Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.501
Filtrar
1.
Exp Biol Med (Maywood) ; 249: 10135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711460

RESUMEN

Environmental air pollution is a global health concern, associated with multiple respiratory and systemic diseases. Epidemiological supports continued urbanization and industrialization increasing the prevalence of inhalation exposures. Exposure to these inhaled pollutants induces toxicity via activation of numerous cellular mechanisms including oxidative stress, autophagy, disrupted cellular metabolism, inflammation, tumorigenesis, and others contributing to disease development. The mechanistic target of rapamycin (mTOR) is a key regulator involved in various cellular processes related to the modulation of metabolism and maintenance of homeostasis. Dysregulation of mTOR occurs following inhalation exposures and has also been implicated in many diseases such as cancer, obesity, cardiovascular disease, diabetes, asthma, and neurodegeneration. Moreover, mTOR plays a fundamental role in protein transcription and translation involved in many inflammatory and autoimmune diseases. It is necessary to understand inhalation exposure-induced dysregulation of mTOR since it is key regulator which may contribute to numerous disease processes. This mini review evaluates the available literature regarding several types of inhalation exposure and their impacts on mTOR signaling. Particularly we focus on the mTOR signaling pathway related outcomes of autophagy, lipid metabolism, and inflammation. Furthermore, we will examine the implications of dysregulated mTOR pathway in exposure-induced diseases. Throughout this mini review, current gaps will be identified related to exposure-induced mTOR dysregulation which may enable the targeting of mTOR signaling for the development of therapeutics.


Asunto(s)
Exposición por Inhalación , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Exposición por Inhalación/efectos adversos , Animales , Transducción de Señal/efectos de los fármacos , Autofagia/efectos de los fármacos , Inflamación/metabolismo
2.
Circ Res ; 134(9): 1061-1082, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38662865

RESUMEN

Wildfire smoke (WFS) is a mixture of respirable particulate matter, environmental gases, and other hazardous pollutants that originate from the unplanned burning of arid vegetation during wildfires. The increasing size and frequency of recent wildfires has escalated public and occupational health concerns regarding WFS inhalation, by either individuals living nearby and downstream an active fire or wildland firefighters and other workers that face unavoidable exposure because of their profession. In this review, we first synthesize current evidence from environmental, controlled, and interventional human exposure studies, to highlight positive associations between WFS inhalation and cardiovascular morbidity and mortality. Motivated by these findings, we discuss preventative measures and suggest interventions to mitigate the cardiovascular impact of wildfires. We then review animal and cell exposure studies to call attention on the pathophysiological processes that support the deterioration of cardiovascular tissues and organs in response to WFS inhalation. Acknowledging the challenges of integrating evidence across independent sources, we contextualize laboratory-scale exposure approaches according to the biological processes that they model and offer suggestions for ensuring relevance to the human condition. Noting that wildfires are significant contributors to ambient air pollution, we compare the biological responses triggered by WFS to those of other harmful pollutants. We also review evidence for how WFS inhalation may trigger mechanisms that have been proposed as mediators of adverse cardiovascular effects upon exposure to air pollution. We finally conclude by highlighting research areas that demand further consideration. Overall, we aspire for this work to serve as a catalyst for regulatory initiatives to mitigate the adverse cardiovascular effects of WFS inhalation in the community and alleviate the occupational risk in wildland firefighters.


Asunto(s)
Enfermedades Cardiovasculares , Humo , Incendios Forestales , Humanos , Animales , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Humo/efectos adversos , Exposición por Inhalación/efectos adversos , Contaminantes Atmosféricos/efectos adversos , Material Particulado/efectos adversos , Exposición Profesional/efectos adversos , Exposición Profesional/prevención & control , Exposición a Riesgos Ambientales/efectos adversos
3.
Eur Respir Rev ; 33(172)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38657996

RESUMEN

Common airborne allergens (pollen, animal dander and those from fungi and insects) are the main triggers of type I allergic disorder in the respiratory system and are associated with allergic rhinitis, allergic asthma, as well as immunoglobulin E (IgE)-mediated allergic bronchopulmonary aspergillosis. These allergens promote IgE crosslinking, vasodilation, infiltration of inflammatory cells, mucosal barrier dysfunction, extracellular matrix deposition and smooth muscle spasm, which collectively cause remodelling of the airways. Fungus and insect (house dust mite and cockroaches) indoor allergens are particularly rich in proteases. Indeed, more than 40 different types of aeroallergen proteases, which have both IgE-neutralising and tissue-destructive activities, have been documented in the Allergen Nomenclature database. Of all the inhaled protease allergens, 85% are classed as serine protease activities and include trypsin-like, chymotrypsin-like and collagenolytic serine proteases. In this article, we review and compare the allergenicity and proteolytic effect of allergen serine proteases as listed in the Allergen Nomenclature and MEROPS databases and highlight their contribution to allergic sensitisation, disruption of the epithelial barrier and activation of innate immunity in allergic airways disease. The utility of small-molecule inhibitors of allergen serine proteases as a potential treatment strategy for allergic airways disease will also be discussed.


