Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 720: 150097, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38754162

RESUMEN

Inteins are unique single-turnover enzymes that can excise themselves from the precursor protein without the aid of any external cofactors or energy. In most cases, inteins are covalently linked with the extein sequences and protein splicing happens spontaneously. In this study, a novel protein ligation system was developed based on two atypical split inteins without cross reaction, in which the large segments of one S1 and one S11 split intein fusion protein acted as a protein ligase, the small segments (only several amino acids long) was fused to the N-extein and C-extein, respectively. The splicing activity was demonstrated in E. coli and in vitro with different extein sequences, which showed ∼15% splicing efficiency in vitro. The protein trans-splicing in vitro was further optimized, and possible reaction explanations were explored. As a proof of concept, we expect this approach to expand the scope of trans-splicing-based protein engineering and provide new clues for intein based protein ligase.


Asunto(s)
Escherichia coli , Inteínas , Empalme de Proteína , Inteínas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/química , Ligasas/metabolismo , Ligasas/genética , Ligasas/química , Exteínas/genética
2.
Nucleic Acids Res ; 47(21): 11452-11460, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31667500

RESUMEN

Serine integrases are emerging as core tools in synthetic biology and have applications in biotechnology and genome engineering. We have designed a split-intein serine integrase-based system with potential for regulation of site-specific recombination events at the protein level in vivo. The ϕC31 integrase was split into two extein domains, and intein sequences (Npu DnaEN and Ssp DnaEC) were attached to the two termini to be fused. Expression of these two components followed by post-translational protein trans-splicing in Escherichia coli generated a fully functional ϕC31 integrase. We showed that protein splicing is necessary for recombination activity; deletion of intein domains or mutation of key intein residues inactivated recombination. We used an invertible promoter reporter system to demonstrate a potential application of the split intein-regulated site-specific recombination system in building reversible genetic switches. We used the same split inteins to control the reconstitution of a split Integrase-Recombination Directionality Factor fusion (Integrase-RDF) that efficiently catalysed the reverse attR x attL recombination. This demonstrates the potential for split-intein regulation of the forward and reverse reactions using the integrase and the integrase-RDF fusion, respectively. The split-intein integrase is a potentially versatile, regulatable component for building synthetic genetic circuits and devices.


Asunto(s)
Integrasas/fisiología , Empalme de Proteína/genética , Recombinación Genética , Trans-Empalme/genética , Secuencia de Aminoácidos , Clonación Molecular/métodos , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Exteínas/genética , Integrasas/metabolismo , Inteínas/genética , Organismos Modificados Genéticamente , Ingeniería de Proteínas , Serina/metabolismo , Especificidad por Sustrato/genética
3.
Anal Chem ; 90(16): 9779-9786, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30028129

RESUMEN

Live-cell-based biosensors have emerged as a useful tool for biotechnology and chemical biology. Genetically encoded sensor cells often use bimolecular fluorescence complementation or fluorescence resonance energy transfer to build a reporter unit that suffers from nonspecific signal activation at high concentrations. Here, we designed genetically encoded sensor cells that can report the presence of biologically active molecules via fluorescence-translocation based on split intein-mediated conditional protein trans-splicing (PTS) and conditional protein trans-cleavage (PTC) reactions. In this work, the target molecules or the external stimuli activated intein-mediated reactions, which resulted in activation of the fluorophore-conjugated signal peptide. This approach fully valued the bond-making and bond-breaking features of intein-mediated reactions in sensor construction and thus eliminated the interference of false-positive signals resulting from the mere binding of fragmented reporters. We could also avoid the necessity of designing split reporters to refold into active structures upon reconstitution. These live-cell-based sensors were able to detect biologically active signaling molecules, such as Ca2+ and cortisol, as well as relevant biological stimuli, such as histamine-induced Ca2+ stimuli and the glucocorticoid receptor agonist, dexamethasone. These live-cell-based sensing systems hold large potential for applications such as drug screening and toxicology studies, which require functional information about targets.


Asunto(s)
Técnicas Biosensibles/métodos , Calcio/análisis , Hormonas/análisis , Inteínas/fisiología , Empalme de Proteína , Secuencia de Aminoácidos , Calmodulina/genética , Ingeniería Celular/métodos , Exteínas/genética , Exteínas/fisiología , Células HeLa , Humanos , Inteínas/genética , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Ingeniería de Proteínas/métodos , Señales de Clasificación de Proteína/genética , Proteína Fluorescente Roja
4.
Proc Natl Acad Sci U S A ; 114(32): 8538-8543, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28739907

RESUMEN

The protein trans-splicing (PTS) activity of naturally split inteins has found widespread use in chemical biology and biotechnology. However, currently used naturally split inteins suffer from an "extein dependence," whereby residues surrounding the splice junction strongly affect splicing efficiency, limiting the general applicability of many PTS-based methods. To address this, we describe a mechanism-guided protein engineering approach that imbues ultrafast DnaE split inteins with minimal extein dependence. The resulting "promiscuous" inteins are shown to be superior reagents for protein cyclization and protein semisynthesis, with the latter illustrated through the modification of native cellular chromatin. The promiscuous inteins reported here thus improve the applicability of existing PTS methods and should enable future efforts to engineer promiscuity into other naturally split inteins.


Asunto(s)
Exteínas/genética , Inteínas/genética , Ingeniería de Proteínas/métodos , Proteínas Bacterianas/metabolismo , Biotecnología , ADN Polimerasa III/metabolismo , Exteínas/fisiología , Inteínas/fisiología , Modelos Moleculares , Nostoc/genética , Nostoc/metabolismo , Empalme de Proteína/genética , Synechocystis/metabolismo
5.
Curr Biol ; 27(6): R204-R206, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28324730

RESUMEN

Lennon and Belfort introduce inteins - protein introns - and describe how they escape host proteins, their uses in biotechnology, where they are found in nature, and their role in post-translational regulation.


Asunto(s)
Inteínas/fisiología , Animales , Biotecnología , Exteínas/genética , Exteínas/fisiología , Humanos , Inteínas/genética
6.
J Mol Biol ; 426(24): 4018-4029, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25451033

RESUMEN

Inteins self-catalytically cleave out of precursor proteins while ligating the surrounding extein fragments with a native peptide bond. Much attention has been lavished on these molecular marvels with the hope of understanding and harnessing their chemistry for novel biochemical transformations including coupling peptides from synthetic or biological origins and controlling protein function. Despite an abundance of powerful applications, the use of inteins is still hampered by limitations in our understanding of their specificity (defined as flanking sequences that permit splicing) and the challenge of inserting inteins into target proteins. We examined the frequently used Nostoc punctiforme Npu DnaE intein after the C-extein cysteine nucleophile (Cys+1) was mutated to serine or threonine. Previous studies demonstrated reduced rates and/or splicing yields with the Npu DnaE intein after mutation of Cys+1 to Ser+1. In this study, genetic selection identified extein sequences with Ser+1 that enabled the Npu DnaE intein to splice with only a 5-fold reduction in rate compared to the wild-type Cys+1 intein and without mutation of the intein itself to activate Ser+1 as a nucleophile. Three different proteins spliced efficiently after insertion of the intein flanked by the selected sequences. We then used this selected specificity to achieve traceless splicing in a targeted enzyme at a location predicted by primary sequence similarity to only the selected C-extein sequence. This study highlights the latent catalytic potential of the Npu DnaE intein to splice with an alternative nucleophile and enables broader intein utility by increasing insertion site choices.


Asunto(s)
Proteínas Bacterianas/genética , ADN Polimerasa III/genética , Inteínas/genética , Mutación Missense , Nostoc/genética , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Western Blotting , Dominio Catalítico/genética , Cisteína/genética , ADN Polimerasa III/química , ADN Polimerasa III/metabolismo , Activación Enzimática , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exteínas/genética , Datos de Secuencia Molecular , Nostoc/enzimología , Empalme de Proteína , Serina/genética , Especificidad por Sustrato , Treonina/genética
8.
J Biol Chem ; 289(21): 14498-505, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24695729

RESUMEN

Inteins are nature's escape artists; they facilitate their excision from flanking polypeptides (exteins) concomitant with extein ligation to produce a mature host protein. Splicing requires sequential nucleophilic displacement reactions catalyzed by strategies similar to proteases and asparagine lyases. Inteins require precise reaction coordination rather than rapid turnover or tight substrate binding because they are single turnover enzymes with covalently linked substrates. This has allowed inteins to explore alternative mechanisms with different steps or to use different methods for activation and coordination of the steps. Pressing issues include understanding the underlying details of catalysis and how the splicing steps are controlled.


Asunto(s)
Inteínas/genética , Modelos Genéticos , Precursores de Proteínas/genética , Empalme de Proteína/genética , Aminoácidos/química , Aminoácidos/genética , Exteínas/genética , Estructura Molecular , Precursores de Proteínas/química , Proteínas/química , Proteínas/genética
9.
Proc Natl Acad Sci U S A ; 111(23): 8422-7, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24778214

RESUMEN

Inteins are autoprocessing domains that cut themselves out of host proteins in a traceless manner. This process, known as protein splicing, involves multiple chemical steps that must be coordinated to ensure fidelity in the process. The committed step in splicing involves attack of a conserved Asn side-chain amide on the adjacent backbone amide, leading to an intein-succinimide product and scission of that peptide bond. This cleavage reaction is stimulated by formation of a branched intermediate in the splicing process. The mechanism by which the Asn side-chain becomes activated as a nucleophile is not understood. Here we solve the crystal structure of an intein trapped in the branched intermediate step in protein splicing. Guided by this structure, we use protein-engineering approaches to show that intein-succinimide formation is critically dependent on a backbone-to-side-chain hydrogen-bond. We propose that this interaction serves to both position the side-chain amide for attack and to activate its nitrogen as a nucleophile. Collectively, these data provide an unprecedented view of an intein poised to carry out the rate-limiting step in protein splicing, shedding light on how a nominally nonnucleophilic group, a primary amide, can become activated in a protein active site.


Asunto(s)
Exteínas/genética , Inteínas/genética , Empalme de Proteína , Proteínas/genética , Amidas/química , Amidas/metabolismo , Secuencia de Aminoácidos , Asparagina/química , Asparagina/genética , Asparagina/metabolismo , Dominio Catalítico , Girasa de ADN/química , Girasa de ADN/genética , Girasa de ADN/metabolismo , Electroforesis en Gel de Poliacrilamida , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Mutación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/metabolismo , Espectrometría de Masa por Ionización de Electrospray
10.
Biochemistry ; 52(34): 5920-7, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23906287

RESUMEN

Inteins are intervening polypeptides that catalyze their own removal from flanking exteins, concomitant to the ligation of the exteins. The intein that interrupts the DP2 (large) subunit of DNA polymerase II from Methanoculleus marisnigri (Mma) can promote protein splicing. However, protein splicing can be prevented or reduced by overexpression under nonreducing conditions because of the formation of a disulfide bond between two internal intein Cys residues. This redox sensitivity leads to differential activity in different strains of E. coli as well as in different cell compartments. The redox-dependent control of in vivo protein splicing in an intein derived from an anaerobe that can occupy multiple environments hints at a possible physiological role for protein splicing.


Asunto(s)
Disulfuros/farmacología , Inteínas/genética , Empalme de Proteína/genética , Cisteína/química , ADN Polimerasa II/genética , Electroforesis en Gel de Poliacrilamida , Exteínas/genética , Oxidación-Reducción , Empalme de Proteína/efectos de los fármacos , Espectrometría de Masas en Tándem
11.
J Mol Biol ; 421(1): 85-99, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22560994

RESUMEN

In protein splicing, an intervening protein sequence (intein) in the host protein excises itself out and ligates two split host protein sequences (exteins) to produce a mature host protein. Inteins require the involvement for the splicing of the first residue of the extein that follows the intein (which is Cys, Ser, or Thr). Other extein residues near the splicing junctions could modulate splicing efficiency even when they are not directly involved in catalysis. Mutual interdependence between this molecular parasite (intein) and its host protein (exteins) is not beneficial for intein spread but could be advantageous for intein survival during evolution. Elucidating extein-intein dependency has increasingly become important since inteins are recognized as useful biotechnological tools for protein ligation. We determined the structures of one of inteins with high splicing efficiency, the RadA intein from Pyrococcus horikoshii (PhoRadA). The solution NMR structure and the crystal structures elucidated the structural basis for its high efficiency and directed our efforts of engineering that led to rational design of a functional minimized RadA intein. The crystal structure of the minimized RadA intein also revealed the precise interactions between N-extein and the intein. We systematically analyzed the effects at the -1 position of N-extein and were able to significantly improve the splicing efficiency of a less robust splicing variant by eliminating the unfavorable extein-intein interactions observed in the structure. This work provides an example of how unveiling structure-function relationships of inteins offer a promising way of improving their properties as better tools for protein engineering.


Asunto(s)
Proteínas Arqueales/química , Proteínas de Unión al ADN/química , Inteínas , Pyrococcus horikoshii/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Exteínas/genética , Inteínas/genética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Ingeniería de Proteínas/métodos , Empalme de Proteína
12.
Nat Struct Mol Biol ; 18(5): 630-3, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21460844

RESUMEN

Here we describe self-splicing proteins, called inteins, that function as redox-responsive switches in bacteria. Redox regulation was achieved by engineering a disulfide bond between the intein's catalytic cysteine and a cysteine in the flanking 'extein' sequence. This interaction was validated by an X-ray structure, which includes a transient splice junction. A natural analog of the designed system was identified in Pyrococcus abyssi, suggesting an unprecedented form of adaptive, post-translational regulation.


Asunto(s)
Proteínas Bacterianas/química , ADN Polimerasa III/química , Evolución Molecular , Inteínas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Exteínas/genética , Inteínas/fisiología , Modelos Moleculares , Oxidación-Reducción , Empalme de Proteína , Synechocystis
13.
Artículo en Inglés | MEDLINE | ID: mdl-19907126

RESUMEN

Twenty years ago, evidence that one gene produces two enzymes via protein splicing emerged from structural and expression studies of the VMA1 gene in Saccharomyces cerevisiae. VMA1 consists of a single open reading frame and contains two independent genetic information for Vma1p (a catalytic 70-kDa subunit of the vacuolar H(+)-ATPase) and VDE (a 50-kDa DNA endonuclease) as an in-frame spliced insert in the gene. Protein splicing is a posttranslational cellular process, in which an intervening polypeptide termed as the VMA1 intein is self-catalytically excised out from a nascent 120-kDa VMA1 precursor and two flanking polypeptides of the N- and C-exteins are ligated to produce the mature Vma1p. Subsequent studies have demonstrated that protein splicing is not unique to the VMA1 precursor and there are many operons in nature, which implement genetic information editing at protein level. To elucidate its structure-directed chemical mechanisms, a series of biochemical and crystal structural studies has been carried out with the use of various VMA1 recombinants. This article summarizes a VDE-mediated self-catalytic mechanism for protein splicing that is triggered and terminated solely via thiazolidine intermediates with tetrahedral configurations formed within the splicing sites where proton ingress and egress are driven by balanced protonation and deprotonation.


Asunto(s)
Empalme de Proteína/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Exteínas/genética , Exteínas/fisiología , Inteínas/genética , Inteínas/fisiología , Datos de Secuencia Molecular , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Empalme de Proteína/genética , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Tiazolidinas/química , Tiazolidinas/metabolismo
14.
Biopolymers ; 92(5): 465-70, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19462417

RESUMEN

Application of trans protein splicing has been limited both by solubility problems and by the insertion of native extein residues (NERs) at the splicing site. Here, we report two simple methods for overcoming these problems and increasing the yield and activity of the spliced product. First, low solubility was alleviated by adding arginine to the reaction buffer and optimizing the splicing reaction condition. The protocol was demonstrated in the context of a Green Fluorescent Protein variant (GFPuv), and the final yield was increased by 1.9-fold compared to control experiments performed under the same conditions but without addition of arginine. Second, the insertion of NERs was overcome by mutating, instead of inserting, a minimal number of residues in the target protein to amino acids required for the splicing reaction. We identified optimal splicing sites that conserve as much as possible the prerequisite NERs. As a result, the GFPuv residues 142-146 (EYNYN) were mutated to the reportedly minimal required NERs, EYCFN. GFPs spliced using this strategy had no NERs insertion and a fluorescence activity six times stronger than a control GFPuv with five NERs inserted at the splicing site (residue 145/6). In principle, the present protocol (Sw/oNI) can be applied to any target protein, even when no sequence similarity to NERs is present, though it will introduce up to five mutations at the splicing site.


Asunto(s)
Exteínas/genética , Fragmentos de Péptidos/química , Ingeniería de Proteínas/métodos , Empalme de Proteína , Proteínas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , ADN Polimerasa III/genética , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/genética , Estructura Terciaria de Proteína , Proteínas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Synechocystis/genética
15.
Nat Chem Biol ; 3(1): 50-4, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17128262

RESUMEN

Control over the timing, location and level of protein activity in vivo is crucial to understanding biological function. Living systems are able to respond to external and internal stimuli rapidly and in a graded fashion by maintaining a pool of proteins whose activities are altered through post-translational modifications. Here we show that the process of protein trans-splicing can be used to modulate enzymatic activity both in cultured cells and in Drosophila melanogaster. We used an optimized conditional protein splicing system to rapidly trigger the in vivo ligation of two inactive fragments of firefly luciferase in a tunable manner. This technique provides a means of controlling enzymatic function with greater speed and precision than with standard genetic techniques and is a useful tool for probing biological processes.


Asunto(s)
Drosophila/enzimología , Luciferasas/metabolismo , Empalme de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Animales , Animales Modificados Genéticamente , Células Cultivadas , Medios de Cultivo Condicionados , Drosophila/genética , Activación Enzimática/genética , Exteínas/genética , Inteínas/genética , Luciferasas/genética , Empalme de Proteína/genética , Proteínas Recombinantes de Fusión/genética , Regulación hacia Arriba
16.
IUBMB Life ; 57(8): 563-74, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16118114

RESUMEN

Protein splicing is a posttranslational cellular process, in which an intervening protein sequence (intein) is self-catalytically excised out from a nascent protein precursor and the two flanking sequences (N- and C-exteins) are ligated to produce two mature enzymes. This unique reaction was first discovered from studies of the structure and expression of the VMA1 gene in Saccharomyces cerevisiae. VMA1 consists of a single open reading frame and yet comprises two independent genetic information for Vma1p (a catalytic 70-kDa subunit of the vacuolar H+-ATPase) and VDE (a 50-kDa DNA endonuclease) as an in-frame spliced insert in the gene. Subsequent studies have demonstrated that protein splicing is not unique for the VMA1 precursor and there are many operons in nature, which implement genetic information editing at protein level. To elucidate its precise reaction mechanisms from a viewpoint of structure-directed chemistry, a series of crystal structural studies has been carried out with the use of splicing-inactive and slowly spliceable precursors of VMA1 recombinants. One precursor structure revealed that the N-terminal junction of the introduced extein polypeptide forms an intermediate containing a five-membered thiazolidine ring. The other precursor structures showed spliced products with a linkage between the N- and C-extein segments. This article summarizes biochemical and structural studies on a self-catalytic mechanism for protein splicing that is triggered and terminated solely via thiazolidine intermediates with tetrahedral configurations formed within the splicing sites where proton ingress and egress are driven by balanced protonation and deprotonation.


Asunto(s)
Exteínas/genética , Modelos Moleculares , Empalme de Proteína/genética , Empalme de Proteína/fisiología , Secuencia de Aminoácidos , Cristalografía , Datos de Secuencia Molecular , ATPasas de Translocación de Protón/genética , Proteínas de Saccharomyces cerevisiae/genética , Tiazoles
17.
Yi Chuan ; 26(2): 249-52, 2004 Mar.
Artículo en Chino | MEDLINE | ID: mdl-15639997

RESUMEN

Protein splicing, which is an intein mediated posttranslational processing, involves a series of intramolecular cleavage-ligation reactions. Intein is an intervening polypeptide which can catalytic self-cleavage from a pre-protein accompanied by the concomitant joining of the two flanking polypeptides (the extein) through a peptide bond. Protein splicing not only enriches genetic theory of posttranslational processing, but also have wide application prospect.


Asunto(s)
Ingeniería de Proteínas , Empalme de Proteína , Exteínas/genética , Inteínas/genética , Empalme de Proteína/genética , Empalme del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...