Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
1.
J Pharmacol Exp Ther ; 379(3): 358-371, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34503993

RESUMEN

Although protein-protein interactions (PPIs) have emerged as an attractive therapeutic target space, the identification of chemicals that effectively inhibit PPIs remains challenging. Here, we identified through library screening a chemical probe (compound 1) that can inhibit the tumor-promoting interaction between the oncogenic factor exon 2-depleted splice variant of aminoacyl-transfer RNA synthetase-interacting multifunctional protein 2 (AIMP2-DX2) and heat shock protein 70 (HSP70). We found that compound 1 binds to the N-terminal subdomain of glutathione S-transferase (GST-N) of AIMP2-DX2, causing a direct steric clash with HSP70 and an intramolecular interaction between the N-terminal flexible region and the GST-N of AIMP2-DX2, which induces masking of the HSP70 binding region during molecular dynamics and mutation studies. Compound 1 thus interferes with the AIMP2-DX2 and HSP70 interaction and suppresses the growth of cancer cells that express high levels of AIMP2-DX2 in vitro and in preliminary in vivo experiment. This work provides an example showing that allosteric conformational changes induced by chemicals can be a way to control pathologic PPIs. SIGNIFICANCE STATEMENT: Compound 1 is a promising protein-protein interaction inhibitor between AIMP2-DX2 and HSP70 for cancer therapy by the mechanism with allosteric modulation as well as competitive binding. It seems to induce allosteric conformational change of AIMP2-DX2 proteins and direct binding clash between AIMP2-DX2 and HSP70. The compound reduced the level of AIMP2-DX2 in ubiquitin-dependent manner via suppression of binding between AIMP2-DX2 and HSP70 and suppressed the growth of cancer cells highly expressing AIMP2-DX2 in vitro and in preliminary in vivo experiment.


Asunto(s)
Antineoplásicos/farmacología , Exones/fisiología , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Células A549 , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Células CHO , Supervivencia Celular , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Exones/efectos de los fármacos , Femenino , Células HEK293 , Proteínas HSP70 de Choque Térmico/química , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Nucleares/química , Unión Proteica/fisiología , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
2.
Development ; 148(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34345915

RESUMEN

The FET family of atypical RNA-binding proteins includes Fused in sarcoma (FUS), Ewing's sarcoma (EWS) and the TATA-binding protein-associate factor 15 (TAF15). FET proteins are highly conserved, suggesting specialized requirements for each protein. Fus regulates splicing of transcripts required for mesoderm differentiation and cell adhesion in Xenopus, but the roles of Ews and Taf15 remain unknown. Here, we analyze the roles of maternally deposited and zygotically transcribed Taf15, which is essential for the correct development of dorsoanterior neural tissues. By measuring changes in exon usage and transcript abundance from Taf15-depleted embryos, we found that Taf15 may regulate dorsoanterior neural development through fgfr4 and ventx2.1. Taf15 uses distinct mechanisms to downregulate Fgfr4 expression, namely retention of a single intron within fgfr4 when maternal and zygotic Taf15 is depleted, and reduction in the total fgfr4 transcript when zygotic Taf15 alone is depleted. The two mechanisms of gene regulation (post-transcriptional versus transcriptional) suggest that Taf15-mediated gene regulation is target and co-factor dependent, contingent on the milieu of factors that are present at different stages of development.


Asunto(s)
Encéfalo/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Xenopus/metabolismo , Animales , Encéfalo/fisiología , Diferenciación Celular/fisiología , Exones/fisiología , Femenino , Masculino , Neuronas/fisiología , Xenopus/fisiología
3.
J Neurochem ; 158(3): 766-778, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34107054