Asunto(s)
Alérgenos , Inmunidad Innata , Serina Proteasas , Humanos , Alérgenos/inmunología , Serina Proteasas/metabolismo , Serina Proteasas/inmunología , Animales , Contaminación del Aire Interior/efectos adversos , Inhibidores de Serina Proteinasa/uso terapéutico , Exposición por Inhalación/efectos adversos , Hipersensibilidad Respiratoria/inmunología , Hipersensibilidad Respiratoria/enzimología
4.
Ecotoxicol Environ Saf ; 276: 116279, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581906

RESUMEN

Hydrogen sulfide (H2S) is a typical odour compound mainly causing respiratory and central nervous system symptoms. However, the immunotoxicity of inhaled H2S and the underlying mechanisms remain largely unknown. In this study, a low-dose inhalation exposure to H2S was arranged to observe inflammatory response and immunotoxicity in lung tissue of rats. Low concentrations of H2S exposure affected the immune level of pulmonary tissue and peripheral blood. Significant pathological changes in lung tissue in the exposure group were observed. At low concentration, H2S not only induced the upregulation of AQP-4 and MMP-9 expression but also stimulated immune responses, initiating various anti-inflammatory and inflammatory factors, altering tissue homeostatic environments. The TNF and chemokine signaling pathway played an important role which can promote the deterioration of pulmonary inflammatory processes and lead to lung injury and fibrosis. Excessive immune response causes an inflammatory effect and blood-gas barrier damage. These data will be of value in evaluating future occupational health risks and providing technical support for the further development of reliable, sensitive, and easy-to-use screening indicators of exposure injury.


Asunto(s)
Sulfuro de Hidrógeno , Exposición por Inhalación , Pulmón , Animales , Sulfuro de Hidrógeno/toxicidad , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/inmunología , Ratas , Exposición por Inhalación/efectos adversos , Masculino , Inflamación/inducido químicamente , Inflamación/patología , Ratas Sprague-Dawley , Metaloproteinasa 9 de la Matriz/metabolismo , Contaminantes Atmosféricos/toxicidad
5.
Arch Prev Riesgos Labor ; 27(1): 41-53, 2024 Jan 18.
Artículo en Español | MEDLINE | ID: mdl-38655606

RESUMEN

OBJECTIVE: To evaluate silica exposure among Chilean miners at high altitude, using different methodological approaches, for the purpose of determining the safest method to control exposures.  Methods: The 46 miners in the sample worked at 3000 meters above sea level in nonstandard work shifts, consisting of four consecutive 12-hour days, followed by four consecutive days off. Silica samples were obtained in each of the jobs positions of these 46 high-altitude miners. The results of the concentrations are presented in mg/m3. Exposures were evaluated in compatison to the Threshold Limit Value (Method 1) and using two other methodologies that incorporate respiratory parameters (Methods 2 and 3). The proportion of miners at risk was determined with each of these methods and compared. RESULTS: Based on the Threshold Limit Value (Method 1), 43.48% of miners were classified as being at risk. With the other two methods that incorporate respiratory parameters, the proportion of overexposed miners was 82.61% with Method 2, and 73.91% with Method 3. CONCLUSIONS: Of the three methods analyzed, the one that considers the respiratory parameter minute volume, through the estimation of the inhaled dose, is the safest to define the group of miners at risk due to exposure to silica at high altitude.


