Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.013
Filtrar
1.
RNA Biol ; 21(1): 14-23, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39392174

RESUMEN

The estrogen signalling pathway is highly dynamic and primarily mediated by estrogen receptors (ERs) that transcriptionally regulate the expression of target genes. While transcriptional functions of ERs have been widely studied, their roles in RNA biology have not been extensively explored. Here, we reveal a novel biological role of ER alpha (ERα) in mRNA 3' end processing in breast cancer cells, providing an alternative mechanism in regulating gene expression at the post-transcriptional level. We show that ERα activates poly(A) specific ribonuclease (PARN) deadenylase using in vitro assays, and that this activation is further increased by tumour suppressor p53, a factor involved in mRNA processing. Consistent with this, we confirm ERα-mediated activation of nuclear deadenylation by PARN in samples from MCF7 and T47D breast cancer cells that vary in expression of ERα and p53. We further show that ERα can form complex(es) with PARN and p53. Lastly, we identify and validate expression of common mRNA targets of ERα and PARN known to be involved in cell invasion, metastasis and angiogenesis, supporting the functional overlap of these factors in regulating gene expression in a transactivation-independent manner. Together, these results show a new regulatory mechanism by which ERα regulates mRNA processing and gene expression post-transcriptionally, highlighting its contribution to unique transcriptomic profiles and breast cancer progression.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Exorribonucleasas , Regulación Neoplásica de la Expresión Génica , ARN Mensajero , Proteína p53 Supresora de Tumor , Humanos , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Línea Celular Tumoral , Células MCF-7 , Núcleo Celular/metabolismo , Unión Proteica
2.
Nat Commun ; 15(1): 8528, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358425

RESUMEN

Usutu virus (USUV) and West Nile virus (WNV) are two closely related emerging mosquito-borne flaviviruses. Their natural hosts are wild birds, but they can also cause severe neurological disorders in humans. Both viruses are efficiently suppressed by type I interferon (IFN), which interferes with viral replication, dissemination, pathogenesis and transmission. Here, we show that the replication of USUV and WNV are inhibited through a common set of IFN-induced genes (ISGs), with the notable exception of ISG20, which USUV is resistant to. Strikingly, USUV was the only virus among all the other tested mosquito-borne flaviviruses that demonstrated resistance to the 3'-5' exonuclease activity of ISG20. Our findings highlight that the intrinsic resistance of the USUV genome, irrespective of the presence of cellular or viral proteins or protective post-transcriptional modifications, relies on a unique sequence present in its 3' untranslated region. Importantly, this genomic region alone can confer ISG20 resistance to a susceptible flavivirus, without compromising its infectivity, suggesting that it could be acquired by other flaviviruses. This study provides new insights into the strategy employed by emerging flaviviruses to overcome host defense mechanisms.


Asunto(s)
Regiones no Traducidas 3' , Flavivirus , Replicación Viral , Virus del Nilo Occidental , Regiones no Traducidas 3'/genética , Flavivirus/genética , Flavivirus/fisiología , Humanos , Animales , Replicación Viral/genética , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/fisiología , Infecciones por Flavivirus/virología , Exonucleasas/metabolismo , Exonucleasas/genética , Chlorocebus aethiops , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Células HEK293 , Células Vero , Línea Celular , Interferón Tipo I/metabolismo , Genoma Viral
3.
Nat Commun ; 15(1): 7854, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245712

RESUMEN

The 5´-3´ exoribonuclease Rat1/Xrn2 is responsible for the termination of eukaryotic mRNA transcription by RNAPII. Rat1 forms a complex with its partner proteins, Rai1 and Rtt103, and acts as a "torpedo" to bind transcribing RNAPII and dissociate DNA/RNA from it. Here we report the cryo-electron microscopy structures of the Rat1-Rai1-Rtt103 complex and three Rat1-Rai1-associated RNAPII complexes (type-1, type-1b, and type-2) from the yeast, Komagataella phaffii. The Rat1-Rai1-Rtt103 structure revealed that Rat1 and Rai1 form a heterotetramer with a single Rtt103 bound between two Rai1 molecules. In the type-1 complex, Rat1-Rai1 forms a heterodimer and binds to the RNA exit site of RNAPII to extract RNA into the Rat1 exonuclease active site. This interaction changes the RNA path in favor of termination (the "pre-termination" state). The type-1b and type-2 complexes have no bound DNA/RNA, likely representing the "post-termination" states. These structures illustrate the termination mechanism of eukaryotic mRNA transcription.