RESUMEN

Trans-active response DNA-binding protein of 43 kDa (TDP-43) promotes tau mRNA instability and tau exon 10 inclusion. Aggregation of phosphorylated TDP-43 is associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. Casein kinase 1ε (CK1ε) phosphorylates TDP-43 at multiple sites, enhances its cytoplasmic aggregation, and modulates its function in tau mRNA processing. To determine roles of TDP-43 site-specific phosphorylation in its localization, aggregation, and function in tau mRNA processing, TDP-43 was mutated to alanine or aspartic acid at Ser379, Ser403/404, or Ser409/410 to block or mimic phosphorylation. Site-specific phosphorylation of TDP-43 and its mutants by CK1ε was studied in vitro and in cultured cells. Cytoplasmic and nuclear TDP-43 and phospho-TDP-43 were analyzed by western blots. Aggregation of TDP-43 was assessed by immunostaining and level of radioimmunoprecipitation assay buffer-insoluble TDP-43. Green florescent protein tailed with tau 3'-untranslated region and mini-tau gene pCI/SI9-LI10 were used to study tau mRNA stability and alternative splicing of tau exon 10. We found that phospho-blocking mutations of TDP-43 at Ser379, Ser403/404, or Ser409/410 were not effectively phosphorylated by CK1ε. Compared with TDP-43, higher level of phosphorylated TDP-43 in the cytoplasm was observed. Phospho-mimicking mutations at these sites enhanced cytoplasmic aggregation of TDP-43. Green florescent protein expression was not inhibited by phospho-blocking mutants of TDP-43, but tau exon 10 inclusion was further enhanced by phospho-blocking mutations at Ser379 and Ser403/404. Phosphorylation of TDP-43 at Ser379, Ser403/404, or Ser409/410 primes its phosphorylation by CK1ε, promotes TDP-43 cytoplasmic aggregation, and modulates its function in tau mRNA processing in site-specific manner.


Asunto(s)
Empalme Alternativo/fisiología , Citoplasma/metabolismo , Proteínas de Unión al ADN/metabolismo , Exones/fisiología , Estabilidad del ARN/fisiología , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Agregación Celular/fisiología , Proteínas de Unión al ADN/genética , Femenino , Lóbulo Frontal/metabolismo , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Fosforilación/fisiología , Proteínas tau/genética
4.
PLoS Biol ; 19(2): e3001138, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33621242

RESUMEN

RNA splicing is widely dysregulated in cancer, frequently due to altered expression or activity of splicing factors (SFs). Microexons are extremely small exons (3-27 nucleotides long) that are highly evolutionarily conserved and play critical roles in promoting neuronal differentiation and development. Inclusion of microexons in mRNA transcripts is mediated by the SF Serine/Arginine Repetitive Matrix 4 (SRRM4), whose expression is largely restricted to neural tissues. However, microexons have been largely overlooked in prior analyses of splicing in cancer, as their small size necessitates specialized computational approaches for their detection. Here, we demonstrate that despite having low expression in normal nonneural tissues, SRRM4 is further silenced in tumors, resulting in the suppression of normal microexon inclusion. Remarkably, SRRM4 is the most consistently silenced SF across all tumor types analyzed, implying a general advantage of microexon down-regulation in cancer independent of its tissue of origin. We show that this silencing is favorable for tumor growth, as decreased SRRM4 expression in tumors is correlated with an increase in mitotic gene expression, and up-regulation of SRRM4 in cancer cell lines dose-dependently inhibits proliferation in vitro and in a mouse xenograft model. Further, this proliferation inhibition is accompanied by induction of neural-like expression and splicing patterns in cancer cells, suggesting that SRRM4 expression shifts the cell state away from proliferation and toward differentiation. We therefore conclude that SRRM4 acts as a proliferation brake, and tumors gain a selective advantage by cutting off this brake.


Asunto(s)
Exones/fisiología , Neoplasias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Empalme del ARN , Empalme Alternativo , Animales , Línea Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Masculino , Ratones , Neoplasias/genética , Proteínas del Tejido Nervioso/genética
5.
Cells ; 9(11)2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207694