OBJETIVO: Evaluar la exposición a sílice de mineros chilenos en altitud usando diferentes metodologías, con el propósito de determinar el método más seguro para controlar la exposición.  Métodos: Los 46 mineros que conforman la muestra trabajan a 3000 metros sobre el nivel del mar con sistema de turnos no convencionales, en jornadas de 12 horas diarias por 4 días consecutivos, después de los cuales se descansa por otros 4 días. Se tomaron muestras de sílice en cada uno de los puestos de trabajo de estos 46 mineros en altitud. Los resultados de las concentraciones se presentan en (mg/m3). La exposición se evaluó usando el Threshold Limit Value y otras dos metodologías que incorporan parámetros respiratorios. Se determinó el grupo de mineros en riesgo con cada uno de estos métodos y se comparó la proporción de mineros expuestos en cada caso. RESULTADOS: evaluando con el Threshold Limit Value (método 1) se obtuvo un 43,48% de mineros en riesgo. Con los métodos que incluyen parámetros respiratorios se obtuvo una proporción de mineros sobre-expuestos del 82,61% con el método 2, y 73,91% con el método 3. CONCLUSIONES: de los tres métodos analizados, el que considera el parámetro respiratorio volumen minuto, a través de la estimación de la dosis inhalada, es el más seguro para definir el grupo de mineros en riesgo por exposición a sílice a gran altura.


Asunto(s)
Altitud , Minería , Exposición Profesional , Dióxido de Silicio , Humanos , Chile , Exposición por Inhalación/efectos adversos , Masculino , Adulto
6.
Regul Toxicol Pharmacol ; 149: 105627, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621522

RESUMEN

CropLife Europe collected literature values from monitoring studies measuring air concentrations of Plant Protection Products (PPPs) that may be inhaled by humans located in rural areas but not immediately adjacent to PPP applications. The resulting "Combined Air Concentration Database" (CACD) was used to determine whether air concentrations of PPPs reported by the French "Agency for Food, Environmental and Occupational Health & Safety" (ANSES) are consistent with those measured by others to increase confidence in values of exposure to humans. The results were put into risk assessment context. Results show that 25-90% of samples do not contain measurable PPP concentrations. Measured respirable fractions were below EU default air concentrations used for risk assessment for resident exposure by the European Food Safety Authority. All measured exposures in the CACD were also below established toxicological endpoints, even when considering the highest maximum average reported concentrations and very conservative inhalation rates. The highest recorded air concentration was for prosulfocarb (0.696 µg/m³ measured over 48 h) which is below the EFSA default limit of 1 µg/m³ for low volatility substances. In conclusion, based on the CACD, measured air concentrations of PPPs are significantly lower than EFSA default limits and relevant toxicological reference values.


Asunto(s)
Contaminantes Atmosféricos , Bases de Datos Factuales , Monitoreo del Ambiente , Medición de Riesgo , Humanos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Exposición por Inhalación/análisis , Exposición por Inhalación/efectos adversos
7.
Toxicology ; 504: 153781, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493948

RESUMEN

This comprehensive review focuses on various dimensions of nanoparticle toxicity, emphasizing toxicological characteristics, assessment techniques, and examinations of relevant studies on the effects on biological systems. The primary objective is to comprehend the potential risks associated with nanoparticles and to provide efficient strategies for mitigating them by consolidating current research discoveries. For in-depth insights, the discussions extend to crucial aspects such as toxicity associated with different nanoparticles, human exposure, and nanoparticle deposition in the human respiratory tract. The analysis utilizes the multiple-path particle dosimetry (MPPD) modeling for computational simulation. The SiO2 nanoparticles with a volume concentration of 1% and a particle size of 50 nm are used to depict the MPPD modeling of the Left upper (LU), left lower (LL), right upper (RU), right middle (RM), and right lower (RL) lobes in the respiratory tract. The analysis revealed a substantial 67.5% decrease in the deposition fraction as the particle size increased from 10 nm to 100 nm. Graphical representation emphasizes the significant impact of exposure path selection on nanoparticle deposition, with distinct deposition values observed for nasal, oral, oronasal-mouth breather, oronasal - normal augmenter, and endotracheal paths (0.00291 µg, 0.00332 µg, 0.00297 µg, 0.00291 µg, and 0.00383 µg, respectively). Consistent with the focus of the review, the article also addresses crucial mitigation strategies for managing nanoparticle toxicity.