Asunto(s)
Microscopía por Crioelectrón , Exorribonucleasas , Proteínas de Saccharomyces cerevisiae , Exorribonucleasas/metabolismo , Exorribonucleasas/química , Exorribonucleasas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Terminación de la Transcripción Genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Modelos Moleculares , Unión Proteica , Saccharomycetales/metabolismo , Saccharomycetales/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Transcripción Genética
4.
Cell Rep ; 43(9): 114759, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39276351

RESUMEN

RNA degradation is a central process required for transcriptional regulation. Eventually, this process degrades diribonucleotides into mononucleotides by specific diribonucleases. In Escherichia coli, oligoribonuclease (Orn) serves this function and is unique as the only essential exoribonuclease. Yet, related organisms, such as Pseudomonas aeruginosa, display a growth defect but are viable without Orn, contesting its essentiality. Here, we take advantage of P. aeruginosa orn mutants to screen for suppressors that restore colony morphology and identified yciV. Purified YciV (RNase AM) exhibits diribonuclease activity. While RNase AM is present in all γ-proteobacteria, phylogenetic analysis reveals differences that map to the active site. RNase AMPa expression in E. coli eliminates the necessity of orn. Together, these results show that diribonuclease activity prevents toxic diribonucleotide accumulation in γ-proteobacteria, suggesting that diribonucleotides may be utilized to monitor RNA degradation efficacy. Because higher eukaryotes encode Orn, these observations indicate a conserved mechanism for monitoring RNA degradation.


Asunto(s)
Exorribonucleasas , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Estabilidad del ARN , Filogenia , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Mutación/genética
5.
Mol Metab ; 89: 102022, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39218215

RESUMEN

OBJECTIVE: Metabolic-associated fatty liver disease (MAFLD) represents one of the most prevalent chronic liver conditions worldwide, but its precise pathogenesis remains unclear. This research endeavors to elucidate the involvement and molecular mechanisms of polyribonucleotide nucleotidyltransferase 1 (PNPT1) in the progression of MAFLD. METHODS: The study employed western blot and qRT-PCR to evaluate PNPT1 levels in liver specimens from individuals diagnosed with MAFLD and in mouse models subjected to a high-fat diet. Cellular studies investigated the effects of PNPT1 on lipid metabolism, apoptosis, and mitochondrial stability in hepatocytes. Immunofluorescence was utilized to track the subcellular movement of PNPT1 under high lipid conditions. RNA immunoprecipitation and functional assays were conducted to identify interactions between PNPT1 and Mcl-1 mRNA. The role of PPARα as an upstream transcriptional regulator of PNPT1 was investigated. Recombinant adenoviral vectors were utilized to modulate PNPT1 expression in vivo. RESULTS: PNPT1 was found to be markedly reduced in liver tissues from MAFLD patients and HFD mice. In vitro, PNPT1 directly regulated hepatic lipid metabolism, apoptosis, and mitochondrial stability. Under conditions of elevated lipids, PNPT1 relocated from mitochondria to cytoplasm, modifying its physiological functions. RNA immunoprecipitation revealed that the KH and S1 domains of PNPT1 bind to and degrade Mcl-1 mRNA, which in turn affects mitochondrial permeability. The transcriptional regulator PPARα was identified as a significant influencer of PNPT1, impacting both its expression and subsequent cellular functions. Alterations in PNPT1 expression were directly correlated with the progression of MAFLD in mice. CONCLUSIONS: The study confirms the pivotal function of PNPT1 in the development of MAFLD through its interactions with Mcl-1 and its regulatory effects on lipid metabolism and mitochondrial stability. These insights highlight the intricate association between PNPT1 and MAFLD, shedding light on its molecular pathways and presenting a potential new therapeutic avenue for MAFLD management.