RESUMEN

High-throughput RNA sequencing (RNA-seq) and dedicated bioinformatics pipelines have synergized to identify an expansive repertoire of unique circular RNAs (circRNAs), exceeding 100,000 variants. While the vast majority of these circRNAs comprise canonical exonic and intronic sequences, microexons (MEs)-which occur in 30% of functional mRNA transcripts-have been entirely overlooked. CircRNAs which contain these known MEs (ME-circRNAs) could be identified with commonly utilized circRNA prediction pipelines, CIRCexplorer2 and CIRI2, but were not previously recognized as ME-circRNAs. In addition, when employing a bespoke bioinformatics pipeline for identifying RNA chimeras, called Hyb, we could also identify over 2000 ME-circRNAs which contain novel MEs at their backsplice junctions, that are uncalled by either CIRCexplorer2 or CIRI2. Analysis of circRNA-seq datasets from gliomas of varying clinical grades compared with matched control tissue has shown circRNAs have potential as prognostic markers for stratifying tumor from healthy tissue. Furthermore, the abundance of microexon-containing circRNAs (ME-circRNAs) between tumor and normal tissues is correlated with the expression of a splicing associated factor, Serine/arginine repetitive matrix 4 (SRRM4). Overexpressing SRRM4, known for regulating ME inclusion in mRNAs critical for neural differentiation, in human HEK293 cells resulted in the biogenesis of over 2000 novel ME-circRNAs, including ME-circEIF4G3, and changes in the abundance of many canonical circRNAs, including circSETDB2 and circLBRA. This shows SRRM4, in which its expression is correlated with poor prognosis in gliomas, acts as a bona fide circRNA biogenesis factor. Given the known roles of MEs and circRNAs in oncogenesis, the identification of these previously unrecognized ME-circRNAs further increases the complexity and functional purview of this non-coding RNA family.


Asunto(s)
Biología Computacional , Exones/genética , MicroARNs/genética , Proteínas del Tejido Nervioso/genética , ARN Circular/metabolismo , Empalme Alternativo , Biología Computacional/métodos , Exones/fisiología , Células HEK293 , Humanos , Proteínas del Tejido Nervioso/metabolismo , ARN Circular/genética , ARN Mensajero/genética
6.
J Cell Biol ; 219(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32642759

RESUMEN

Clathrin function directly derives from its coat structure, and while endocytosis is mediated by clathrin-coated pits, large plaques contribute to cell adhesion. Here, we show that the alternative splicing of a single exon of the clathrin heavy chain gene (CLTC exon 31) helps determine the clathrin coat organization. Direct genetic control was demonstrated by forced CLTC exon 31 skipping in muscle cells that reverses the plasma membrane content from clathrin plaques to pits and by promoting exon inclusion that stimulated flat plaque assembly. Interestingly, mis-splicing of CLTC exon 31 found in the severe congenital form of myotonic dystrophy was associated with reduced plaques in patient myotubes. Moreover, forced exclusion of this exon in WT mice muscle induced structural disorganization and reduced force, highlighting the contribution of this splicing event for the maintenance of tissue homeostasis. This genetic control on clathrin assembly should influence the way we consider how plasticity in clathrin-coated structures is involved in muscle development and maintenance.


Asunto(s)
Empalme Alternativo/fisiología , Cadenas Pesadas de Clatrina/metabolismo , Clatrina/metabolismo , Invaginaciones Cubiertas de la Membrana Celular/metabolismo , Adulto , Animales , Membrana Celular/metabolismo , Niño , Endocitosis/fisiología , Exones/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Adulto Joven
7.
Sci Rep ; 10(1): 10110, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572084

RESUMEN

Duchenne muscular dystrophy (DMD) is a fatal X-linked disorder caused by nonsense or frameshift mutations in the DMD gene. Among various treatments available for DMD, antisense oligonucleotides (ASOs) mediated exon skipping is a promising therapeutic approach. For successful treatments, however, it is requisite to rigorously optimise oligonucleotide chemistries as well as chemical modifications of ASOs. To achieve this, here, we aim to develop a novel enhanced green fluorescence protein (EGFP)-based reporter assay system that allows us to perform efficient and high-throughput screenings for ASOs. We design a new expression vector with a CAG promoter to detect the EGFP fluorescence only when skipping of mdx-type exon 23 is induced by ASOs. Then, an accurate screening was successfully conducted in C57BL/6 primary myotubes using phosphorodiamidate morpholino oligomer or locked nucleic acids (LNA)/2'-OMe mixmers with different extent of LNA inclusion. We accordingly generated a novel transgenic mouse model with this EGFP expression vector (EGFP-mdx23 Tg). Finally, we confirmed that the EGFP-mdx23 Tg provided a highly sensitive platform to check the effectiveness as well as the biodistribution of ASOs for exon skipping therapy. Thus, the assay system provides a simple yet highly sensitive platform to optimise oligonucleotide chemistries as well as chemical modifications of ASOs.


Asunto(s)
Exones/genética , Terapia Genética/métodos , Empalme del ARN/fisiología , Animales , Modelos Animales de Enfermedad , Distrofina/genética , Exones/fisiología , Femenino , Genes Reporteros/genética , Proteínas Fluorescentes Verdes , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Morfolinos/genética , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/genética , Oligonucleótidos/genética , Oligonucleótidos Antisentido/metabolismo , Cultivo Primario de Células , Empalme del ARN/genética
8.
Nat Commun ; 11(1): 2777, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488001

RESUMEN

Currently, there are no treatments for Alport syndrome, which is the second most commonly inherited kidney disease. Here we report the development of an exon-skipping therapy using an antisense-oligonucleotide (ASO) for severe male X-linked Alport syndrome (XLAS). We targeted truncating variants in exon 21 of the COL4A5 gene and conducted a type IV collagen α3/α4/α5 chain triple helix formation assay, and in vitro and in vivo treatment efficacy evaluation. We show that exon skipping enabled trimer formation, leading to remarkable clinical and pathological improvements including expression of the α5 chain on glomerular and the tubular basement membrane. In addition, the survival period was clearly prolonged in the ASO treated mice group. This data suggests that exon skipping may represent a promising therapeutic approach for treating severe male XLAS cases.


Asunto(s)
Colágeno Tipo IV/metabolismo , Exones/fisiología , Nefritis Hereditaria/metabolismo , Nefritis Hereditaria/terapia , Animales , Colágeno Tipo IV/química , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Células HEK293 , Humanos , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Masculino , Ratones , Modelos Moleculares , Nefritis Hereditaria/genética , Nefritis Hereditaria/patología , Insuficiencia Renal Crónica
9.
BMC Genomics ; 21(1): 272, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228441

RESUMEN

BACKGROUND: Most eukaryotic genes produce different transcripts of multiple isoforms by inclusion or exclusion of particular exons. The isoforms of a gene often play diverse functional roles, and thus it is necessary to accurately measure isoform expressions as well as gene expressions. While previous studies have demonstrated the strong agreement between mRNA sequencing (RNA-seq) and array-based gene and/or isoform quantification platforms (Microarray gene expression and Exon-array), the more recently developed NanoString platform has not been systematically evaluated and compared, especially in large-scale studies across different cancer domains. RESULTS: In this paper, we present a large-scale comparative study among RNA-seq, NanoString, array-based, and RT-qPCR platforms using 46 cancer cell lines across different cancer types. The goal is to understand and evaluate the calibers of the platforms for measuring gene and isoform expressions in cancer studies. We first performed NanoString experiments on 59 cancer cell lines with 404 custom-designed probes for measuring the expressions of 478 isoforms in 155 genes, and additional RT-qPCR experiments for a subset of the measured isoforms in 13 cell lines. We then combined the data with the matched RNA-seq, Exon-array, and Microarray data of 46 of the 59 cell lines for the comparative analysis. CONCLUSION: In the comparisons of the platforms for measuring the expressions at both isoform and gene levels, we found that (1) the agreement on isoform expressions is lower than the agreement on gene expressions across the four platforms; (2) NanoString and Exon-array are not consistent on isoform quantification even though both techniques are based on hybridization reactions; (3) RT-qPCR experiments are more consistent with RNA-seq and Exon-array than NanoString in isoform quantification; (4) different RNA-seq isoform quantification methods show varying estimation results, and among the methods, Net-RSTQ and eXpress are more consistent across the platforms; and (5) RNA-seq has the best overall consistency with the other platforms on gene expression quantification.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Algoritmos , Exones/genética , Exones/fisiología , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Análisis de Secuencia de ARN/métodos , Programas Informáticos
10.
Handb Exp Pharmacol ; 261: 25-37, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31375923