Asunto(s)
Nanopartículas , Sistema Respiratorio , Humanos , Nanopartículas/toxicidad , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/metabolismo , Animales , Factores de Riesgo , Exposición por Inhalación/efectos adversos , Tamaño de la Partícula , Medición de Riesgo
8.
Arch Toxicol ; 98(6): 1629-1643, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38536500

RESUMEN

Owing to the widespread use and improper emissions of carbon black nanoparticles (CBNPs), the adverse effects of CBNPs on human health have attracted much attention. In toxicological research, carbon black is frequently utilized as a negative control because of its low toxicity and poor solubility. However, recent studies have indicated that inhalation exposure to CBNPs could be a risk factor for severe and prolonged pulmonary inflammation and fibrosis. At present, the pathogenesis of pulmonary fibrosis induced by CBNPs is still not fully elucidated, but it is known that with small particle size and large surface area, CBNPs are more easily ingested by cells, leading to organelle damage and abnormal interactions between organelles. Damaged organelle and abnormal organelles interactions lead to cell structure and function disorders, which is one of the important factors in the development and occurrence of various diseases, including pulmonary fibrosis. This review offers a comprehensive analysis of organelle structure, function, and interaction mechanisms, while also summarizing the research advancements in organelles and organelle interactions in CBNPs-induced pulmonary fibrosis.


Asunto(s)
Nanopartículas , Orgánulos , Fibrosis Pulmonar , Hollín , Hollín/toxicidad , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Humanos , Nanopartículas/toxicidad , Orgánulos/efectos de los fármacos , Orgánulos/metabolismo , Animales , Tamaño de la Partícula , Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Pulmón/patología
9.
Inhal Toxicol ; 36(3): 189-204, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38466202

RESUMEN

OBJECTIVE: Inhalation of diesel exhaust (DE) has been shown to be an occupational hazard in the transportation, mining, and gas and oil industries. DE also contributes to air pollution, and therefore, is a health hazard to the general public. Because of its effects on human health, changes have been made to diesel engines to reduce both the amounts of particulate matter and volatile fumes they generate. The goal of the current study was to examine the effects of inhalation of diesel exhaust. MATERIALS AND METHODS: The study presented here specifically examines the effects of exposure to 0.2 and 1.0 mg/m3 DE or filtered air (6h/d for 4 d) on measures of peripheral and cardio-vascular function, and biomarkers of heart and kidney dysfunction in male rats. A Tier 2 engine used in oil and gas fracking operations was used to generate the diesel exhaust. RESULTS: Exposure to 0.2 mg/m3 DE resulted in an increase in blood pressure 1d following the last exposure, and increases in dobutamine-induced cardiac output and stroke volume 1 and 27d after exposure. Changes in peripheral vascular responses to norepinephrine and acetylcholine were minimal as were changes in transcript expression in the heart and kidney. Exposure to 1.0 mg/m3 DE did not result in major changes in blood pressure, measures of cardiac function, peripheral vascular function or transcript expression. DISCUSSION AND CONCLUSIONS: Based on the results of this study, we suggest that exposure to DE generated by a Tier 2 compliant diesel engine generates acute effects on biomarkers indicative of cardiovascular dysfunction. Recovery occurs quickly with most measures of vascular/cardiovascular function returning to baseline levels by 7d following exposure.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Masculino , Ratas , Animales , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Material Particulado/toxicidad , Biomarcadores , Exposición por Inhalación/efectos adversos
10.
Environ Int ; 184: 108481, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38330748

RESUMEN

Combustion-derived particulate matter (PM) is a major source of air pollution. Efforts to reduce diesel engine emission include the application of biodiesel. However, while urban PM exposure has been linked to adverse brain effects, little is known about the direct effects of PM from regular fossil diesel (PMDEP) and biodiesel (PMBIO) on neuronal function. Furthermore, it is unknown to what extent the PM-induced effects in the lung (e.g., inflammation) affect the brain. This in vitro study investigates direct and indirect toxicity of PMDEP and PMBIO on the lung and brain and compared it with effects of clean carbon particles (CP). PM were generated using a common rail diesel engine. CP was sampled from a spark generator. First, effects of 48 h exposure to PM and CP (1.2-3.9 µg/cm2) were assessed in an in vitro lung model (air-liquid interface co-culture of Calu-3 and THP1 cells) by measuring cell viability, cytotoxicity, barrier function, inflammation, and oxidative and cell stress. None of the exposures caused clear adverse effects and only minor changes in gene expression were observed. Next, the basal medium was collected for subsequent simulated inhalation exposure of rat primary cortical cells. Neuronal activity, recorded using microelectrode arrays (MEA), was increased after acute (0.5 h) simulated inhalation exposure. In contrast, direct exposure to PMDEP and PMBIO (1-100 µg/mL; 1.2-119 µg/cm2) reduced neuronal activity after 24 h with lowest observed effect levels of respectively 10 µg/mL and 30 µg/mL, indicating higher neurotoxic potency of PMDEP, whereas neuronal activity remained unaffected following CP exposure. These findings indicate that combustion-derived PM potently inhibit neuronal function following direct exposure, while the lung serves as a protective barrier. Furthermore, PMDEP exhibit a higher direct neurotoxic potency than PMBIO, and the data suggest that the neurotoxic effects is caused by adsorbed chemicals rather than the pure carbon core.