Asunto(s)
Exorribonucleasas , Metabolismo de los Lípidos , Proteínas Mitocondriales , Enfermedad del Hígado Graso no Alcohólico , Animales , Femenino , Humanos , Masculino , Ratones , Apoptosis , Dieta Alta en Grasa/efectos adversos , Hepatocitos/metabolismo , Homeostasis , Hígado/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR alfa/metabolismo , PPAR alfa/genética , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
6.
Nat Commun ; 15(1): 7464, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39198528

RESUMEN

RNase H1 has been acknowledged as an endoribonuclease specializing in the internal degradation of the RNA moiety within RNA-DNA hybrids, and its ribonuclease activity is indispensable in multifaceted aspects of nucleic acid metabolism. However, the molecular mechanism underlying RNase H1-mediated hybrid cleavage remains inadequately elucidated. Herein, using single-molecule approaches, we probe the dynamics of the hybrid cleavage by Saccharomyces cerevisiae RNase H1. Remarkably, a single RNase H1 enzyme displays 3'-to-5' exoribonuclease activity. The directional RNA degradation proceeds processively and yet discretely, wherein unwinding approximately 6-bp hybrids as a prerequisite for two consecutive 3-nt RNA excisions limits the overall rate within each catalytic cycle. Moreover, Replication Protein A (RPA) reinforces RNase H1's 3'-to-5' nucleolytic rate and processivity and stimulates its 5'-to-3' exoribonuclease activity. This stimulation is primarily realized through the pre-separation of the hybrids and consequently transfers RNase H1 to a bidirectional exoribonuclease, further potentiating its cleavage efficiency. These findings unveil unprecedented characteristics of an RNase and provide a dynamic view of RPA-enhanced processive hybrid cleavage by RNase H1.


Asunto(s)
Exorribonucleasas , ARN , Proteína de Replicación A , Ribonucleasa H , Saccharomyces cerevisiae , Ribonucleasa H/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , ARN/metabolismo , ARN/genética , Proteína de Replicación A/metabolismo , ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Estabilidad del ARN , Hibridación de Ácido Nucleico
7.
Nat Commun ; 15(1): 7378, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191740

RESUMEN

The escape of mitochondrial double-stranded dsRNA (mt-dsRNA) into the cytosol has been recently linked to a number of inflammatory diseases. Here, we report that the release of mt-dsRNA into the cytosol is a general feature of senescent cells and a critical driver of their inflammatory secretome, known as senescence-associated secretory phenotype (SASP). Inhibition of the mitochondrial RNA polymerase, the dsRNA sensors RIGI and MDA5, or the master inflammatory signaling protein MAVS, all result in reduced expression of the SASP, while broadly preserving other hallmarks of senescence. Moreover, senescent cells are hypersensitized to mt-dsRNA-driven inflammation due to their reduced levels of PNPT1 and ADAR1, two proteins critical for mitigating the accumulation of mt-dsRNA and the inflammatory potency of dsRNA, respectively. We find that mitofusin MFN1, but not MFN2, is important for the activation of the mt-dsRNA/MAVS/SASP axis and, accordingly, genetic or pharmacologic MFN1 inhibition attenuates the SASP. Finally, we report that senescent cells within fibrotic and aged tissues present dsRNA foci, and inhibition of mitochondrial RNA polymerase reduces systemic inflammation associated to senescence. In conclusion, we uncover the mt-dsRNA/MAVS/MFN1 axis as a key driver of the SASP and we identify novel therapeutic strategies for senescence-associated diseases.


Asunto(s)
Senescencia Celular , Citosol , Inflamación , Mitocondrias , ARN Bicatenario , ARN Bicatenario/metabolismo , Humanos , Citosol/metabolismo , Mitocondrias/metabolismo , Inflamación/metabolismo , Inflamación/patología , Inflamación/genética , Animales , Proteína 58 DEAD Box/metabolismo , Proteína 58 DEAD Box/genética , Fenotipo Secretor Asociado a la Senescencia , Helicasa Inducida por Interferón IFIH1/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ratones , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , ARN Mitocondrial/metabolismo , ARN Mitocondrial/genética , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Transducción de Señal
8.
Nucleic Acids Res ; 52(15): 9076-9091, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39188014

RESUMEN

The MUT-7 family of 3'-5' exoribonucleases is evolutionarily conserved across the animal kingdom and plays essential roles in small RNA production in the germline. Most MUT-7 homologues carry a C-terminal domain of unknown function named MUT7-C appended to the exoribonuclease domain. Our analysis shows that the MUT7-C is evolutionary ancient, as a minimal version of the domain exists as an individual protein in prokaryotes. In animals, MUT7-C has acquired an insertion that diverged during evolution, expanding its functions. Caenorhabditis elegans MUT-7 contains a specific insertion within MUT7-C, which allows binding to MUT-8 and, consequently, MUT-7 recruitment to germ granules. In addition, in C. elegans and human MUT-7, the MUT7-C domain contributes to RNA binding and is thereby crucial for ribonuclease activity. This RNA-binding function most likely represents the ancestral function of the MUT7-C domain. Overall, this study sheds light on MUT7-C and assigns two functions to this previously uncharacterized domain.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Exorribonucleasas , Dominios Proteicos , Animales , Exorribonucleasas/metabolismo , Exorribonucleasas/química , Exorribonucleasas/genética , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Humanos , Evolución Molecular , ARN/metabolismo , ARN/química , Secuencia de Aminoácidos , Unión Proteica
9.
Nat Commun ; 15(1): 6685, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107301

RESUMEN

Mitochondrial RNA (mtRNA) in the cytosol can trigger the innate immune sensor MDA5, and autoinflammatory disease due to type I IFN. Here, we show that a dominant negative mutation in the gene encoding the mitochondrial exonuclease REXO2 may cause interferonopathy by triggering the MDA5 pathway. A patient characterized by this heterozygous de novo mutation (p.T132A) presented with persistent skin rash featuring hyperkeratosis, parakeratosis and acanthosis, with infiltration of lymphocytes and eosinophils around small blood vessels. In addition, circulating IgE levels and inflammatory cytokines, including IFNα, are found consistently elevated. Transcriptional analysis highlights a type I IFN gene signature in PBMC. Mechanistically, REXO2 (T132A) lacks the ability to cleave RNA and inhibits the activity of wild-type REXO2. This leads to an accumulation of mitochondrial dsRNA in the cytosol, which is recognized by MDA5, leading to the associated type I IFN gene signature. These results demonstrate that in the absence of appropriate regulation by REXO2, aberrant cellular nucleic acids may accumulate and continuously trigger innate sensors, resulting in an inborn error of immunity.


Asunto(s)
Heterocigoto , Interferón Tipo I , Helicasa Inducida por Interferón IFIH1 , Humanos , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/metabolismo , Interferón Tipo I/metabolismo , Interferón Tipo I/genética , Mutación , Masculino , Mitocondrias/metabolismo , Mitocondrias/genética , Femenino , Inmunidad Innata/genética , Exonucleasas/metabolismo , Exonucleasas/genética , Células HEK293 , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Citosol/metabolismo , ARN Bicatenario/metabolismo , ARN Bicatenario/genética , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Genes Dominantes
10.
J Biol Chem ; 300(8): 107600, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39059490

RESUMEN

RNase R (encoded by the rnr gene) is a highly processive 3' → 5' exoribonuclease essential for the growth of the psychrotrophic bacterium Pseudomonas syringae Lz4W at low temperature. The cell death of a rnr deletion mutant at low temperature has been previously attributed to processing defects in 16S rRNA, defective ribosomal assembly, and inefficient protein synthesis. We recently showed that RNase R is required to protect P. syringae Lz4W from DNA damage and oxidative stress, independent of its exoribonuclease activity. Here, we show that the processing defect in 16S rRNA does not cause cell death of the rnr mutant of P. syringae at low temperature. Our results demonstrate that the rnr mutant of P. syringae Lz4W, complemented with a RNase R deficient in exoribonuclease function (RNase RD284A), is defective in 16S rRNA processing but can grow at 4 °C. This suggested that the processing defect in ribosomal RNAs is not a cause of the cold sensitivity of the rnr mutant. We further show that the rnr mutant accumulates copies of the indigenous plasmid pLz4W that bears a type II toxin-antitoxin (TA) system (P. syringae antitoxin-P. syringae toxin). This phenotype was rescued by overexpressing antitoxin psA in the rnr mutant, suggesting that activation of the type II TA system leads to cold sensitivity of the rnr mutant of P. syringae Lz4W. Here, we report a previously unknown functional relationship between the cold sensitivity of the rnr mutant and a type II TA system in P. syringae Lz4W.


Asunto(s)
Proteínas Bacterianas , Pseudomonas syringae , ARN Ribosómico 16S , Sistemas Toxina-Antitoxina , Pseudomonas syringae/metabolismo , Pseudomonas syringae/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Sistemas Toxina-Antitoxina/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Frío , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Mutación , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética
11.
Nucleic Acids Res ; 52(15): 8998-9013, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38979572

RESUMEN

The hibernation-promoting factor (Hpf) in Staphylococcus aureus binds to 70S ribosomes and induces the formation of the 100S complex (70S dimer), leading to translational avoidance and occlusion of ribosomes from RNase R-mediated degradation. Here, we show that the 3'-5' exoribonuclease YhaM plays a previously unrecognized role in modulating ribosome stability. Unlike RNase R, which directly degrades the 16S rRNA of ribosomes in S. aureus cells lacking Hpf, YhaM destabilizes ribosomes by indirectly degrading the 3'-hpf mRNA that carries an intrinsic terminator. YhaM adopts an active hexameric assembly and robustly cleaves ssRNA in a manganese-dependent manner. In vivo, YhaM appears to be a low-processive enzyme, trimming the hpf mRNA by only 1 nucleotide. Deletion of yhaM delays cell growth. These findings substantiate the physiological significance of this cryptic enzyme and the protective role of Hpf in ribosome integrity, providing a mechanistic understanding of bacterial ribosome turnover.


Asunto(s)
Proteínas Bacterianas , Exorribonucleasas , ARN Mensajero , Proteínas Ribosómicas , Ribosomas , Staphylococcus aureus , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Ribosomas/metabolismo , Ribosomas/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Staphylococcus aureus/genética , Staphylococcus aureus/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Estabilidad del ARN/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo
12.
Leukemia ; 38(10): 2150-2161, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39080354

RESUMEN

Chronic myeloid leukemia (CML), caused by BCR::ABL1 fusion gene, is known to regulate disease progression by altering the expression of genes. However, the molecular mechanisms underlying these changes are largely unknown. In this study, we identified RNA Exonuclease 5 (REXO5/LOC81691) as a novel gene with elevated mRNA expression levels in chronic myeloid leukemia (CML) patients. Additionally, using the REXO5 knockout (KO) K562 cell lines, we revealed a novel role for REXO5 in the DNA damage response (DDR). Compared to wild-type (WT) cells, REXO5 KO cells showed an accumulation of R-loops and increased DNA damage. We demonstrated that REXO5 translocates to sites of DNA damage through its RNA recognition motif (RRM) and selectively binds to R loops. Interestingly, we identified that REXO5 regulates R-loop levels by degrading mRNA within R-loop using its exonuclease domain. REXO5 KO showed ATR-CHK1 activation. Collectively, we demonstrated that REXO5 plays a key role in the physiological control of R-loops using its exonuclease domain. These findings may provide novel insights into how REXO5 expression changes contribute to CML pathogenesis.


Asunto(s)
Daño del ADN , Leucemia Mielógena Crónica BCR-ABL Positiva , Estructuras R-Loop , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Estructuras R-Loop/genética , Inestabilidad Genómica , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Exonucleasas/metabolismo , Exonucleasas/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Células K562
13.
Extremophiles ; 28(3): 35, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052080

RESUMEN

3' → 5' exoribonucleases play a critical role in many aspects of RNA metabolism. RNase R, PNPase, and RNase II are the major contributors to RNA processing, maturation, and quality control in bacteria. Bacteria don't seem to have dedicated RNA degradation machineries to process different classes of RNAs. Under different environmental and physiological conditions, their roles can be redundant and sometimes overlapping. Here, I discuss why PNPase and RNase R may have switched their physiological roles in some bacterial species to adapt to environmental conditions, despite being biochemically distinct exoribonucleases.


Asunto(s)
Adaptación Fisiológica , Exorribonucleasas , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
14.
J Virol ; 98(8): e0009524, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39082815

RESUMEN

Many viruses have evolved structured RNA elements that can influence transcript abundance and translational efficiency, and help evade host immune factors by hijacking cellular machinery during replication. Here, we evaluated the functional impact of sub-genomic flaviviral RNAs (sfRNAs) known to stall exoribonuclease activity, by incorporating these elements into recombinant adeno-associated viral (AAV) genome cassettes. Specifically, sfRNAs from Dengue, Zika, Japanese Encephalitis, Yellow Fever, Murray Valley Encephalitis, and West Nile viruses increased transcript stability and transgene expression compared to a conventional woodchuck hepatitis virus element (WPRE). Further dissection of engineered transcripts revealed that sfRNA elements (i) require incorporation in cis within the 3' untranslated region (UTR) of AAV genomes, (ii) require minimal dumbbell structures to exert the observed effects, and (iii) can stabilize AAV transcripts independent of 5'-3' exoribonuclease 1 (XRN1)-mediated decay. Additionally, preliminary in vivo assessment of AAV vectors bearing sfRNA elements in mice achieved increased transcript abundance and expression in cardiac tissue. Leveraging the functional versatility of engineered viral RNA elements may help improve the potency of AAV vector-based gene therapies. IMPORTANCE: Viral RNA elements can hijack host cell machinery to control stability of transcripts and consequently, infection. Studies that help better understand such viral elements can provide insights into antiviral strategies and also potentially leverage these features for therapeutic applications. In this study, by incorporating structured flaviviral RNA elements into recombinant adeno-associated viral (AAV) vector genomes, we show improved AAV transcript stability and transgene expression can be achieved, with implications for gene transfer.


Asunto(s)
Dependovirus , Vectores Genéticos , ARN Viral , Dependovirus/genética , Animales , ARN Viral/genética , ARN Viral/metabolismo , Vectores Genéticos/genética , Ratones , Humanos , Estabilidad del ARN , Flaviviridae/genética , Transgenes , Células HEK293 , Genoma Viral , Regiones no Traducidas 3'/genética , Exorribonucleasas/metabolismo , Exorribonucleasas/genética
15.
Life Sci Alliance ; 7(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38955468

RESUMEN

In addition to mitochondrial DNA, mitochondrial double-stranded RNA (mtdsRNA) is exported from mitochondria. However, specific channels for RNA transport have not been demonstrated. Here, we begin to characterize channel candidates for mtdsRNA export from the mitochondrial matrix to the cytosol. Down-regulation of SUV3 resulted in the accumulation of mtdsRNAs in the matrix, whereas down-regulation of PNPase resulted in the export of mtdsRNAs to the cytosol. Targeting experiments show that PNPase functions in both the intermembrane space and matrix. Strand-specific sequencing of the double-stranded RNA confirms the mitochondrial origin. Inhibiting or down-regulating outer membrane proteins VDAC1/2 and BAK/BAX or inner membrane proteins PHB1/2 strongly attenuated the export of mtdsRNAs to the cytosol. The cytosolic mtdsRNAs subsequently localized to large granules containing the stress protein TIA-1 and activated the type 1 interferon stress response pathway. Abundant mtdsRNAs were detected in a subset of non-small-cell lung cancer cell lines that were glycolytic, indicating relevance in cancer biology. Thus, we propose that mtdsRNA is a new damage-associated molecular pattern that is exported from mitochondria in a regulated manner.


Asunto(s)
Citosol , Mitocondrias , Prohibitinas , ARN Bicatenario , ARN Mitocondrial , Humanos , Citosol/metabolismo , Mitocondrias/metabolismo , ARN Bicatenario/metabolismo , ARN Mitocondrial/metabolismo , ARN Mitocondrial/genética , Línea Celular Tumoral , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Transporte de ARN , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Mitocondriales
16.
Yeast ; 41(7): 458-472, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38874348

RESUMEN

The yeast Saccharomyces cerevisiae and most eukaryotes carry two 5' → 3' exoribonuclease paralogs. In yeast, they are called Xrn1, which shuttles between the nucleus and the cytoplasm, and executes major cytoplasmic messenger RNA (mRNA) decay, and Rat1, which carries a strong nuclear localization sequence (NLS) and localizes to the nucleus. Xrn1 is 30% identical to Rat1 but has an extra ~500 amino acids C-terminal extension. In the cytoplasm, Xrn1 can degrade decapped mRNAs during the last round of translation by ribosomes, a process referred to as "cotranslational mRNA decay." The division of labor between the two enzymes is still enigmatic and serves as a paradigm for the subfunctionalization of many other paralogs. Here we show that Rat1 is capable of functioning in cytoplasmic mRNA decay, provided that Rat1 remains cytoplasmic due to its NLS disruption (cRat1). This indicates that the physical segregation of the two paralogs plays roles in their specific functions. However, reversing segregation is not sufficient to fully complement the Xrn1 function. Specifically, cRat1 can partially restore the cell volume, mRNA stability, the proliferation rate, and 5' → 3' decay alterations that characterize xrn1Δ cells. Nevertheless, cotranslational decay is only slightly complemented by cRat1. The use of the AlphaFold prediction for cRat1 and its subsequent docking with the ribosome complex and the sequence conservation between cRat1 and Xrn1 suggest that the tight interaction with the ribosome observed for Xrn1 is not maintained in cRat1. Adding the Xrn1 C-terminal domain to Rat1 does not improve phenotypes, which indicates that lack of the C-terminal is not responsible for partial complementation. Overall, during evolution, it appears that the two paralogs have acquired specific characteristics to make functional partitioning beneficial.


Asunto(s)
Exorribonucleasas , Estabilidad del ARN , ARN Mensajero , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Citoplasma/metabolismo , Biosíntesis de Proteínas
17.
Biochem Soc Trans ; 52(3): 1243-1251, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38884788

RESUMEN

Mitochondrial DNA replication is initiated by the transcription of mitochondrial RNA polymerase (mtRNAP), as mitochondria lack a dedicated primase. However, the mechanism determining the switch between continuous transcription and premature termination to generate RNA primers for mitochondrial DNA (mtDNA) replication remains unclear. The pentatricopeptide repeat domain of mtRNAP exhibits exoribonuclease activity, which is required for the initiation of mtDNA replication in Drosophila. In this review, we explain how this exonuclease activity contributes to primer synthesis in strand-coupled mtDNA replication, and discuss how its regulation might co-ordinate mtDNA replication and transcription in both Drosophila and mammals.


Asunto(s)
Replicación del ADN , ADN Mitocondrial , Mitocondrias , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Animales , Mitocondrias/metabolismo , Mitocondrias/genética , Humanos , ARN Polimerasas Dirigidas por ADN/metabolismo , Transcripción Genética , Drosophila/genética , Drosophila/metabolismo , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
18.
Mol Carcinog ; 63(9): 1768-1782, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38869281

RESUMEN

To study mechanisms driving/inhibiting skin carcinogenesis, stage-specific expression of 14-3-3σ (Stratifin) was analyzed in skin carcinogenesis driven by activated rasHa/fos expression (HK1.ras/fos) and ablation of PTEN-mediated AKT regulation (K14.creP/Δ5PTENflx/flx). Consistent with 14-3-3σ roles in epidermal differentiation, HK1.ras hyperplasia and papillomas displayed elevated 14-3-3σ expression in supra-basal keratinocytes, paralleled by supra-basal p-MDM2166 activation and sporadic p-AKT473 expression. In bi-genic HK1.fos/Δ5PTENflx/flx hyperplasia, basal-layer 14-3-3σ expression appeared, and alongside p53/p21, was associated with keratinocyte differentiation and keratoacanthoma etiology. Tri-genic HK1.ras/fos-Δ5PTENflx/flx hyperplasia/papillomas initially displayed increased basal-layer 14-3-3σ, suggesting attempts to maintain supra-basal p-MDM2166 and protect basal-layer p53. However, HK1.ras/fos-Δ5PTENflx/flx papillomas exhibited increasing basal-layer p-MDM2166 activation that reduced p53, which coincided with malignant conversion. Despite p53 loss, 14-3-3σ expression persisted in well-differentiated squamous cell carcinomas (wdSCCs) and alongside elevated p21, limited malignant progression via inhibiting p-AKT1473 expression; until 14-3-3σ/p21 loss facilitated progression to aggressive SCC exhibiting uniform p-AKT1473. Analysis of TPA-promoted HK1.ras-Δ5PTENflx/flx mouse skin, demonstrated early loss of 14-3-3σ/p53/p21 in hyperplasia and papillomas, with increased p-MDM2166/p-AKT1473 that resulted in rapid malignant conversion and progression to poorly differentiated SCC. In 2D/3D cultures, membranous 14-3-3σ expression observed in normal HaCaT and SP1ras61 papilloma keratinocytes was unexpectedly detected in malignant T52ras61/v-fos SCC cells cultured in monolayers, but not invasive 3D-cells. Collectively, these data suggest 14-3-3σ/Stratifin exerts suppressive roles in papillomatogenesis via MDM2/p53-dependent mechanisms; while persistent p53-independent expression in early wdSCC may involve p21-mediated AKT1 inhibition to limit malignant progression.


Asunto(s)
Proteínas 14-3-3 , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-mdm2 , Neoplasias Cutáneas , Proteína p53 Supresora de Tumor , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Ratones , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Carcinogénesis/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Progresión de la Enfermedad , Humanos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Queratinocitos/metabolismo , Queratinocitos/patología , Regulación Neoplásica de la Expresión Génica
19.
Aging (Albany NY) ; 16(11): 9727-9752, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38843383

RESUMEN

This study explored the role of 14-3-3σ in carbon ion-irradiated pancreatic adenocarcinoma (PAAD) cells and xenografts and clarified the underlying mechanism. The clinical significance of 14-3-3σ in patients with PAAD was explored using publicly available databases. 14-3-3σ was silenced or overexpressed and combined with carbon ions to measure cell proliferation, cell cycle, and DNA damage repair. Immunoblotting and immunofluorescence (IF) assays were used to determine the underlying mechanisms of 14-3-3σ toward carbon ion radioresistance. We used the BALB/c mice to evaluate the biological behavior of 14-3-3σ in combination with carbon ions. Bioinformatic analysis revealed that PAAD expressed higher 14-3-3σ than normal pancreatic tissues; its overexpression was related to invasive clinicopathological features and a worse prognosis. Knockdown or overexpression of 14-3-3σ demonstrated that 14-3-3σ promoted the survival of PAAD cells after carbon ion irradiation. And 14-3-3σ was upregulated in PAAD cells during DNA damage (carbon ion irradiation, DNA damaging agent) and promotes cell recovery. We found that 14-3-3σ resulted in carbon ion radioresistance by promoting RPA2 and RAD51 accumulation in the nucleus in PAAD cells, thereby increasing homologous recombination repair (HRR) efficiency. Blocking the HR pathway consistently reduced 14-3-3σ overexpression-induced carbon ion radioresistance in PAAD cells. The enhanced radiosensitivity of 14-3-3σ depletion on carbon ion irradiation was also demonstrated in vivo. Altogether, 14-3-3σ functions in tumor progression and can be a potential target for developing biomarkers and treatment strategies for PAAD along with incorporating carbon ion irradiation.


Asunto(s)
Proteínas 14-3-3 , Ratones Endogámicos BALB C , Neoplasias Pancreáticas , Reparación del ADN por Recombinación , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/radioterapia , Animales , Humanos , Ratones , Línea Celular Tumoral , Regulación hacia Abajo , Tolerancia a Radiación/genética , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Radioterapia de Iones Pesados , Carbono , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Masculino , Daño del ADN , Femenino
20.
Nucleic Acids Res ; 52(10): 5841-5851, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38716877

RESUMEN

Therapeutic fluoropyrimidines 5-fluorouracil (5-FU) and 5-fluorocytosine (5-FC) are in long use for treatment of human cancers and severe invasive fungal infections, respectively. 5-Fluorouridine triphosphate represents a bioactive metabolite of both drugs and is incorporated into target cells' RNA. Here we use the model fungus Saccharomyces cerevisiae to define fluorinated tRNA as a key mediator of 5-FU and 5-FC cytotoxicity when specific tRNA methylations are absent. tRNA methylation deficiency caused by loss of Trm4 and Trm8 was previously shown to trigger an RNA quality control mechanism resulting in partial destabilization of hypomodified tRNAValAAC. We demonstrate that, following incorporation into tRNA, fluoropyrimidines strongly enhance degradation of yeast tRNAValAAC lacking Trm4 and Trm8 dependent methylations. At elevated temperature, such effect occurs already in absence of Trm8 alone. Genetic approaches and quantification of tRNA modification levels reveal that enhanced fluoropyrimidine cytotoxicity results from additional, drug induced uridine modification loss and activation of tRNAValAAC decay involving the exonuclease Xrn1. These results suggest that inhibition of tRNA methylation may be exploited to boost therapeutic efficiency of 5-FU and 5-FC.


Asunto(s)
Flucitosina , Fluorouracilo , ARN de Transferencia , Saccharomyces cerevisiae , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Flucitosina/farmacología , Fluorouracilo/farmacología , Metilación , Estabilidad del ARN/efectos de los fármacos , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ARNt Metiltransferasas/metabolismo , ARNt Metiltransferasas/genética , Uridina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...