RESUMEN

Drug development and pharmacotherapy of rare pediatric diseases have significantly expanded over the last decade, in part due to incentives and financial support provided by governments, regulators, and nonprofit foundations. Duchenne muscular dystrophy (DMD) is among the most common rare pediatric disorders, and clinical trials of therapeutic approaches have seen dramatic expansion. Pharmacotherapeutic standard of care has been limited to off-label prescription of high-dose, daily corticosteroids (prednisone, deflazacort). Deflazacort received FDA approval for DMD in 2016, although the price increases associated with formal FDA approval and the severe side effects associated with corticosteroid use have limited patient/physician uptake and insurance coverage in the USA. In Europe, EMA has given conditional marketing authorization for prescription of Translarna (a stop codon read-through drug prescribed to ~10% of DMD patients), although there is not yet evidence of clinical efficacy. The FDA awarded conditional approval to etiplirsen, an exon-skipping oligonucleotide drug, based on accelerated pathways (increased dystrophin production in patient muscle). Evidence of clinical efficacy remains the focus of post-marketing studies. There are many innovative pharmacotherapies under clinical development for DMD (Phase I, II, and III clinical trials). All are "disease modifying" in the sense that none seek to replace the full-length, normal DMD gene or dystrophin protein, but instead either seek to introduce an abnormal "Becker-like" version of the gene or protein or target pathophysiological pathways downstream of the primary defect. It is envisioned that the most significant benefit to DMD patients will be through multidrug approaches simultaneously aiming to introduce partially functional dystrophin in patient muscle while also targeting both chronic inflammation and the fibrofatty replacement of muscle.


Asunto(s)
Distrofia Muscular de Duchenne , Corticoesteroides/genética , Corticoesteroides/metabolismo , Corticoesteroides/farmacología , Niño , Distrofina/genética , Distrofina/metabolismo , Distrofina/fisiología , Exones/fisiología , Humanos
12.
J Biol Chem ; 294(28): 10998-11010, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31160337

RESUMEN

The Y-box binding protein 1 (YB-1) is a member of the cold shock domain (CSD) protein family and is recognized as an oncogenic factor in several solid tumors. By binding to RNA, YB-1 participates in several steps of posttranscriptional regulation of gene expression, including mRNA splicing, stability, and translation; microRNA processing; and stress granule assembly. However, the mechanisms in YB-1-mediated regulation of RNAs are unclear. Previously, we used both systematic evolution of ligands by exponential enrichment (SELEX) and individual-nucleotide resolution UV cross-linking and immunoprecipitation coupled RNA-Seq (iCLIP-Seq) analyses, which defined the RNA-binding consensus sequence of YB-1 as CA(U/C)C. We also reported that through binding to its core motif CAUC in primary transcripts, YB-1 regulates the alternative splicing of a CD44 variable exon and the biogenesis of miR-29b-2 during both Drosha and Dicer steps. To elucidate the molecular basis of the YB-1-RNA interactions, we report high-resolution crystal structures of the YB-1 CSD in complex with different RNA oligos at 1.7 Å resolution. The structure revealed that CSD interacts with RNA mainly through π-π stacking interactions assembled by four highly conserved aromatic residues. Interestingly, YB-1 CSD forms a homodimer in solution, and we observed that two residues, Tyr-99 and Asp-105, at the dimer interface are important for YB-1 CSD dimerization. Substituting these two residues with Ala reduced CSD's RNA-binding activity and abrogated the splicing activation of YB-1 targets. The YB-1 CSD-RNA structures presented here at atomic resolution provide mechanistic insights into gene expression regulated by CSD-containing proteins.


Asunto(s)
Proteína 1 de Unión a la Caja Y/metabolismo , Proteína 1 de Unión a la Caja Y/ultraestructura , Empalme Alternativo/fisiología , Proteínas de Unión al ADN/metabolismo , Exones/genética , Exones/fisiología , Humanos , Unión Proteica , ARN/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Proteína 1 de Unión a la Caja Y/genética
13.
PLoS One ; 14(5): e0216370, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31048899

RESUMEN

Actinotrichia are the first exoskeletal elements formed during zebrafish fin development. These rigid fibrils serve as skeletal support for the fin fold and as substrates for mesenchymal cell migration. In the adult intact fins, actinotrichia are restricted to the distal domain of the fin. Following fin amputation, actinotrichia also reform during regeneration. The actinodin gene family codes for structural proteins of actinotrichia. We have previously identified cis-acting regulatory elements in a 2kb genomic region upstream of the first exon of actinodin1, termed 2P, required for tissue-specific expression in the fin fold ectoderm and mesenchyme during embryonic development. Indeed, 2P contains an ectodermal enhancer in a 150bp region named epi. Deletion of epi from 2P results in loss of ectodermal-specific activity. In the present study, we sought to further characterize the activity of these regulatory sequences throughout fin development and during adult fin regeneration. Using a reporter transgenic approach, we show that a site within the epi region, termed epi3, contains an early mesenchymal-specific repressor. We also show that the larval fin fold ectodermal enhancer within epi3 remains functional in the basal epithelial layer during fin regeneration. We show that the first non-coding exon and first intron of actinodin1 contains a transcriptional enhancer and an alternative promoter that are necessary for the persistence of reporter expression reminiscent of actinodin1 expression during adulthood. Altogether, we have identified cis-acting regulatory elements that are required for tissue-specific expression as well as full recapitulation of actinodin1 expression during adulthood. Furthermore, the characterization of these elements provides us with useful molecular tools for the enhancement of transgene expression in adulthood.


Asunto(s)
Aletas de Animales/fisiología , Embrión no Mamífero/embriología , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regeneración/fisiología , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/embriología , Animales , Embrión no Mamífero/citología , Elementos de Facilitación Genéticos/fisiología , Exones/fisiología , Intrones/fisiología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
14.
Glia ; 67(1): 146-159, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30453390

RESUMEN

Astrocytes are the gatekeepers of neuronal energy supply. In neurodegenerative diseases, bioenergetics demand increases and becomes reliant upon fatty acid oxidation as a source of energy. Defective fatty acid oxidation and mitochondrial dysfunctions correlate with hippocampal neurodegeneration and memory deficits in Alzheimer's disease (AD), but it is unclear whether energy metabolism can be targeted to prevent or treat the disease. Here we show for the first time an impairment in fatty acid oxidation in human astrocytes derived from induced pluripotent stem cells of AD patients. The impairment was corrected by treatment with a synthetic peroxisome proliferator activated receptor delta (PPARß/δ) agonist GW0742 which acts to regulate an array of genes governing cellular metabolism. GW0742 enhanced the expression of CPT1a, the gene encoding for a rate-limiting enzyme of fatty acid oxidation. Similarly, treatment of a mouse model of AD, the APP/PS1-mice, with GW0742 increased the expression of Cpt1a and concomitantly reversed memory deficits in a fear conditioning test. Although the GW0742-treated mice did not show altered astrocytic glial fibrillary acidic protein-immunoreactivity or reduction in amyloid beta (Aß) load, GW0742 treatment increased hippocampal neurogenesis and enhanced neuronal differentiation of neuronal progenitor cells. Furthermore, GW0742 prevented Aß-induced impairment of long-term potentiation in hippocampal slices. Collectively, these data suggest that PPARß/δ-agonism alleviates AD related deficits through increasing fatty acid oxidation in astrocytes and improves cognition in a transgenic mouse model of AD.


Asunto(s)
Astrocitos/metabolismo , Ácidos Grasos/metabolismo , PPAR delta/metabolismo , PPAR-beta/metabolismo , Presenilina-1/metabolismo , Tiazoles/farmacología , Adulto , Animales , Astrocitos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Exones/efectos de los fármacos , Exones/fisiología , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Oxidación-Reducción/efectos de los fármacos , PPAR delta/agonistas , PPAR-beta/agonistas , Distribución Aleatoria
15.
Mol Cell ; 72(3): 482-495.e7, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388410

RESUMEN

Productive splicing of human precursor messenger RNAs (pre-mRNAs) requires the correct selection of authentic splice sites (SS) from the large pool of potential SS. Although SS consensus sequence and splicing regulatory proteins are known to influence SS usage, the mechanisms ensuring the effective suppression of cryptic SS are insufficiently explored. Here, we find that many aberrant exonic SS are efficiently silenced by the exon junction complex (EJC), a multi-protein complex that is deposited on spliced mRNA near the exon-exon junction. Upon depletion of EJC proteins, cryptic SS are de-repressed, leading to the mis-splicing of a broad set of mRNAs. Mechanistically, the EJC-mediated recruitment of the splicing regulator RNPS1 inhibits cryptic 5'SS usage, while the deposition of the EJC core directly masks reconstituted 3'SS, thereby precluding transcript disintegration. Thus, the EJC protects the transcriptome of mammalian cells from inadvertent loss of exonic sequences and safeguards the expression of intact, full-length mRNAs.