Asunto(s)
Contaminantes Atmosféricos , Ratas , Animales , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Biocombustibles , Exposición por Inhalación/efectos adversos , Material Particulado/toxicidad , Material Particulado/análisis , Carbono , Inflamación
11.
JAMA ; 331(10): 878-879, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38372993

RESUMEN

This JAMA Insights in the Climate Change and Health Series defines thunderstorm asthma, describes its effects and increased rate of occurrence, and highlights recommendations for improved response during future events.


Asunto(s)
Asma , Cambio Climático , Procesos Climáticos , Exposición por Inhalación , Humanos , Alérgenos/efectos adversos , Asma/epidemiología , Asma/etiología , Tiempo (Meteorología) , Exposición por Inhalación/efectos adversos
12.
Inhal Toxicol ; 36(2): 90-99, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38407183

RESUMEN

OBJECTIVE: Nail salons offer a developing and diverse occupation for many women, especially the new generation. Due to the increasing apprehension surrounding heavy metals in dust caused by filing nails containing dried nail polish, the present study was designed aimed to health risk assessment of heavy metals in breathing zone of nail salon technicians (NSTs). METHODS: This is a cross-sectional study that was conducted in NSTs. The concentration of Cadmium (Cd), Lead (Pb), Nickel (Ni), Chromium (Cr) and Manganese (Mn)in breathing zone of 20 NSTs was determined using ICP-OES. RESULTS: The metal concentrations were in the following order: Mn > Pb > Ni > Cr > Cd with corresponding arithmetic mean values of0.008, 0.0023, 0.0021, 0.001 and 0.0006 mg m-3, respectively, which are exceeded the recommended levels stated in the indoor air guidelines. The average lifetime carcinogenic risk (LCR) for Cr, Cd, Ni and Pb was calculated 0.0084, 0.00054, 0.00026 and 1.44 E - 05, respectively. The LCR values of all metals (except Pb) exceeded the acceptable level set by the USEPA. The mean of Hazard quotients (HQ) for Mn, Cd, Cr, Ni and Pb were calculated to be23.7, 4.74, 2.19, 0.51 and 0.0.24, respectively. The sensitivity analysis showed that, the exposure frequency (EF) for Cr and Ni had the strong effects on generation of both LCR and HQ. Furthermore, the concentrations of Mn, Cd and Pb had strong impacts on the HQ generation and the concentration of Cd and Pb had main effects on LCR generation. CONCLUSION: To effectively reduce pollutant concentration, it is recommended to install a ventilation system near nail salon work tables and conduct continuous monitoring and quality control of nail products.


Asunto(s)
Cadmio , Metales Pesados , Humanos , Femenino , Cadmio/análisis , Exposición por Inhalación/efectos adversos , Exposición por Inhalación/análisis , Monitoreo del Ambiente , Método de Montecarlo , Estudios Transversales , Plomo/análisis , Uñas/química , Metales Pesados/toxicidad , Metales Pesados/análisis , Cromo/toxicidad , Níquel/toxicidad , Manganeso , Medición de Riesgo , China
13.
Inhal Toxicol ; 36(2): 57-74, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38422051

RESUMEN

Many inhalation exposures induce pulmonary inflammation contributing to disease progression. Inflammatory processes are actively regulated via mediators including bioactive lipids. Bioactive lipids are potent signaling molecules involved in both pro-inflammatory and resolution processes through receptor interactions. The formation and clearance of lipid signaling mediators are controlled by multiple metabolic enzymes. An imbalance of these lipids can result in exacerbated and sustained inflammatory processes which may result in pulmonary damage and disease. Dysregulation of pulmonary bioactive lipids contribute to inflammation and pulmonary toxicity following exposures. For example, inhalation of cigarette smoke induces activation of pro-inflammatory bioactive lipids such as sphingolipids, and ceramides contributing to chronic obstructive pulmonary disease. Additionally, exposure to silver nanoparticles causes dysregulation of inflammatory resolution lipids. As inflammation is a common consequence resulting from inhaled exposures and a component of numerous diseases it represents a broadly applicable target for therapeutic intervention. With new appreciation for bioactive lipids, technological advances to reliably identify and quantify lipids have occurred. In this review, we will summarize, integrate, and discuss findings from recent studies investigating the impact of inhaled exposures on pro-inflammatory and resolution lipids within the lung and their contribution to disease. Throughout the review current knowledge gaps in our understanding of bioactive lipids and their contribution to pulmonary effects of inhaled exposures will be presented. New methods being employed to detect and quantify disruption of pulmonary lipid levels following inhalation exposures will be highlighted. Lastly, we will describe how lipid dysregulation could potentially be addressed by therapeutic strategies to address inflammation.


Asunto(s)
Enfermedades Pulmonares , Nanopartículas del Metal , Humanos , Exposición por Inhalación/efectos adversos , Plata , Inflamación/inducido químicamente , Enfermedades Pulmonares/inducido químicamente , Ceramidas , Mediadores de Inflamación/metabolismo
14.
Environ Pollut ; 347: 123633, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38423272

RESUMEN

Nanoplastics are widely distributed in indoor and outdoor air and can be easily inhaled into human lungs. However, limited studies have investigated the impact of nanoplastics on inhalation toxicities, especially on the initiation and progression of chronic obstructive pulmonary disease (COPD). To fill the gap, the present study used oronasal aspiration to develop mice models. Mice were exposed to polystyrene nanoplastics (PS-NPs) at three concentrations, as well as the corresponding controls, for acute, subacute, and subchronic exposure. As a result, PS-NPs could accumulate in exposed mice lungs and influence lung organ coefficient. Besides, PS-NPs induced local and systemic oxidative stress, inflammation, and protease-antiprotease imbalance, resulting in decreased respiratory function and COPD-like lesions. Meanwhile, PS-NPs could trigger the subcellular mechanism to promote COPD development by causing mitochondrial dysfunctions and endoplasmic reticulum (ER) stress. Mechanistically, ferroptosis played an important role in the COPD-like lung injury induced by PS-NPs. In summary, the present study comprehensively and systematically indicates that PS-NPs can damage human respiratory health and increase the risk for COPD.


Asunto(s)
Lesión Pulmonar , Nanopartículas , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Animales , Ratones , Exposición por Inhalación/efectos adversos , Microplásticos , Poliestirenos/toxicidad , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente
15.
Nat Nanotechnol ; 19(5): 705-714, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38366225

RESUMEN

Graphene oxide nanomaterials are being developed for wide-ranging applications but are associated with potential safety concerns for human health. We conducted a double-blind randomized controlled study to determine how the inhalation of graphene oxide nanosheets affects acute pulmonary and cardiovascular function. Small and ultrasmall graphene oxide nanosheets at a concentration of 200 µg m-3 or filtered air were inhaled for 2 h by 14 young healthy volunteers in repeated visits. Overall, graphene oxide nanosheet exposure was well tolerated with no adverse effects. Heart rate, blood pressure, lung function and inflammatory markers were unaffected irrespective of graphene oxide particle size. Highly enriched blood proteomics analysis revealed very few differential plasma proteins and thrombus formation was mildly increased in an ex vivo model of arterial injury. Overall, acute inhalation of highly purified and thin nanometre-sized graphene oxide nanosheets was not associated with overt detrimental effects in healthy humans. These findings demonstrate the feasibility of carefully controlled human exposures at a clinical setting for risk assessment of graphene oxide, and lay the foundations for investigating the effects of other two-dimensional nanomaterials in humans. Clinicaltrials.gov ref: NCT03659864.


Asunto(s)
Grafito , Nanoestructuras , Humanos , Grafito/química , Masculino , Adulto , Femenino , Nanoestructuras/química , Adulto Joven , Método Doble Ciego , Frecuencia Cardíaca/efectos de los fármacos , Administración por Inhalación , Exposición por Inhalación/efectos adversos , Presión Sanguínea/efectos de los fármacos , Tamaño de la Partícula
16.
Environ Res ; 250: 118515, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373547

RESUMEN

Telomeres are inert DNA sequences (TTAGGG) at the end of chromosomes that protect genetic information and maintain DNA integrity. Emerging evidence has demonstrated that telomere alteration can be closely related to occupational exposure and the development of various disease conditions, including cancer. However, the functions and underlying molecular mechanisms of telomere alteration and shelterin dysregulation after welding fume exposures have not been broadly defined. In this study, we analyzed telomere length and shelterin complex proteins in peripheral blood mononuclear cells (PBMCs) and in lung tissue recovered from male Sprague-Dawley rats following exposure by intratracheal instillation (ITI) to 2 mg/rat of manual metal arc-stainless steel (MMA-SS) welding fume particulate or saline (vehicle control). PBMCs and lung tissue were harvested at 30 d after instillation. Our study identified telomere elongation and shelterin dysregulation in PBMCs and lung tissue after welding fume exposure. Mechanistically, telomere elongation was independent of telomerase reverse transcriptase (TERT) activation. Collectively, our findings demonstrated that welding fume-induced telomere elongation was (a) TERT-independent and (b) associated with shelterin complex dysregulation. It is possible that an alteration of telomere length and its regulatory proteins may be utilized as predictive biomarkers for various disease conditions after welding fume exposure. This needs further investigation.


Asunto(s)
Pulmón , Ratas Sprague-Dawley , Acero Inoxidable , Telomerasa , Soldadura , Animales , Masculino , Telomerasa/genética , Telomerasa/metabolismo , Acero Inoxidable/toxicidad , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Ratas , Telómero/efectos de los fármacos , Contaminantes Ocupacionales del Aire/toxicidad , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Exposición por Inhalación/efectos adversos , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
17.
Toxicol Sci ; 199(1): 149-159, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38366927

RESUMEN

Large-scale production and waste of plastic materials have resulted in widespread environmental contamination by the breakdown product of bulk plastic materials to micro- and nanoplastics (MNPs). The small size of these particles enables their suspension in the air, making pulmonary exposure inevitable. Previous work has demonstrated that xenobiotic pulmonary exposure to nanoparticles during gestation leads to maternal vascular impairments, as well as cardiovascular dysfunction within the fetus. Few studies have assessed the toxicological consequences of maternal nanoplastic (NP) exposure; therefore, the objective of this study was to assess maternal and fetal health after a single maternal pulmonary exposure to polystyrene NP in late gestation. We hypothesized that this acute exposure would impair maternal and fetal cardiovascular function. Pregnant rats were exposed to nanopolystyrene on gestational day 19 via intratracheal instillation. 24 h later, maternal and fetal health outcomes were evaluated. Cardiovascular function was assessed in dams using vascular myography ex vivo and in fetuses in vivo function was measured via ultrasound. Both fetal and placental weight were reduced after maternal exposure to nanopolystyrene. Increased heart weight and vascular dysfunction in the aorta were evident in exposed dams. Maternal exposure led to vascular dysfunction in the radial artery of the uterus, a resistance vessel that controls blood flow to the fetoplacental compartment. Function of the fetal heart, fetal aorta, and umbilical artery after gestational exposure was dysregulated. Taken together, these data suggest that exposure to NPs negatively impacts maternal and fetal health, highlighting the concern of MNPs exposure on pregnancy and fetal development.


Asunto(s)
Exposición Materna , Poliestirenos , Animales , Embarazo , Femenino , Poliestirenos/toxicidad , Exposición Materna/efectos adversos , Nanopartículas/toxicidad , Ratas Sprague-Dawley , Pulmón/efectos de los fármacos , Pulmón/irrigación sanguínea , Ratas , Feto/efectos de los fármacos , Intercambio Materno-Fetal , Exposición por Inhalación/efectos adversos , Placenta/efectos de los fármacos , Placenta/irrigación sanguínea
18.
NanoImpact ; 33: 100493, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38219948

RESUMEN

The use of modelling tools in the occupational hygiene community has increased in the last years to comply with the different existing regulations. However, limitations still exist mainly due to the difficulty to obtain certain key parameters such as the emission rate, which in the case of powder handling can be estimated using the dustiness index (DI). The goal of this work is to explore the applicability and usability of the DI for emission source characterization and occupational exposure prediction to particles during nanomaterial powder handling. Modelling of occupational exposure concentrations of 13 case scenarios was performed using a two-box model as well as three nano-specific tools (Stoffenmanager nano, NanoSafer and GUIDEnano). The improvement of modelling performance by using a derived handling energy factor (H) was explored. Results show the usability of the DI for emission source characterization and respirable mass exposure modelling of powder handling scenarios of nanomaterials. A clear improvement in modelling outcome was obtained when using derived quartile-3 H factors with, 1) Pearson correlations of 0.88 vs. 0.52 (not using H), and 2) ratio of modelled/measured concentrations ranging from 0.9 to 10 in 75% cases vs. 16.7% of the cases when not using H. Particle number concentrations were generally underpredicted. Using the most conservative H values, predictions with ratios modelled/measured concentrations of 0.4-3.6 were obtained.


Asunto(s)
Contaminantes Ocupacionales del Aire , Nanoestructuras , Contaminantes Ocupacionales del Aire/análisis , Polvo/análisis , Polvos , Exposición por Inhalación/efectos adversos , Monitoreo del Ambiente/métodos , Nanoestructuras/efectos adversos
19.
J Toxicol Sci ; 49(2): 49-53, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38296528

RESUMEN

Drosophila melanogaster (D. melanogaster) is a promising model biological system. It has a short life cycle and can provide a substantial number of specimens suitable for comprehensive genetic and molecular analyses in a short time. In this study, we investigated the acute inhalation toxicity of methylisothiazolinone (MIT) and chloromethylisothiazolinone (CMIT) in a D. melanogaster model. During exposure, environmental conditions, mass median aerodynamic and geometric standard diameters were measured. After inhalation exposure, the survival rate, climbing ability, and bang sensitivity were measured on days 1, 2, and 7. Notably, the survival rate of flies decreased in an exposure concentration-dependent manner. Climbing ability and bang sensitivity were also altered in the MIT/CMIT group, compared with the negative control group. Overall, these results provide a reliable D. melanogaster model system for inhalation toxicity study.


Asunto(s)
Drosophila melanogaster , Exposición por Inhalación , Tiazoles , Animales , Drosophila melanogaster/genética , Modelos Animales , Exposición por Inhalación/efectos adversos
20.
N Engl J Med ; 390(1): 32-43, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38169488

RESUMEN

BACKGROUND: Exposure to household air pollution is a risk factor for severe pneumonia. The effect of replacing biomass cookstoves with liquefied petroleum gas (LPG) cookstoves on the incidence of severe infant pneumonia is uncertain. METHODS: We conducted a randomized, controlled trial involving pregnant women 18 to 34 years of age and between 9 to less than 20 weeks' gestation in India, Guatemala, Peru, and Rwanda from May 2018 through September 2021. The women were assigned to cook with unvented LPG stoves and fuel (intervention group) or to continue cooking with biomass fuel (control group). In each trial group, we monitored adherence to the use of the assigned cookstove and measured 24-hour personal exposure to fine particulate matter (particles with an aerodynamic diameter of ≤2.5 µm [PM2.5]) in the women and their offspring. The trial had four primary outcomes; the primary outcome for which data are presented in the current report was severe pneumonia in the first year of life, as identified through facility surveillance or on verbal autopsy. RESULTS: Among 3200 pregnant women who had undergone randomization, 3195 remained eligible and gave birth to 3061 infants (1536 in the intervention group and 1525 in the control group). High uptake of the intervention led to a reduction in personal exposure to PM2.5 among the children, with a median exposure of 24.2 µg per cubic meter (interquartile range, 17.8 to 36.4) in the intervention group and 66.0 µg per cubic meter (interquartile range, 35.2 to 132.0) in the control group. A total of 175 episodes of severe pneumonia were identified during the first year of life, with an incidence of 5.67 cases per 100 child-years (95% confidence interval [CI], 4.55 to 7.07) in the intervention group and 6.06 cases per 100 child-years (95% CI, 4.81 to 7.62) in the control group (incidence rate ratio, 0.96; 98.75% CI, 0.64 to 1.44; P = 0.81). No severe adverse events were reported to be associated with the intervention, as determined by the trial investigators. CONCLUSIONS: The incidence of severe pneumonia among infants did not differ significantly between those whose mothers were assigned to cook with LPG stoves and fuel and those whose mothers were assigned to continue cooking with biomass stoves. (Funded by the National Institutes of Health and the Bill and Melinda Gates Foundation; HAPIN ClinicalTrials.gov number, NCT02944682.).


Asunto(s)
Contaminación del Aire Interior , Biomasa , Culinaria , Exposición por Inhalación , Petróleo , Neumonía , Femenino , Humanos , Lactante , Embarazo , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Culinaria/métodos , Material Particulado/efectos adversos , Material Particulado/análisis , Petróleo/efectos adversos , Neumonía/etiología , Adolescente , Adulto Joven , Adulto , Internacionalidad , Exposición por Inhalación/efectos adversos , Exposición por Inhalación/análisis , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA