolismo , Nácar/metabolismo , Biomineralización
20.
Int J Biol Macromol ; 266(Pt 2): 131047, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521325

RESUMEN

This investigation aimed to scrutinize the chemical and structural analogies between chitosan extracted from crab exoskeleton (High Molecular Weight Chitosan, HMWC) and chitosan obtained from mushrooms (Mushroom-derived Chitosan, MRC), and to assess their biological functionalities. The resulting hydrolysates from the hydrolysis of HMWC by chitosanase were categorized as chitosan oligosaccharides (csCOS), while those from MRC were denoted as mrCOS. The molecular weights (MW) of csCOS and mrCOS were determined using Matrix-Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) mass spectrometry. Furthermore, structural resemblances of csCOS and mrCOS were assessed utilizing X-ray powder diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Intriguingly, no apparent structural disparity between csCOS and mrCOS was noted in terms of the glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) composition ratios. Consequently, the enzymatic activities of chitosanase for HMWC and MRC exhibited remarkable similarity. A topological examination was performed between the enzyme and the substrate to deduce the alteration in MW of COSs following enzymatic hydrolysis. Moreover, the evaluation of antioxidant activity for each COS revealed insignificance in the structural disparity between HMWC and MRC. In summary, grounded on the chemical structural similarity of HMWC and MRC, we propose the potential substitution of HMWC with MRC, incorporating diverse biological functionalities.


Asunto(s)
Agaricales , Exoesqueleto , Braquiuros , Quitosano , Peso Molecular , Quitosano/química , Braquiuros/química , Exoesqueleto/química , Animales , Hidrólisis , Agaricales/química , Agaricales/enzimología , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA