Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79.431
Filtrar
1.
Endocrinol Diabetes Metab ; 7(4): e509, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38982323

RESUMEN

BACKGROUND: Diabetes mellitus, notably type 2, is a rising global health challenge, prompting the need for effective management strategies. Common medications such as metformin, insulin, repaglinide and sitagliptin can induce side effects like gastrointestinal disturbances, hypoglycemia, weight gain and specific organ risks. Plant-derived therapies like Karanjin from Pongamia pinnata present promising alternatives due to their historical use, holistic health benefits and potentially fewer adverse effects. This study employs in silico analysis to explore Karanjin's interactions with diabetes-associated receptors, aiming to unveil its therapeutic potential while addressing the limitations and side effects associated with conventional medications. METHODOLOGY: The research encompassed the selection of proteins from the Protein Data Bank (PDB), followed by structural refinement processes and optimization. Ligands such as Karanjin and standard drugs were retrieved from PubChem, followed by a comprehensive analysis of their ADMET profiling and pharmacokinetic properties. Protein-ligand interactions were evaluated through molecular docking using AutoDockTools 1.5.7, followed by the analysis of structural stability using coarse-grained simulations with CABS Flex 2.0. Molecular dynamics simulations were performed using Desmond 7.2 and the OPLS4 force field to explore how Karanjin interacts with proteins over 100 nanoseconds, focusing on the dynamics and structural stability. RESULTS: Karanjin, a phytochemical from Pongamia pinnata, shows superior drug candidate potential compared to common medications, offering advantages in efficacy and reduced side effects. It adheres to drug-likeness criteria and exhibits optimal ADMET properties, including moderate solubility, high gastrointestinal absorption and blood-brain barrier penetration. Molecular docking revealed Karanjin's highest binding energy against receptor 3L2M (Pig pancreatic alpha-amylase) at -9.1 kcal/mol, indicating strong efficacy potential. Molecular dynamics simulations confirmed stable ligand-protein complexes with minor fluctuations in RMSD and RMSF, suggesting robust interactions with receptors 3L2M. CONCLUSION: Karanjin demonstrates potential in pharmaceutical expansion for treating metabolic disorders such as diabetes, as supported by computational analysis. Prospects for Karanjin in pharmaceutical development include structural modifications for enhanced efficacy and safety. Nanoencapsulation may improve bioavailability and targeted delivery to pancreatic cells, while combination therapies could optimize treatment outcomes in diabetes management. Clinical trials and experimental studies are crucial to validate its potential as a novel therapeutic agent.


Asunto(s)
Hipoglucemiantes , Simulación del Acoplamiento Molecular , Hipoglucemiantes/farmacología , Humanos , Simulación de Dinámica Molecular , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ligandos , Simulación por Computador , Extractos Vegetales/farmacología
2.
Sci Rep ; 14(1): 15544, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969695

RESUMEN

Bacterial toxins have received a great deal of attention in the development of cancer treatments. Parasporin-2 (PS2Aa1 or Mpp46Aa1) is a Bacillus thuringiensis parasporal protein that preferentially destroys human cancer cells while not harming normal cells, making it a promising anticancer treatment. With the efficient development and sustainable silver nanoparticles (AgNPs) synthesis technology, the biomedical use of AgNPs has expanded. This study presents the development of a novel nanotoxin composed of biosynthesized silver nanoparticles loaded with the N-terminal truncated PS2Aa1 toxin. MOEAgNPs were synthesized using a biological method, with Moringa oleifera leaf extract and maltose serving as reducing and capping agents. The phytochemicals present in M. oleifera leaf extract were identified by GC-MS analysis. MOEAgNPs were loaded with N-terminal truncated PS2Aa1 fused with maltose-binding protein (MBP-tPS2) to formulate PS2-MOEAgNPs. The PS2-MOEAgNPs were evaluated for size, stability, toxin loading efficacy, and cytotoxicity. PS2-MOEAgNPs demonstrated dose-dependent cytotoxicity against the T-cell leukemia MOLT-4 and Jurkat cell lines but had little effect on the Hs68 fibroblast or normal cell line. Altogether, the current study provides robust evidence that PS2-MOEAgNPs can efficiently inhibit the proliferation of T-cell leukemia cells, thereby suggesting their potential as an alternative to traditional anticancer treatments.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Plata , Humanos , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Extractos Vegetales/química , Extractos Vegetales/farmacología , Moringa oleifera/química , Proteínas Recombinantes/farmacología , Hojas de la Planta/química , Supervivencia Celular/efectos de los fármacos , Endotoxinas , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/metabolismo
3.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 435-446, 2024 Mar 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38970518

RESUMEN

OBJECTIVES: Farfarae Flos has the effect of cough suppression and phlegm elimination, with cough suppression as the main function. Studies have revealed that certain components of Farfarae Flos may be related to its cough suppressant effect, and some components have been confirmed to have cough suppressant activity. However, the antitussive material basis of Farfarae Flos has not been systematically elucidated. This study aims to elucidate the group of active ingredients in Farfarae Flos with cough suppressant activity by correlating the high performance liquid chromatography (HPLC) fingerprint of Farfarae Flos extract with its cough suppressant activity. METHODS: HPLC was used to establish the fingerprint profiles of 10 batches of Farfarae Flos extract and obtain their chemical composition data. Guinea pigs were selected as experimental animals and the citric acid-induced cough model was used to evaluate the antitussive efficacy data of 10 batches of Farfarae Flos extract. SPF-grade healthy male Hartley guinea pigs were randomly divided into the S1 to S10 groups, a positive control group, and a blank control group (12 groups in total), with 10 guinea pigs in each group. The S1 to S10 groups were respectively administered Farfarae Flos extract S1 to S10 (4 g/kg), the positive control group was administered pentoverine citrate (10 mg/kg), and the blank control group was administered purified water. Each group received continuous oral administration for 5 days. The guinea pigs were placed in 5 L closed wide-mouth bottles, and 17.5% citric acid was sprayed into the bottle with an ultrasonic atomizer at the maximum spray intensity for 0.5 minutes. The cough latency period and cough frequency in 5 minutes were recorded for each guinea pig. Grey relational analysis (GRA) and partial least squares regression (PLSR) were used to conduct spectral-effect correlation analysis of the chemical composition data of Farfarae Flos extract and the antitussive efficacy data, and predict the group of active ingredients in Farfarae Flos with antitussive activity. The bioequivalence verification was conducted to verify the predicted group of active ingredients in Farfarae Flos with antitussive activity: SPF-grade healthy male Hartley guinea pigs were randomly divided into a S9 group, an active ingredient group, a positive control group, and a blank control group (4 groups in total), with 10 guinea pigs in each group. The S9 group was administered Farfarae Flos extract S9 (4 g/kg), the active ingredient group was administered the predicted combination of antitussive active ingredients (dose equivalent to 4 g/kg of Farfarae Flos extract S9), the positive control group was administered pentoverine citrate (10 mg/kg), and the blank control group was administered purified water. Each group received continuous oral administration for 5 days, and animal modeling and observation of efficacy indicators were the same as above. RESULTS: The HPLC fingerprint of 10 batches of Farfarae Flos extract was established, and the peak area data of 14 main common peaks were obtained. The antitussive effect data of 10 batches of Farfarae Flos extract were obtained. Compared with the blank control group, the cough latence in the positive control group and S1, S2, S3, S4, S6, S7, S8, S9, S10 groups was prolonged (all P<0.01), while the cough frequency in 5 minutes in the positive control group and S1, S2, S4, S6, S8, S9, S10 groups was decreased (all P<0.05). The analysis of spectrum-effect relationship revealed that isochlorogenic acid C, isochlorogenic acid A, chlorogenic acid, isochlorogenic acid B, isoquercitrin, and rutin had high contribution to the antitussive effect of Farfarae Flos, and the 6 components were predicted to be the antitussive component group of Farfarae Flos. The verification of bioequivalence showed that there were no statistically significant differences in the antitussive effect between the S9 group and the antitussive component composition group(all P>0.05), which confirmed that isochlorogenic acid C, isochlorogenic acid A, chlorogenic acid, isochlorogenic acid B, isoquercetin, and rutin were the antitussive component group of Farfarae Flos. CONCLUSIONS: The analysis of spectrum-effect relationship combined with the verification of bioequivalence could be used to study the antitussive material basis of Farfarae Flos. The antitussive effect of Farfarae Flos is the result of the joint action of many components.


Asunto(s)
Antitusígenos , Tos , Medicamentos Herbarios Chinos , Flores , Animales , Antitusígenos/uso terapéutico , Antitusígenos/farmacología , Cobayas , Flores/química , Masculino , Tos/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Cordyceps/química
4.
Cardiovasc Hematol Agents Med Chem ; 22(2): 230-239, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975619

RESUMEN

BACKGROUND: Plants have been used for ages in traditional medicine, and it is exciting to perceive how recent research has recognized the bioactive compounds liable for their beneficial effects. Green synthesis of metal nanoparticles is a hastily emergent research area in nanotechnology. This study describes the synthesis of silver nanoparticles (AgNPs) using Coriandrum sativum and Murraya koenigii leaf extract and its thrombolytic activity. OBJECTIVE: The aim of the study was to determine the clot lysis activity of Coriandrum sativum and Murraya koenigii synthesized silver nanoparticles. METHODS: Leaves of Coriandrum sativum and Murraya koenigii were collected. Methanolic extraction of the plant sample was done through a Soxhlet extractor. The methanolic extract obtained from both the leaves was subjected to GC-MS analysis. The synthesized NPs from leaf extracts were monitored for analysis, where the typical X-ray diffraction pattern and its diffraction peaks were identified. 3D image of the NPs was analysed by Atomic Force Microscopy. The surface charge of nanoparticles was identified by Zeta potential. The Clot lysis activity of Coriandrum sativum and Murraya koenigii synthesized silver nanoparticles were analysed by the modified Holmstorm method. RESULTS: The thrombolytic property of the methanolic extract of plants Coriandrum sativum showed clot lysis activity at 2.5 mg/mL with 45.99% activity, and Murraya koenigii extract with 66.56% activity. The nanoparticles (Nps) from Coriandrum sativum showed clot lysis activity at 2.5 mg/mL with 58.29% activity, and NPs from Murraya koenigii with 54.04% activity. Coriandrum sativum in GC-MS exhibited 3 peaks, whereas Murraya koenigii extract showed five peaks with notable bioactive compounds. CONCLUSION: These NPs were further used for biomedical applications after being fixed by an organic encapsulation agent. The present research reveals the usefulness of Coriandrum sativum and Murraya koenigii for the environmentally friendly manufacture of silver nanoparticles.


Asunto(s)
Coriandrum , Fibrinolíticos , Tecnología Química Verde , Nanopartículas del Metal , Murraya , Extractos Vegetales , Hojas de la Planta , Plata , Nanopartículas del Metal/química , Murraya/química , Plata/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Coriandrum/química , Hojas de la Planta/química , Fibrinolíticos/química , Fibrinolíticos/farmacología
5.
Sci Rep ; 14(1): 15597, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971811

RESUMEN

In recent decades, the interest in natural products with immunomodulatory properties has increased due to their therapeutic potential. These products have a wider range of pharmacological activities and demonstrate lower toxicity levels when compared to their synthetic counterparts. Therefore, this study aimed to investigate the immunomodulatory effects of sesquiterpenoids (SQs) and sesquiterpenoid dimers (SQDs) isolated from Dysoxylum parasiticum (Osbeck) Kosterm. stem bark on human and murine cells, particularly focusing on toll-like receptor 4 (TLR4). Utilizing the secreted alkaline phosphatase (SEAP) assay on engineered human and murine TLR4 of HEK-Blue cells, antagonist TLR4 compounds were identified, including SQs 6, 9, and 10, as well as SQDs 17 and 22. The results showed that 10-hydroxyl-15-oxo-α-cadinol (9) had a potent ability to reduce TLR4 activation induced by LPS stimulation, with minimal toxicity observed in both human and murine cells. The SEAP assay also revealed diverse immune regulatory effects for the same ligand. For instance, SQs 12, 14, and 16 transitioned from antagonism on human to murine TLR4. The SQs (4, 7, 11, and 15) and SQDs (18-20) offered partial antagonist effect exclusively on murine TLR4. Furthermore, these selected SQs and SQDs were assessed for their influence on the production of proinflammatory cytokines TNF-α, IL-1α, IL-1ß, and IL-6 of the NF-κB signaling pathway in human and murine macrophage cell lines, showing a dose-dependent manner. Additionally, a brief discussion on the structure-activity relationship was presented.


Asunto(s)
Corteza de la Planta , Sesquiterpenos , Receptor Toll-Like 4 , Receptor Toll-Like 4/metabolismo , Humanos , Animales , Corteza de la Planta/química , Ratones , Sesquiterpenos/farmacología , Sesquiterpenos/química , Células HEK293 , Meliaceae/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Factores Inmunológicos/farmacología , Factores Inmunológicos/química , Factores Inmunológicos/aislamiento & purificación , Citocinas/metabolismo , Células RAW 264.7 , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/química , Lipopolisacáridos/farmacología
6.
Sci Rep ; 14(1): 15665, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977720

RESUMEN

Rice brown spot is an important disease of rice worldwide that inflicts substantial yield losses. The antimicrobial potential of methanol, acetone and dimethyl sulfoxide (DMSO) extracts of different medicinal plants, viz., Syzygium aromaticum, Saussurea costus, Acorus calamus, Bergenia ciliate, Geranium pratense, Mentha longifolia, Inula racemosa, Podophyllum hexandrum, Heracleum candicans and Picrorhiza kurroa, against the brown spot pathogen Bipolaris oryzae in vitro was evaluated via mycelial growth inhibition and spore germination inhibition assays. Among the plant extracts tested, 100% mycelial inhibition was observed for the methanol extract of Syzygium aromaticum at all three concentrations (2000 ppm, 3000 ppm and 4000 ppm), followed by the methanol extract of Inula racemosa (90.33%) at 4000 ppm. A maximum conidial germination inhibition of 83.54% was exhibited by the Heracleum candicans leaf extract. Phytochemical profiling of Syzygium aromaticum and Inula racemosa through liquid chromatography and mass spectrometry (HR-LCMS) revealed the presence of several compounds, such as eugenol, ursolic acid, quercetin, chlorogenic acid, and noscapine. A molecular docking approach was used to identify key inhibitory molecules against B. oryzae. Among the compounds detected in S. aromaticum and Inula racemosa, ursolic acid and noscapine were found to have the greatest binding affinity for the Big Mitogen Activated Protein Kinase (BMK-1) enzyme present in B. oryzae. In conclusion, S. aromaticum and Inula racemosa are potent compounds that could serve as lead compounds for drug discovery in the future.


Asunto(s)
Antifúngicos , Simulación del Acoplamiento Molecular , Extractos Vegetales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antifúngicos/farmacología , Antifúngicos/química , Ascomicetos/efectos de los fármacos , Plantas Medicinales/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Enfermedades de las Plantas/microbiología , Oryza/microbiología
7.
Curr Microbiol ; 81(8): 256, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955831

RESUMEN

Antimicrobial resistance is a global health issue, in which microorganisms develop resistance to antimicrobial drugs, making infections more difficult to treat. This threatens the effectiveness of standard medical treatments and necessitates the urgent development of new strategies to combat resistant microbes. Studies have increasingly explored natural sources of new antimicrobial agents that harness the rich diversity of compounds found in plant species. This pursuit holds promise for the discovery of novel treatments for combating antimicrobial resistance. In this context, the chemical composition, antibacterial, and antibiofilm activities of the essential oil from Croton urticifolius Lam. leaves (CuEO) were evaluated. CuEO was extracted via hydrodistillation, and its chemical constituents were identified via gas chromatography-mass spectrometry (GC/MS). The antibacterial activity of CuEO was evaluated in a 96-well plate via the microdilution method, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined. The effect of CuEO on biofilm formation was assessed by quantifying the biomass using crystal violet staining and viable cell counting. In addition, alterations in the cellular morphology of biofilms treated with CuEO were examined using scanning electron microscopy (SEM) and laser confocal microscopy. GC/MS analysis identified 26 compounds, with elemicine (39.72%); eucalyptol (19.03%), E-caryophyllene (5.36%), and methyleugenol (4.12%) as the major compounds. In terms of antibacterial activity, CuEO showed bacteriostatic effects against Staphylococcus aureus ATCC 700698, S. aureus ATCC 25923, Staphylococcus epidermidis ATCC 12228, and Escherichia coli ATCC 11303, and bactericidal activity against S. aureus ATCC 700698. In addition, CuEO significantly inhibited bacterial biofilm formation. Microscopic analysis showed that CuEO damaged the bacterial membrane by leaching out the cytoplasmic content. Therefore, the results of this study show that the essential oil of C. urticifolius may be a promising natural alternative for preventing infections caused by bacterial biofilms. This study is the first to report the antibiofilm activity of C. urticifolius essential oil.


Asunto(s)
Antibacterianos , Biopelículas , Croton , Pruebas de Sensibilidad Microbiana , Aceites Volátiles , Hojas de la Planta , Biopelículas/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Croton/química , Antibacterianos/farmacología , Antibacterianos/química , Hojas de la Planta/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Cromatografía de Gases y Espectrometría de Masas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Membrana Celular/efectos de los fármacos
8.
J Indian Prosthodont Soc ; 24(3): 279-283, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946512

RESUMEN

AIM: The aim of this study was to evaluate the effect of proanthocyanidin and C. sinensis-polyphenols on microtensile bonding properties of prepared teeth with resin-modified glass ionomer cement (GIC). SETTING AND DESIGN: This was an in vitro study. MATERIALS AND METHODS: Seventy-eight maxillary premolars were selected and mounted into auto-polymerizing acrylic resin blocks. The samples were prepared and metal crowns were fabricated. The samples were randomly divided into three groups. Samples under Group 1 were not treated with any of the extracts and followed conventional bonding protocol. Samples under Group 2 and Group 3 were treated with proanthocyanidin and C. sinensis-polyphenols, respectively. After dentin treatment, these samples were luted to metal crowns using resin-modified GIC. Universal testing machine was used to measure the load at which the crowns were debonded and microtensile bond strength in MPa was calculated. STATISTICAL ANALYSIS: The results were statistically analyzed using one-way ANOVA and post hoc Tukey HSD. RESULTS: Samples treated with C. sinensis polyphenols (Group 3) had maximum bond strength followed by Group 2, where the samples were treated with proanthocyanidin. CONCLUSION: C. sinensis polyphenols due to their anti-proteolytic and antioxidant properties showed improved bond strength compared to proanthocyanidin, a cross-linking agent, followed by conventional bonding protocol.


Asunto(s)
Camellia sinensis , Coronas , Recubrimiento Dental Adhesivo , Cementos de Ionómero Vítreo , Polifenoles , Proantocianidinas , Resistencia a la Tracción , Proantocianidinas/farmacología , Proantocianidinas/química , Cementos de Ionómero Vítreo/química , Cementos de Ionómero Vítreo/farmacología , Polifenoles/farmacología , Polifenoles/química , Humanos , Recubrimiento Dental Adhesivo/métodos , Camellia sinensis/química , Técnicas In Vitro , Cementos de Resina/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Análisis del Estrés Dental
9.
Yale J Biol Med ; 97(2): 141-152, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38947105

RESUMEN

Nodal regions, areas of intensive contact between Schwann cells and axons, may be exceptionally vulnerable to diabetes-induced changes because they are exposed to and impacted by the metabolic implications of diabetes. Insulin receptors, glucose transporters, Na+ and K+ channels, and mitochondria are abundant in nodes, all of which have been linked to the development and progression of Diabetic Peripheral Neuropathy (DPN) and Type 1 Diabetes Mellitus (T1DM)-associated cognitive impairment. Our study aimed to evaluate if the administration of Nigella sativa (NS) and Cassia angustifolia (CA) prevented diabetes-associated nervous system deficits in hyperglycemic mice. We developed T1DM mice through Streptozotocin (STZ) injections and validated the elevations in blood glucose levels. NS and CA were administered immediately upon the induction of diabetes. Behavioral analysis, histopathological evaluations, and assessment of molecular biomarkers (NR2A, MPZ, NfL) were performed to assess neuropathy and cognitive impairment. Improvements in memory, myelin loss, and the expression of synaptic proteins, even with the retention of hyperglycemia, were evident in the mice who were given a dose of herbal products upon the detection of hyperglycemia. NS was more beneficial in preventing memory impairments, demyelination, and synaptic dysfunction. The findings indicate that including these herbs in the diets of diabetic as well as pre-diabetic patients can reduce complications associated with T1DM, notably diabetic peripheral neuropathy and cognitive deficits associated with T1DM.


Asunto(s)
Disfunción Cognitiva , Neuropatías Diabéticas , Nigella sativa , Animales , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/prevención & control , Nigella sativa/química , Ratones , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/etiología , Masculino , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Extractos Vegetales/farmacología , Plantas Medicinales/química , Senna
10.
PeerJ ; 12: e17588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948224

RESUMEN

In the present study, zinc oxide nanoparticles (ZnO-NPs) were synthesized using neem leaf aqueous extracts and characterized using transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV-Vis), and dynamic light scattering (DLS). Then compare its efficacy as anticancer and antibacterial agents with chemically synthesized ZnO-NPs and the neem leaf extract used for the green synthesis of ZnO-NPs. The TEM, UV-vis, and particle size confirmed that the developed ZnO-NPs are nanoscale. The chemically and greenly synthesized ZnO-NPs showed their optical absorbance at 328 nm and 380 nm, respectively, and were observed as spherical particles with a size of about 85 nm and 62.5 nm, respectively. HPLC and GC-MS were utilized to identify the bioactive components in the neem leaf aqueous extract employed for the eco-friendly production of ZnO-NPs. The HPLC analysis revealed that the aqueous extract of neem leaf contains 19 phenolic component fractions. The GC-MS analysis revealed the existence of 21 bioactive compounds. The antiproliferative effect of green ZnO-NPs was observed at different concentrations (31.25 µg/mL-1000 µg/mL) on Hct 116 and A 549 cancer cells, with an IC50 value of 111 µg/mL for A 549 and 118 µg/mL for Hct 116. On the other hand, the antibacterial activity against gram-positive and gram-negative bacteria was estimated. The antibacterial result showed that the MIC of green synthesized ZnO-NPs against gram-positive and gram-negative bacteria were 5, and 1 µg/mL. Hence, they could be utilized as effective antibacterial and antiproliferative agents.


Asunto(s)
Antibacterianos , Antineoplásicos , Extractos Vegetales , Hojas de la Planta , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Humanos , Hojas de la Planta/química , Antineoplásicos/farmacología , Antineoplásicos/química , Azadirachta/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Tecnología Química Verde/métodos , Tamaño de la Partícula , Línea Celular Tumoral
11.
Sci Rep ; 14(1): 15014, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951169

RESUMEN

Plants are valuable resources for drug discovery as they produce diverse bioactive compounds. However, the chemical diversity makes it difficult to predict the biological activity of plant extracts via conventional chemometric methods. In this research, we propose a new computational model that integrates chemical composition data with structure-based chemical ontology. For a model validation, two training datasets were prepared from literature on antibacterial essential oils to classify active/inactive oils. Random forest classifiers constructed from the data showed improved prediction performance in both test datasets. Prior feature selection using hierarchical information criterion further improved the performance. Furthermore, an antibacterial assay using a standard strain of Staphylococcus aureus revealed that the classifier correctly predicted the activity of commercially available oils with an accuracy of 83% (= 10/12). The results of this study indicate that machine learning of chemical composition data integrated with chemical ontology can be a highly efficient approach for exploring bioactive plant extracts.


Asunto(s)
Antibacterianos , Aceites Volátiles , Staphylococcus aureus , Aceites Volátiles/química , Aceites Volátiles/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Staphylococcus aureus/efectos de los fármacos , Aprendizaje Automático , Pruebas de Sensibilidad Microbiana , Quimiometría/métodos , Extractos Vegetales/química , Extractos Vegetales/farmacología
12.
BMC Vet Res ; 20(1): 281, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951863

RESUMEN

The aim of this research was to estimate the immunopotentiation effect of brown algae Padina boergesenii water extract on Nile tilapia, Oreochromis niloticus through resistance to Pseudomonas putida infection. Gas Chromatography Mass Spectrometry was utilized to characterize the seaweed phytoconstituents. One hundred and twenty-six fish were divided in triplicates into two equal groups corresponding to two diet variants that used to feed Nile tilapia for 20 successive days: a basal (control), and P. boergesenii water extract supplemented group. Fish samples were collected at 10-days intervals throughout the experiment. Serum biochemical constituents, total antioxidant capacity (TAC), and some immune related genes expression of the spleen and intestinal tissues of experimental fish were studied, as well as histological examination of fish immune tissues. Moreover, following 20 days of feeding, the susceptibility of Nile tilapia to P. putida infection was evaluated to assess the protective effect of the used extract. The findings indicated that the studied parameters were significantly increased, and the best immune response profiles were observed in fish fed P. boergesenii water extract for 20 successive days. A bacterial challenge experiment using P. putida resulted in higher survival within the supplemented fish group than the control. Thus, the lowered post-challenge mortality of the fish may be related to the protection provided by the stimulation of the innate immune system, reduced oxidative stress by higher activity of TAC, and elevated levels of expression of iterleukin-1beta (IL-1ß), beta-defensin (ß-defensin), and natural killer-lysin (NKl). Moreover, the constituents of the extract used showed potential protective activity for histological features of the supplemented fish group when compared to the control. Collectively, this study presents a great insight on the protective role of P. boergesenii water extract as an additive in Nile tilapia feed which suggests its potential for improving the immune response against P. putida infection.


Asunto(s)
Alimentación Animal , Cíclidos , Suplementos Dietéticos , Enfermedades de los Peces , Infecciones por Pseudomonas , Pseudomonas putida , Animales , Pseudomonas putida/efectos de los fármacos , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Alimentación Animal/análisis , Infecciones por Pseudomonas/veterinaria , Infecciones por Pseudomonas/tratamiento farmacológico , Phaeophyceae/química , Dieta/veterinaria , Resistencia a la Enfermedad/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/administración & dosificación
13.
Mol Biol Rep ; 51(1): 785, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951450

RESUMEN

BACKGROUND: Kaempferia parviflora Wall. ex. Baker (KP) has been reported to exhibit anti-obesity effects. However, the detailed mechanism of the anti-obesity effect of KP extract (KPE) is yet to be clarified. Here, we investigated the effect of KPE and its component polymethoxyflavones (PMFs) on the adipogenic differentiation of human mesenchymal stem cells (MSCs). METHODS AND RESULTS: KPE and PMFs fraction (2.5 µg/mL) significantly inhibited lipid and triacylglyceride accumulation in MSCs; lipid accumulation in MSCs was suppressed during the early stages of differentiation (days 0-3) but not during the mid (days 3-7) or late (days 7-14) stages. Treatment with KPE and PMFs fractions significantly suppressed peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), and various adipogenic metabolic factors. Treatment with KPE and PMFs fraction induced the activation of AMP-activated protein kinase (AMPK) signaling, and pretreatment with an AMPK signaling inhibitor significantly attenuated KPE- and PMFs fraction-induced suppression of lipid formation. CONCLUSIONS: Our findings demonstrate that KPE and PMFs fraction inhibit lipid formation by inhibiting the differentiation of undifferentiated MSCs into adipocyte lineages via AMPK signaling, and this may be the mechanism underlying the anti-obesity effects of KPE and PMFs. Our study lays the foundation for the elucidation of the anti-obesity mechanism of KPE and PMFs.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Adipogénesis , Diferenciación Celular , Flavonas , Células Madre Mesenquimatosas , Extractos Vegetales , Transducción de Señal , Zingiberaceae , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Adipogénesis/efectos de los fármacos , Extractos Vegetales/farmacología , Zingiberaceae/química , Proteínas Quinasas Activadas por AMP/metabolismo , Flavonas/farmacología , Diferenciación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , PPAR gamma/metabolismo , PPAR gamma/genética , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipocitos/citología , Células Cultivadas
14.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 494-500, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38952088

RESUMEN

Objective To investigate the effect of Terminalia chebula water extract (TCWE) on the cellular immunity and PD-1/PD-L1 pathway in rats with collagen-induced arthritis (CIA). Methods SD rats were randomly divided into four groups: a control group, a CIA group, a TCWE group and a methotrexate (MTX) group, with 15 rats in each group. Except for the control group, SD rats in other groups were subcutaneously injected with type II collagen to establish the model of collagen-induced arthritis (CIA). The rats in the TCWE group were treated with 20 mg/(kg.d) TCWE and the rats in the MTX group were treated with 1.67 mg/(kg.d) MTX. After 14 days of treatment, the cartilage morphology was examined using hematoxylin-eosin (HE) staining, and splenic T lymphocyte apoptosis and Treg/Th17 cell ratio were detected by flow cytometry. The mRNA expressions of retinoid-related orphan nuclear receptor γt (RORγt), forkhead box P3 (FOXP3), PD-1 and PD-L1 in spleen were detected by reverse transcription PCR. The expression and localization of RORγt and FOXP3 were detected by immunohistochemical staining. The protein expressions of PD-1 and PD-L1 in splenic lymphocytes were detected by Western blot, and the levels of serum interleukin 17 (IL-17) and transforming growth factor ß (TGF-ß) in rats were detected by ELISA. Results Compared with CIA group, the pathological changes of cartilage and synovium were significantly alleviated in the TCWE group and the MTX group. Both the apoptosis rate of T lymphocytes in spleen and the ratio of Treg/Th17 cells increased. The expression of RORγt decreased, while the expressions of FOXP3, PD-1 and PD-L1 increased in spleen lymphocytes. The level of serum IL-17 decreased, while the level of serum TGF-ß increased. Conclusion TCWE treatment may activate PD-1/PD-L1 pathway in spleen cells to regulate cellular immunity, thus reducing cartilage injury in CIA rats.


Asunto(s)
Artritis Experimental , Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Ratas Sprague-Dawley , Bazo , Terminalia , Animales , Artritis Experimental/inmunología , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Bazo/efectos de los fármacos , Bazo/inmunología , Bazo/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Ratas , Terminalia/química , Masculino , Inmunidad Celular/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Extractos Vegetales/farmacología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Células Th17/inmunología , Células Th17/efectos de los fármacos , Células Th17/metabolismo
15.
Arh Hig Rada Toksikol ; 75(2): 137-146, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38963137

RESUMEN

Traditional medicine has used sage (Salvia officinalis L.) preparations for centuries to prevent and treat various inflammatory and oxidative stress-induced conditions. The aim of this in vitro study was to determine the bioactive properties of a sage leave extract obtained with environmentally friendly aqueous extraction and lyophilisation in primary human peripheral blood cells. To that end we measured the total phenolic and flavonoid content (TPC and TFC, respectively) with gas chromatography-mass spectrometry (GC-MS). Non-cytotoxic concentrations determined with the trypan blue assay were used to assess the antioxidant (DPPH, ABTS, and PAB assay), antigenotoxic (CBMN assay), immunomodulatory (IL-1ß and TNF-α), and neuroprotective effects (AChE inhibition). The extract contained high TPC (162 mg GAE/g of dry extract) and TFC (39.47 mg QE/g of dry extract) concentrations, while ß-thujone content was unexpectedly low (below 0.9 %). Strong radical-scavenging activity combined with glutathione reductase activation led to a decrease in basal and H2O2-induced oxidative stress and DNA damage. A decrease in TNF-α and increase in IL-1ß levels suggest complex immunomodulatory response that could contribute to antioxidant and, together with mild AChE inhibition, neuroprotective effects. Overall, this study has demonstrated that aqueous sage leave extract reduces the levels of thujone, 1,8-cineole, pinene, and terpene ketones that could be toxic in high concentrations, while maintaining high concentrations of biologically active protective compounds which have a potential to prevent and/or treat inflammatory and oxidative stress-related conditions.


Asunto(s)
Inflamación , Leucocitos Mononucleares , Estrés Oxidativo , Extractos Vegetales , Salvia officinalis , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Leucocitos Mononucleares/efectos de los fármacos , Salvia officinalis/química , Inflamación/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Daño del ADN/efectos de los fármacos , Hojas de la Planta/química
16.
PeerJ ; 12: e17637, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966207

RESUMEN

Background: Prostate cancer (PCa) is one of the causes of death in men worldwide. Although treatment strategies have been developed, the recurrence of the disease and consequential side effects remain an essential concern. Diospyros rhodocalyx Kurz, a traditional Thai medicine, exhibits diverse therapeutic properties, including anti-cancer activity. However, its anti-cancer activity against prostate cancer has not been thoroughly explored. This study aims to evaluate the anti-cancer activity and underlying mechanisms of the ethyl acetate extract of D. rhodocalyx Kurz (EADR) related to apoptosis induction in the LNCaP human prostate cancer cell line. Methods: Ethyl acetate was employed to extract the dried bark of D. rhodocalyx Kurz. The cytotoxicity of EADR on both LNCaP and WPMY-1 cells (normal human prostatic myofibroblast cell line) was evaluated using MTS assay. The effect of EADR on the cell cycle, apoptosis induction, and alteration in mitochondrial membrane potential (MMP) was assessed by the staining with propidium iodide (PI), Annexin V-FITC/PI, and JC-1 dye, respectively. Subsequent analysis was conducted using flow cytometry. The expression of cleaved caspase-3, BAX, and Bcl-2 was examined by Western blotting. The phytochemical profiling of the EADR was performed using gas chromatography-mass spectrometry (GC-MS). Results: EADR exhibited a dose-dependent manner cytotoxic effect on LNCaP cells, with IC50 values of 15.43 and 12.35 µg/mL after 24 and 48 h, respectively. Although it also exhibited a cytotoxic effect on WPMY-1 cells, the effect was comparatively lower, with the IC50 values of 34.61 and 19.93 µg/mL after 24 and 48 h of exposure, respectively. Cell cycle analysis demonstrated that EADR did not induce cell cycle arrest in either LNCaP or WPMY-1 cells. However, it significantly increased the sub-G1 population in LNCaP cells, indicating a potential induction of apoptosis. The Annexin V-FITC/PI staining indicated that EADR significantly induced apoptosis in LNCaP cells. Subsequent investigation into the underlying mechanism of EADR-induced apoptosis revealed a reduction in MMP as evidenced by JC-1 staining. Moreover, Western blotting demonstrated that EADR treatment resulted in the upregulation of BAX, downregulation of BCL-2, and elevation of caspase-3 cleavage in LNCaP cells. Notably, the epilupeol was a prominent compound in EADR as identified by GC-MS. Conclusion: The EADR exhibits anti-cancer activity against the LNCaP human prostate cancer cell line by inducing cytotoxicity and apoptosis. Our findings suggest that EADR promotes apoptosis by upregulating pro-apoptotic BAX, whereas downregulation of anti-apoptotic Bcl-2 results in the reduction of MMP and the activation of caspase-3. Of particular interest is the presence of epilupeol, a major compound identified in EADR, which may hold promise as a candidate for the development of therapeutic agents for prostate cancer.


Asunto(s)
Apoptosis , Caspasa 3 , Diospyros , Extractos Vegetales , Neoplasias de la Próstata , Proteínas Proto-Oncogénicas c-bcl-2 , Proteína X Asociada a bcl-2 , Humanos , Masculino , Apoptosis/efectos de los fármacos , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Línea Celular Tumoral , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Caspasa 3/metabolismo , Diospyros/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología
17.
PLoS One ; 19(7): e0304335, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38959219

RESUMEN

Inflammation is an immune system response that identifies and eliminates foreign material. However, excessive and persistent inflammation could disrupt the healing process. Plant-derived exosome-like nanoparticles (PDENs) are a promising candidate for therapeutic application because they are safe, biodegradable and biocompatible. In this study, papaya PDENs were isolated by a PEG6000-based method and characterized by dynamic light scattering (DLS), transmission Electron Microscopy (TEM), bicinchoninic acid (BCA) assay method, GC-MS analysis, total phenolic content (TPC) analysis, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. For the in vitro test, we conducted internalization analysis, toxicity assessment, determination of nitrite concentration, and assessed the expression of inflammatory cytokine genes using qRT-PCR in RAW 264.7 cells. For the in vivo test, inflammation was induced by caudal fin amputation followed by analysis of macrophage and neutrophil migration in zebrafish (Danio rerio) larvae. The result showed that papaya PDENs can be well isolated using the optimized differential centrifugation method with the addition of 30 ppm pectolyase, 15% PEG, and 0.2 M NaCl, which exhibited cup-shaped and spherical morphological structure with an average diameter of 168.8±9.62 nm. The papaya PDENs storage is stable in aquabidest and 25 mM trehalose solution at -20˚C until the fourth week. TPC estimation of all papaya PDENs ages did not show a significant change, while the DPPH test exhibited a significant change in the second week. The major compounds contained in Papaya PDENs is 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP). Papaya PDENs can be internalized and is non-cytotoxic to RAW 264.7 cells. Moreover, LPS-induced RAW 264.7 cells treated with papaya PDENs showed a decrease in NO production and downregulation mRNA expression of pro-inflammatory cytokine genes (IL-1B and IL-6) and an upregulation in mRNA expression of anti-inflammatory cytokine gene (IL-10). In addition, in vivo tests conducted on zebrafish treated with PDENs papaya showed inhibition of macrophage and neutrophil cell migration. These findings suggest that PDENs papaya possesses anti-inflammatory properties.


Asunto(s)
Antiinflamatorios , Carica , Exosomas , Frutas , Nanopartículas , Pez Cebra , Carica/química , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Exosomas/metabolismo , Células RAW 264.7 , Nanopartículas/química , Frutas/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/patología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Citocinas/metabolismo
18.
PLoS One ; 19(7): e0306543, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38959234

RESUMEN

Chronic oral inflammation and biofilm-mediated infections drive diseases such as dental caries and periodontitis. This study investigated the anti-inflammatory and antibacterial potential of an ethanol extract from Astilbe chinensis inflorescence (GA-13-6) as a prominent candidate for natural complex substances (NCS) with therapeutic potential. In LPS-stimulated RAW 264.7 macrophages, GA-13-6 significantly suppressed proinflammatory mediators, including interleukin-6 (IL-6), tumor necrosis factor (TNF), and nitric oxide (NO), surpassing purified astilbin, a known bioactive compound found in A. chinensis. Furthermore, GA-13-6 downregulated the expression of cyclooxygenase-2 (COX2) and inducible nitric oxide synthase (iNOS), indicating an inhibitory effect on the inflammatory cascade. Remarkably, GA-13-6 exhibited selective antibacterial activity against Streptococcus mutans, Streptococcus sanguinis, and Porphyromonas gingivalis, key players in dental caries and periodontitis, respectively. These findings suggest that complex GA-13-6 holds the potential for the treatment or prevention of periodontal and dental diseases, as well as various other inflammation-related conditions, while averting the induction of antibiotic resistance.


Asunto(s)
Macrófagos , Extractos Vegetales , Animales , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Células RAW 264.7 , Antibacterianos/farmacología , Inflamación/tratamiento farmacológico , Etanol/química , Óxido Nítrico Sintasa de Tipo II/metabolismo , Antiinflamatorios/farmacología , Inflorescencia/química , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Óxido Nítrico/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos , Factor de Necrosis Tumoral alfa/metabolismo
19.
Afr Health Sci ; 24(1): 295-306, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38962330

RESUMEN

Background: The Mediterranean thistle Atractylis gummifera L. (Asteraceae; AG) has diterpenoid glucosides; atractyloside and carboxyatractyloside that interact with mitochondrial protein adenine nucleotide translocator (ANT) and resulted in ATP inhibition. Despite its well-known toxicity, acute poisonings still occur with this plant. Although most symptoms are attributed to ANT and diterpenoids interaction, in-depth investigation of the effects of AG extract on various cellular processes has not been performed. Objective/method: We tested in vitro induction of mitochondrial permeability transition pore (MPTP) opening in bovine liver mitochondria and evaluated its cytotoxicity and genotoxicity using Allium cepa test. Cell division, mitotic index (MI) and total chromosomal and mitotic aberrations (TAs), that all seem potentially affected by ATP shortage, were studied in root cells of Allium cepa exposed to Atractylis gummifera extract. Results: With the two different doses of two purified AG fractions, stronger induction of MPTP was observed compared to the induction with the standard pure atracyloside. Aqueous AG extract exerted inhibition root growth in A. cepa at 6 different doses. The TAs was increased in a dose-dependent manner too, while mitotic index was decreased at the same doses. Evaluation of mitotic phases revealed mitodepressive effect of AG on A. cepa roots. Conclusion: this work highlights cellular and mitochondrial adverse effects of Atractylis gummifera extracts. A purified fraction that likely corresponds to ATR derivatives induces MPTP opening leading to swelling of mitochondria and its dysfunction. Allium cepa test provides the evidence for A. gummifera genotoxicity and cytotoxicity.


Asunto(s)
Atractilósido , Extractos Vegetales , Extractos Vegetales/farmacología , Extractos Vegetales/toxicidad , Animales , Bovinos , Atractilósido/farmacología , Atractilósido/toxicidad , Cebollas/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos
20.
Nagoya J Med Sci ; 86(2): 223-236, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38962411

RESUMEN

Cleft palate is the most common facial birth defect worldwide. It is caused by environmental factors or genetic mutations. Environmental factors such as pharmaceutical exposure in women are known to induce cleft palate. The aim of the present study was to investigate the protective effect of Sasa veitchii extract against medicine-induced inhibition of proliferation of human embryonic palatal mesenchymal cells. We demonstrated that all-trans-retinoic acid inhibited human embryonic palatal mesenchymal cell proliferation in a dose-dependent manner, whereas dexamethasone treatment had no effect on cell proliferation. Cotreatment with Sasa veitchii extract repressed all-trans-retinoic acid-induced toxicity in human embryonic palatal mesenchymal cells. We found that cotreatment with Sasa veitchii extract protected all-trans-retinoic acid-induced cyclin D1 downregulation in human embryonic palatal mesenchymal cells. Furthermore, Sasa veitchii extract suppressed all-trans-retinoic acid-induced miR-4680-3p expression. Additionally, the expression levels of the genes that function downstream of the target genes ( ERBB2 and JADE1 ) of miR-4680-3p in signaling pathways were enhanced by cotreatment with Sasa veitchii extract and all-trans-retinoic acid compared to all-trans-retinoic acid treatment. These results suggest that Sasa veitchii extract suppresses all-trans-retinoic acid-induced inhibition of cell proliferation via modulation of miR-4680-3p expression.


Asunto(s)
Proliferación Celular , Fisura del Paladar , Hueso Paladar , Extractos Vegetales , Tretinoina , Humanos , Tretinoina/farmacología , Proliferación Celular/efectos de los fármacos , Hueso Paladar/efectos de los fármacos , Hueso Paladar/embriología , Hueso Paladar/citología , Extractos Vegetales/farmacología , MicroARNs/metabolismo , MicroARNs/genética , MicroARNs/efectos de los fármacos , Ciclina D1/metabolismo , Ciclina D1/genética , Células Cultivadas , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...