Asunto(s)
Empalme Alternativo/fisiología , Exones/fisiología , Sitios de Empalme de ARN/fisiología , Secuencia de Consenso/genética , ARN Helicasas DEAD-box/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Células HeLa , Humanos , Intrones , Precursores del ARN/fisiología , Empalme del ARN/fisiología , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/metabolismo , Transcriptoma/genética
16.
Mol Cell ; 72(3): 496-509.e9, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388411

RESUMEN

Recursive splicing (RS) starts by defining an "RS-exon," which is then spliced to the preceding exon, thus creating a recursive 5' splice site (RS-5ss). Previous studies focused on cryptic RS-exons, and now we find that the exon junction complex (EJC) represses RS of hundreds of annotated, mainly constitutive RS-exons. The core EJC factors, and the peripheral factors PNN and RNPS1, maintain RS-exon inclusion by repressing spliceosomal assembly on RS-5ss. The EJC also blocks 5ss located near exon-exon junctions, thus repressing inclusion of cryptic microexons. The prevalence of annotated RS-exons is high in deuterostomes, while the cryptic RS-exons are more prevalent in Drosophila, where EJC appears less capable of repressing RS. Notably, incomplete repression of RS also contributes to physiological alternative splicing of several human RS-exons. Finally, haploinsufficiency of the EJC factor Magoh in mice is associated with skipping of RS-exons in the brain, with relevance to the microcephaly phenotype and human diseases.


Asunto(s)
Empalme Alternativo/fisiología , Exones/fisiología , Sitios de Empalme de ARN/fisiología , Animales , Línea Celular , Núcleo Celular , Drosophila , Células HEK293 , Células HeLa , Humanos , Intrones , Células K562 , Ratones , Proteínas Nucleares , Precursores del ARN/fisiología , Empalme del ARN/fisiología , ARN Mensajero/genética , Proteínas de Unión al ARN , Ribonucleoproteínas/fisiología , Transcriptoma/genética
17.
Mol Cell ; 72(3): 510-524.e12, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388412

RESUMEN

Alternative splicing is crucial for diverse cellular, developmental, and pathological processes. However, the full networks of factors that control individual splicing events are not known. Here, we describe a CRISPR-based strategy for the genome-wide elucidation of pathways that control splicing and apply it to microexons with important functions in nervous system development and that are commonly misregulated in autism. Approximately 200 genes associated with functionally diverse regulatory layers and enriched in genetic links to autism control neuronal microexons. Remarkably, the widely expressed RNA binding proteins Srsf11 and Rnps1 directly, preferentially, and frequently co-activate these microexons. These factors form critical interactions with the neuronal splicing regulator Srrm4 and a bi-partite intronic splicing enhancer element to promote spliceosome formation. Our study thus presents a versatile system for the identification of entire splicing regulatory pathways and further reveals a common mechanism for the definition of neuronal microexons that is disrupted in autism.


Asunto(s)
Empalme Alternativo/fisiología , Ingeniería Genética/métodos , Sitios de Empalme de ARN/fisiología , Animales , Trastorno Autístico/genética , Sistemas CRISPR-Cas/genética , Línea Celular , Exones/fisiología , Humanos , Ratones , Proteínas del Tejido Nervioso , Neurogénesis , Neuronas , Precursores del ARN/fisiología , Empalme del ARN/fisiología , Proteínas de Unión al ARN , Ribonucleoproteínas , Factores de Empalme Serina-Arginina , Empalmosomas
18.
J Alzheimers Dis ; 66(4): 1695-1704, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30475774

RESUMEN

Alternative splicing of tau exon 10 generates tau isoforms with three or four microtubule-binding repeats, 3R-tau or 4R-tau, which are under developmental regulation. Dysregulation of tau exon 10 splicing is sufficient to cause neurodegenerative disorders. The RNA-binding Fox3 (Rbfox3), identified as NeuN, regulates RNA processing. However, whether Rbfox3/NeuN regulates tau exon 10 splicing is unknown. In the present study, we found that the developmental expression of 4R-tau coincided with the expression of Rbfox3 in rat brains. Rbfox3 enhanced tau exon 10 inclusion. Tau intron 10 contains UGCAUG, the conservative binding sequence of Rbfox3. Intron 10 of tau pre-mRNA was co-immunoprecipitated by Rbfox3/NeuN. Deletion mutants of the RNA recognition motif (RRM) or three RNA-binding sites of the RRM in Rbfox3/NeuN failed to enhance tau exon 10 inclusion. Rbfox3, specifically expressed in the fetal brain, did not affect tau exon 10 splicing. The level of Rbfox3/NeuN was reduced and was associated with the ratio of 4R-tau/3R-tau in the excitotoxic mouse brains induced by kainic acid. These findings suggest that Rbfox3/NeuN regulates the alternative splicing of tau exon 10 and that decreased Rbfox3/NeuN may lower the ratio of 4R-tau/3R-tau.


Asunto(s)
Empalme Alternativo/fisiología , Antígenos Nucleares/metabolismo , Encéfalo/metabolismo , Exones/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteínas tau/metabolismo , Animales , Línea Celular , Humanos , Ratones , Neuronas/metabolismo , Ratas
19.
PLoS Genet ; 14(10): e1007761, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30365503

RESUMEN

Nuclear genes of euglenids and marine diplonemids harbor atypical, nonconventional introns which are not observed in the genomes of other eukaryotes. Nonconventional introns do not have the conserved borders characteristic for spliceosomal introns or the sequence complementary to U1 snRNA at the 5' end. They form a stable secondary structure bringing together both exon/intron junctions, nevertheless, this conformation does not resemble the form of self-splicing or tRNA introns. In the genes studied so far, frequent nonconventional introns insertions at new positions have been observed, whereas conventional introns have been either found at the conserved positions, or simply lost. In this work, we examined the order of intron removal from Euglena gracilis transcripts of the tubA and gapC genes, which contain two types of introns: nonconventional and spliceosomal. The relative order of intron excision was compared for pairs of introns belonging to different types. Furthermore, intermediate products of splicing were analyzed using the PacBio Next Generation Sequencing system. The analysis led to the main conclusion that nonconventional introns are removed in a rapid way but later than spliceosomal introns. Moreover, the observed accumulation of transcripts with conventional introns removed and nonconventional present may suggest the existence of a time gap between the two types of splicing.


Asunto(s)
Euglena gracilis/genética , Intrones/genética , Intrones/fisiología , Secuencia de Bases , Secuencia Conservada , Exones/fisiología , Conformación de Ácido Nucleico , Filogenia , Empalme del ARN/genética , Empalme del ARN/fisiología , ARN Mensajero/genética , ARN Nuclear Pequeño/fisiología , Análisis de Secuencia de ARN , Empalmosomas/genética
20.
Proc Natl Acad Sci U S A ; 115(35): 8817-8822, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30104384

RESUMEN

Nucleosomal modifications have been implicated in fundamental epigenetic regulation, but the roles of nucleosome occupancy in shaping changes through evolution remain to be addressed. Here we present high-resolution nucleosome occupancy profiles for multiple tissues derived from human, macaque, tree shrew, mouse, and pig. Genome-wide comparison reveals conserved nucleosome occupancy profiles across both different species and tissue types. Notably, we found significantly higher levels of nucleosome occupancy in exons than in introns, a pattern correlated with the different exon-intron GC content. We then determined whether this biased occupancy may play roles in the origination of new exons through evolution, rather than being a downstream effect of exonization, through a comparative approach to sequentially trace the order of the exonization and biased nucleosome binding. By identifying recently evolved exons in human but not in macaque using matched RNA sequencing, we found that higher exonic nucleosome occupancy also existed in macaque regions orthologous to these exons. Presumably, such biased nucleosome occupancy facilitates the origination of new exons by increasing the splice strength of the ancestral nonexonic regions through driving a local difference in GC content. These data thus support a model that sites bound by nucleosomes are more likely to evolve into exons, which we term the "nucleosome-first" model.


Asunto(s)
Composición de Base/fisiología , Evolución Molecular , Exones/fisiología , Intrones/fisiología , Nucleosomas/metabolismo , Animales , Estudio de Asociación del Genoma Completo , Humanos , Macaca , Ratones , Nucleosomas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA