Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochimie ; 217: 31-41, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36773835

RESUMEN

In eukaryotes and in archaea late steps of translation initiation involve the two initiation factors e/aIF5B and e/aIF1A. These two factors are also orthologous to the bacterial IF2 and IF1 proteins, respectively. Recent cryo-EM studies showed how e/aIF5B and e/aIF1A cooperate on the small ribosomal subunit to favor the binding of the large ribosomal subunit and the formation of a ribosome competent for elongation. In this review, pioneering studies and recent biochemical and structural results providing new insights into the role of a/eIF5B in archaea and eukaryotes will be presented. Recent structures will also be compared to orthologous bacterial initiation complexes to highlight domain-specific features and the evolution of initiation mechanisms.


Asunto(s)
Factor 1 Eucariótico de Iniciación , Factores de Iniciación de Péptidos , Factor 1 Eucariótico de Iniciación/análisis , Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/metabolismo , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/análisis , Factores de Iniciación de Péptidos/química , Bacterias/metabolismo , Ribosomas/metabolismo
2.
Nucleic Acids Res ; 47(15): 8282-8300, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31291455

RESUMEN

eIF3 is a large multiprotein complex serving as an essential scaffold promoting binding of other eIFs to the 40S subunit, where it coordinates their actions during translation initiation. Perhaps due to a high degree of flexibility of multiple eIF3 subunits, a high-resolution structure of free eIF3 from any organism has never been solved. Employing genetics and biochemistry, we previously built a 2D interaction map of all five yeast eIF3 subunits. Here we further improved the previously reported in vitro reconstitution protocol of yeast eIF3, which we cross-linked and trypsin-digested to determine its overall shape in 3D by advanced mass-spectrometry. The obtained cross-links support our 2D subunit interaction map and reveal that eIF3 is tightly packed with its WD40 and RRM domains exposed. This contrasts with reported cryo-EM structures depicting eIF3 as a molecular embracer of the 40S subunit. Since the binding of eIF1 and eIF5 further fortified the compact architecture of eIF3, we suggest that its initial contact with the 40S solvent-exposed side makes eIF3 to open up and wrap around the 40S head with its extended arms. In addition, we mapped the position of eIF5 to the region below the P- and E-sites of the 40S subunit.


Asunto(s)
Factor 1 Eucariótico de Iniciación/química , Factor 3 de Iniciación Eucariótica/química , Factor 5 Eucariótico de Iniciación/química , Iniciación de la Cadena Peptídica Traduccional , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Sitios de Unión/genética , Microscopía por Crioelectrón , Factor 1 Eucariótico de Iniciación/genética , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Factor 5 Eucariótico de Iniciación/genética , Factor 5 Eucariótico de Iniciación/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
BMC Struct Biol ; 18(1): 11, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30180896

RESUMEN

BACKGROUND: Eukaryotic translation initiation factor 1A (eIF1A) is universally conserved in all organisms. It has multiple functions in translation initiation, including assembly of the ribosomal pre-initiation complexes, mRNA binding, scanning, and ribosomal subunit joining. eIF1A binds directly to the small ribosomal subunit, as well as to several other translation initiation factors. The structure of an eIF1A homolog, the eIF1A domain-containing protein (eIF1AD) was recently determined but its biological functions are unknown. Since eIF1AD has a known structure, as well as a homolog, whose structure and functions have been extensively studied, it is a very attractive target for sequence and structure analysis. RESULTS: Structure/sequence analysis of eIF1AD found significant conservation in the surfaces corresponding to the ribosome-binding surfaces of its paralog eIF1A, including a nearly invariant surface-exposed tryptophan residue, which plays an important role in the interaction of eIF1A with the ribosome. These results indicate that eIF1AD may bind to the ribosome, similar to its paralog eIF1A, and could have roles in ribosome biogenenesis or regulation of translation. We identified conserved surfaces and sequence motifs in the folded domain as well as the C-terminal tail of eIF1AD, which are likely protein-protein interaction sites. The roles of these regions for eIF1AD function remain to be determined. We have also identified a set of trypanosomatid-specific surface determinants in eIF1A that could be a promising target for development of treatments against these parasites. CONCLUSIONS: The results described here identify regions in eIF1A and eIF1AD that are likely to play major functional roles and are promising therapeutic targets. Our findings and hypotheses will promote new research and help elucidate the functions of eIF1AD.


Asunto(s)
Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/genética , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Ribosomas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia Conservada , Factor 1 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Homología de Secuencia de Aminoácido
4.
Mol Cell Biol ; 38(18)2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29987188

RESUMEN

Translation initiation of most mRNAs involves m7G-cap binding, ribosomal scanning, and AUG selection. Initiation from an m7G-cap-proximal AUG can be bypassed resulting in leaky scanning, except for mRNAs bearing the translation initiator of short 5' untranslated region (TISU) element. m7G-cap binding is mediated by the eukaryotic initiation factor 4E (eIF4E)-eIF4G1 complex. eIF4G1 also associates with eIF1, and both promote scanning and AUG selection. Understanding of the dynamics and significance of these interactions is lacking. We report that eIF4G1 exists in two complexes, either with eIF4E or with eIF1. Using an eIF1 mutant impaired in eIF4G1 binding, we demonstrate that eIF1-eIF4G1 interaction is important for leaky scanning and for avoiding m7G-cap-proximal initiation. Intriguingly, eIF4E-eIF4G1 antagonizes the scanning promoted by eIF1-eIF4G1 and is required for TISU. In mapping the eIF1-binding site on eIF4G1, we unexpectedly found that eIF4E also binds it indirectly. These findings uncover the RNA features underlying regulation by eIF4E-eIF4G1 and eIF1-eIF4G1 and suggest that 43S ribosome transition from the m7G-cap to scanning involves relocation of eIF4G1 from eIF4E to eIF1.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Regiones no Traducidas 5' , Secuencia de Aminoácidos , Sitios de Unión , Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/genética , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/genética , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Células HEK293 , Humanos , Modelos Biológicos , Modelos Moleculares , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Iniciación de la Cadena Peptídica Traduccional , Dominios y Motivos de Interacción de Proteínas , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Mol Cell Biol ; 38(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29844065

RESUMEN

Ribosomal stalk proteins recruit translation elongation GTPases to the factor-binding center of the ribosome. Initiation factor 5B (eIF5B in eukaryotes and aIF5B in archaea) is a universally conserved GTPase that promotes the joining of the large and small ribosomal subunits during translation initiation. Here we show that aIF5B binds to the C-terminal tail of the stalk protein. In the cocrystal structure, the interaction occurs between the hydrophobic amino acids of the stalk C-terminal tail and a small hydrophobic pocket on the surface of the GTP-binding domain (domain I) of aIF5B. A substitution mutation altering the hydrophobic pocket of yeast eIF5B resulted in a marked reduction in ribosome-dependent eIF5B GTPase activity in vitro In yeast cells, the eIF5B mutation affected growth and impaired GCN4 expression during amino acid starvation via a defect in start site selection for the first upstream open reading frame in GCN4 mRNA, as observed with the eIF5B deletion mutant. The deletion of two of the four stalk proteins diminished polyribosome levels (indicating defective translation initiation) and starvation-induced GCN4 expression, both of which were suppressible by eIF5B overexpression. Thus, the mutual interaction between a/eIF5B and the ribosomal stalk plays an important role in subunit joining during translation initiation in vivo.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Proteínas Ribosómicas/metabolismo , Aeropyrum/genética , Aeropyrum/metabolismo , Sustitución de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/genética , Factor 1 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Modelos Moleculares , Mutación , Iniciación de la Cadena Peptídica Traduccional , Fenotipo , Dominios y Motivos de Interacción de Proteínas , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(18): E4159-E4168, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29666249

RESUMEN

The eukaryotic 43S preinitiation complex (PIC), bearing initiator methionyl transfer RNA (Met-tRNAi) in a ternary complex (TC) with eukaryotic initiation factor 2 (eIF2)-GTP, scans the mRNA leader for an AUG codon in favorable context. AUG recognition evokes rearrangement from an open PIC conformation with TC in a "POUT" state to a closed conformation with TC more tightly bound in a "PIN" state. eIF1 binds to the 40S subunit and exerts a dual role of enhancing TC binding to the open PIC conformation while antagonizing the PIN state, necessitating eIF1 dissociation for start codon selection. Structures of reconstituted PICs reveal juxtaposition of eIF1 Loop 2 with the Met-tRNAi D loop in the PIN state and predict a distortion of Loop 2 from its conformation in the open complex to avoid a clash with Met-tRNAi We show that Ala substitutions in Loop 2 increase initiation at both near-cognate UUG codons and AUG codons in poor context. Consistently, the D71A-M74A double substitution stabilizes TC binding to 48S PICs reconstituted with mRNA harboring a UUG start codon, without affecting eIF1 affinity for 40S subunits. Relatively stronger effects were conferred by arginine substitutions; and no Loop 2 substitutions perturbed the rate of TC loading on scanning 40S subunits in vivo. Thus, Loop 2-D loop interactions specifically impede Met-tRNAi accommodation in the PIN state without influencing the POUT mode of TC binding; and Arg substitutions convert the Loop 2-tRNAi clash to an electrostatic attraction that stabilizes PIN and enhances selection of poor start codons in vivo.


Asunto(s)
Codón Iniciador/química , Factor 1 Eucariótico de Iniciación/química , Conformación de Ácido Nucleico , Iniciación de la Cadena Peptídica Traduccional , ARN de Hongos/química , ARN de Transferencia de Metionina/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Codón Iniciador/genética , Codón Iniciador/metabolismo , Factor 1 Eucariótico de Iniciación/genética , Factor 1 Eucariótico de Iniciación/metabolismo , Estructura Secundaria de Proteína , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Transferencia de Metionina/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
RNA Biol ; 15(3): 314-319, 2018 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-29447067

RESUMEN

Lysine methylation is a frequent post-translational protein modification, which has been intensively studied in the case of histone proteins. Lysine methylations are also found on many non-histone proteins, and one prominent example is eukaryotic elongation factor 1 alpha (eEF1A). Besides its essential role in the protein synthesis machinery, a number of non-canonical functions have also been described for eEF1A, such as regulation of the actin cytoskeleton and the promotion of viral replication. The functional significance of the extensive lysine methylations on eEF1A, as well as the identity of the responsible lysine methyltransferases (KMTs), have until recently remained largely elusive. However, recent discoveries and characterizations of human eEF1A-specific KMTs indicate that lysine methylation of eEF1A can be dynamic and inducible, and modulates mRNA translation in a codon-specific fashion. Here, we give a general overview of eEF1A lysine methylation and discuss its possible functional and regulatory significance, with particular emphasis on newly discovered human KMTs.


Asunto(s)
Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Lisina/química , Citoesqueleto de Actina/metabolismo , Humanos , Metilación , Modelos Moleculares , Conformación Proteica , Procesamiento Proteico-Postraduccional , Replicación Viral
8.
Mol Cell ; 63(2): 206-217, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27373335

RESUMEN

mRNA translation initiation in eukaryotes requires the cooperation of a dozen eukaryotic initiation factors (eIFs) forming several complexes, which leads to mRNA attachment to the small ribosomal 40S subunit, mRNA scanning for start codon, and accommodation of initiator tRNA at the 40S P site. eIF3, composed of 13 subunits, 8 core (a, c, e, f, h, l, k, and m) and 5 peripheral (b, d, g, i, and j), plays a central role during this process. Here we report a cryo-electron microscopy structure of a mammalian 48S initiation complex at 5.8 Å resolution. It shows the relocation of subunits eIF3i and eIF3g to the 40S intersubunit face on the GTPase binding site, at a late stage in initiation. On the basis of a previous study, we demonstrate the relocation of eIF3b to the 40S intersubunit face, binding below the eIF2-Met-tRNAi(Met) ternary complex upon mRNA attachment. Our analysis reveals the deep rearrangement of eIF3 and unravels the molecular mechanism underlying eIF3 function in mRNA scanning and timing of ribosomal subunit joining.


Asunto(s)
Codón Iniciador , Factor 3 de Iniciación Eucariótica/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Animales , Sitios de Unión , Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/química , Humanos , Modelos Moleculares , Complejos Multiproteicos , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Subunidades de Proteína , ARN Mensajero/química , ARN Mensajero/genética , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Conejos , Ribosomas/química , Relación Estructura-Actividad , Globinas beta/química , Globinas beta/metabolismo
9.
Nucleic Acids Res ; 44(9): 4252-65, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27067542

RESUMEN

During eukaryotic translation initiation, the 43S preinitiation complex (43S PIC), consisting of the 40S ribosomal subunit, eukaryotic initiation factors (eIFs) and initiator tRNA scans mRNA to find an appropriate start codon. Key roles in the accuracy of initiation codon selection belong to eIF1 and eIF1A, whereas the mammalian-specific DHX29 helicase substantially contributes to ribosomal scanning of structured mRNAs. Here, we show that DHX29 stimulates the recognition of the AUG codon but not the near-cognate CUG codon regardless of its nucleotide context during ribosomal scanning. The stimulatory effect depends on the contact between DHX29 and eIF1A. The unique DHX29 N-terminal domain binds to the ribosomal site near the mRNA entrance, where it contacts the eIF1A OB domain. UV crosslinking assays revealed that DHX29 may rearrange eIF1A and eIF2α in key nucleotide context positions of ribosomal complexes. Interestingly, DHX29 impedes the 48S initiation complex formation in the absence of eIF1A perhaps due to forming a physical barrier that prevents the 43S PIC from loading onto mRNA. Mutational analysis allowed us to split the mRNA unwinding and codon selection activities of DHX29. Thus, DHX29 is another example of an initiation factor contributing to start codon selection.


Asunto(s)
ARN Helicasas/fisiología , Iniciación de la Transcripción Genética , Codón Iniciador , Escherichia coli , Factor 1 Eucariótico de Iniciación/química , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN Helicasas/química , ARN Mensajero/química , ARN de Transferencia/química
10.
Nat Struct Mol Biol ; 22(3): 269-71, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25664723

RESUMEN

Eukaryotic translation initiation requires cooperative assembly of a large protein complex at the 40S ribosomal subunit. We have resolved a budding yeast initiation complex by cryo-EM, allowing placement of prior structures of eIF1, eIF1A, eIF3a, eIF3b and eIF3c. Our structure highlights differences in initiation-complex binding to the ribosome compared to that of mammalian eIF3, demonstrates a direct contact between eIF3j and eIF1A and reveals the network of interactions between eIF3 subunits.


Asunto(s)
Factor 1 Eucariótico de Iniciación/química , Factor 3 de Iniciación Eucariótica/química , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Saccharomycetales/genética , Sitios de Unión , Microscopía por Crioelectrón , Iniciación de la Cadena Peptídica Traduccional , Estructura Terciaria de Proteína
11.
Nucleic Acids Res ; 43(4): 2293-312, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25670678

RESUMEN

The translation preinitiation complex (PIC) is thought to assume an open conformation when scanning the mRNA leader, with AUG recognition evoking a closed conformation and more stable P site interaction of Met-tRNAi; however, physical evidence is lacking that AUG recognition constrains interaction of mRNA with the 40S binding cleft. We compared patterns of hydroxyl radical cleavage of rRNA by Fe(II)-BABE tethered to unique sites in eIF1A in yeast PICs reconstituted with mRNA harboring an AUG or near-cognate (AUC) start codon. rRNA residues in the P site display reduced cleavage in AUG versus AUC PICs; and enhanced cleavage in the AUC complexes was diminished by mutations of scanning enhancer elements of eIF1A that increase near-cognate recognition in vivo. This suggests that accessibility of these rRNA residues is reduced by accommodation of Met-tRNAi in the P site (PIN state) and by their interactions with the anticodon stem of Met-tRNAi. Our cleavage data also provide evidence that AUG recognition evokes dissociation of eIF1 from its 40S binding site, ejection of the eIF1A-CTT from the P-site and rearrangement to a closed conformation of the entry channel with reduced mobility of mRNA.


Asunto(s)
Codón Iniciador , Factor 1 Eucariótico de Iniciación/química , Iniciación de la Cadena Peptídica Traduccional , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Sustitución de Aminoácidos , Cisteína/genética , Ácido Edético/análogos & derivados , Factor 1 Eucariótico de Iniciación/genética , Factor 1 Eucariótico de Iniciación/metabolismo , ARN Mensajero/metabolismo , ARN Ribosómico 18S/química , ARN Ribosómico 18S/metabolismo , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Levaduras/genética
12.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 12): 3090-8, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25478828

RESUMEN

eIF5B and eIF1A are two translation-initiation factors that are universally conserved among all kingdoms. They show a unique interaction in eukaryotes which is important for ribosomal subunit joining. Here, the structures of two isolated forms of yeast eIF5B and of the eIF5B-eIF1A complex (eIF1A and eIF5B do not contain the respective N-terminal domains) are reported. The eIF5B-eIF1A structure shows that the C-terminal tail of eIF1A binds to eIF5B domain IV, while the core domain of eIF1A is invisible in the electron-density map. Although the individual domains in all structures of eIF5B or archaeal IF5B (aIF5B) are similar, their domain arrangements are significantly different, indicating high structural flexibility, which is advantageous for conformational change during ribosomal subunit joining. Based on these structures, models of eIF5B, eIF1A and tRNAi(Met) on the 80S ribosome were built. The models suggest that the interaction between the eIF1A C-terminal tail and eIF5B helps tRNAi(Met) to bind to eIF5B domain IV, thus preventing tRNAi(Met) dissociation, stabilizing the interface for subunit joining and providing a checkpoint for correct ribosome assembly.


Asunto(s)
Factor 1 Eucariótico de Iniciación/química , Factores Eucarióticos de Iniciación/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Cristalografía por Rayos X , Factor 1 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Modelos Moleculares , Conformación Proteica , Ribosomas/química , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Cell ; 159(3): 475-6, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25417100

RESUMEN

Eukaryotic translation initiation requires coordinated assembly of a remarkable array of initiation factors onto the small ribosomal subunit to select an appropriate mRNA start codon. Studies from Erzberger et al. and Hussain et al. bring new insights into this mechanism by looking at early and late initiation intermediates.


Asunto(s)
Factor 1 Eucariótico de Iniciación/química , Factor 3 de Iniciación Eucariótica/química , Factores Eucarióticos de Iniciación/metabolismo , Kluyveromyces/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Animales , Humanos
14.
Cell ; 158(5): 1123-1135, 2014 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-25171412

RESUMEN

Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy reconstructions, cross-linking coupled to mass spectrometry, and integrative structure modeling, allowed us to position and orient all eIF3 components on the 40S⋅eIF1 complex, revealing an extended, modular arrangement of eIF3 subunits. Yeast eIF3 engages 40S in a clamp-like manner, fully encircling 40S to position key initiation factors on opposite ends of the mRNA channel, providing a platform for the recruitment, assembly, and regulation of the translation initiation machinery. The structures of eIF3 components reported here also have implications for understanding the architecture of the mammalian 43S preinitiation complex and the complex of eIF3, 40S, and the hepatitis C internal ribosomal entry site RNA.


Asunto(s)
Factor 1 Eucariótico de Iniciación/química , Factor 3 de Iniciación Eucariótica/química , Iniciación de la Cadena Peptídica Traduccional , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Dimerización , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Hepacivirus/química , Humanos , Mamíferos/metabolismo , Microscopía Electrónica , Modelos Moleculares , Datos de Secuencia Molecular , Ribonucleoproteínas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
15.
RNA ; 20(2): 150-67, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24335188

RESUMEN

In the current model of translation initiation by the scanning mechanism, eIF1 promotes an open conformation of the 40S subunit competent for rapidly loading the eIF2·GTP·Met-tRNAi ternary complex (TC) in a metastable conformation (POUT) capable of sampling triplets entering the P site while blocking accommodation of Met-tRNAi in the PIN state and preventing completion of GTP hydrolysis (Pi release) by the TC. All of these functions should be reversed by eIF1 dissociation from the preinitiation complex (PIC) on AUG recognition. We tested this model by selecting eIF1 Ssu(-) mutations that suppress the elevated UUG initiation and reduced rate of TC loading in vivo conferred by an eIF1 (Sui(-)) substitution that eliminates a direct contact of eIF1 with the 40S subunit. Importantly, several Ssu(-) substitutions increase eIF1 affinity for 40S subunits in vitro, and the strongest-binding variant (D61G), predicted to eliminate ionic repulsion with 18S rRNA, both reduces the rate of eIF1 dissociation and destabilizes the PIN state of TC binding in reconstituted PICs harboring Sui(-) variants of eIF5 or eIF2. These findings establish that eIF1 dissociation from the 40S subunit is required for the PIN mode of TC binding and AUG recognition and that increasing eIF1 affinity for the 40S subunit increases initiation accuracy in vivo. Our results further demonstrate that the GTPase-activating protein eIF5 and ß-subunit of eIF2 promote accuracy by controlling eIF1 dissociation and the stability of TC binding to the PIC, beyond their roles in regulating GTP hydrolysis by eIF2.


Asunto(s)
Factor 1 Eucariótico de Iniciación/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Iniciación de la Transcripción Genética , Secuencia de Aminoácidos , Codón Iniciador , Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 5 Eucariótico de Iniciación/química , Factor 5 Eucariótico de Iniciación/metabolismo , Técnicas de Inactivación de Genes , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Hidrólisis , Datos de Secuencia Molecular , Mutación Missense , Unión Proteica , Estabilidad Proteica , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
16.
Biochemistry ; 52(52): 9510-8, 2013 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-24319994

RESUMEN

Scanning of the mRNA transcript by the preinitiation complex (PIC) requires a panel of eukaryotic initiation factors, which includes eIF1 and eIF1A, the main transducers of stringent AUG selection. eIF1A plays an important role in start codon recognition; however, its molecular contacts with eIF5 are unknown. Using nuclear magnetic resonance, we unveil eIF1A's binding surface on the carboxyl-terminal domain of eIF5 (eIF5-CTD). We validated this interaction by observing that eIF1A does not bind to an eIF5-CTD mutant, altering the revealed eIF1A interaction site. We also found that the interaction between eIF1A and eIF5-CTD is conserved between humans and yeast. Using glutathione S-transferase pull-down assays of purified proteins, we showed that the N-terminal tail (NTT) of eIF1A mediates the interaction with eIF5-CTD and eIF1. Genetic evidence indicates that overexpressing eIF1 or eIF5 suppresses the slow growth phenotype of eIF1A-NTT mutants. These results suggest that the eIF1A-eIF5-CTD interaction during scanning PICs contributes to the maintenance of eIF1 within the open PIC.


Asunto(s)
Factor 1 Eucariótico de Iniciación/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/genética , Unión Proteica , Biosíntesis de Proteínas , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Factor 5A Eucariótico de Iniciación de Traducción
17.
Nature ; 500(7462): 307-11, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23873042

RESUMEN

During translation initiation in eukaryotes, the small ribosomal subunit binds messenger RNA at the 5' end and scans in the 5' to 3' direction to locate the initiation codon, form the 80S initiation complex and start protein synthesis. This simple, yet intricate, process is guided by multiple initiation factors. Here we determine the structures of three complexes of the small ribosomal subunit that represent distinct steps in mammalian translation initiation. These structures reveal the locations of eIF1, eIF1A, mRNA and initiator transfer RNA bound to the small ribosomal subunit and provide insights into the details of translation initiation specific to eukaryotes. Conformational changes associated with the captured functional states reveal the dynamics of the interactions in the P site of the ribosome. These results have functional implications for the mechanism of mRNA scanning.


Asunto(s)
Modelos Moleculares , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/metabolismo , Animales , Cristalografía por Rayos X , Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/metabolismo , Humanos , Unión Proteica , Estructura Cuaternaria de Proteína , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/metabolismo , Conejos , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas/metabolismo
18.
Nat Genet ; 45(8): 933-6, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23793026

RESUMEN

Gene expression profiles and chromosome 3 copy number divide uveal melanomas into two distinct classes correlating with prognosis. Using exome sequencing, we identified recurrent somatic mutations in EIF1AX and SF3B1, specifically occurring in uveal melanomas with disomy 3, which rarely metastasize. Targeted resequencing showed that 24 of 31 tumors with disomy 3 (77%) had mutations in either EIF1AX (15; 48%) or SF3B1 (9; 29%). Mutations were infrequent (2/35; 5.7%) in uveal melanomas with monosomy 3, which are associated with poor prognosis. Resequencing of 13 uveal melanomas with partial monosomy 3 identified 8 tumors with a mutation in either SF3B1 (7; 54%) or EIF1AX (1; 8%). All EIF1AX mutations caused in-frame changes affecting the N terminus of the protein, whereas 17 of 19 SF3B1 mutations encoded an alteration of Arg625. Resequencing of ten uveal melanomas with disomy 3 that developed metastases identified SF3B1 mutations in three tumors, none of which targeted Arg625.


Asunto(s)
Aneuploidia , Cromosomas Humanos Par 3 , Factor 1 Eucariótico de Iniciación/genética , Exoma , Melanoma/genética , Mutación , Fosfoproteínas/genética , Ribonucleoproteína Nuclear Pequeña U2/genética , Neoplasias de la Úvea/genética , Secuencia de Aminoácidos , Variaciones en el Número de Copia de ADN , Factor 1 Eucariótico de Iniciación/química , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Melanoma/mortalidad , Melanoma/patología , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Monosomía/genética , Metástasis de la Neoplasia , Pronóstico , Factores de Empalme de ARN , Alineación de Secuencia , Neoplasias de la Úvea/mortalidad , Neoplasias de la Úvea/patología
19.
EMBO J ; 32(6): 899-913, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23435562

RESUMEN

Importin13 (Imp13) is a bidirectional karyopherin that can mediate both import and export of cargoes. Imp13 recognizes several import cargoes, which include the exon junction complex components Mago-Y14 and the E2 SUMO-conjugating enzyme Ubc9, and one known export cargo, the translation initiation factor 1A (eIF1A). To understand how Imp13 can perform double duty, we determined the 3.6-Å crystal structure of Imp13 in complex with RanGTP and with eIF1A. eIF1A binds at the inner surface of the Imp13 C-terminal arch adjacent and concomitantly to RanGTP illustrating how eIF1A can be exported by Imp13. Moreover, the 3.0-Å structure of Imp13 in its unbound state reveals the existence of an open conformation in the cytoplasm that explains export cargo release and completes the export branch of the Imp13 pathway. Finally, we demonstrate that Imp13 is able to bind and export eIF1A in vivo and that its function is essential.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Carioferinas/química , Carioferinas/metabolismo , Transporte Activo de Núcleo Celular/genética , Sitios de Unión/genética , Citoplasma/metabolismo , Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/genética , Factor 1 Eucariótico de Iniciación/metabolismo , Células HeLa , Humanos , Carioferinas/genética , Modelos Biológicos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Dominios y Motivos de Interacción de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas/fisiología , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas/genética
20.
Proteomics ; 13(5): 833-44, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23303650

RESUMEN

Viroids are single-stranded, circular, noncoding RNAs that infect plants, causing devastating diseases. In this work, we employed 2D DIGE, followed by MS identification, to analyze the response of tomato plants infected by Citrus exocortis viroid (CEVd). Among the differentially expressed proteins detected, 45 were successfully identified and classified into different functional categories. Validation results by RT-PCR allowed us to classify the proteins into two expression groups. First group included genes with changes at the transcriptional level upon CEVd infection, such as an endochitinase, a ß-glucanase, and pathogenesis-related proteins, PR10 and P69G. All these defense proteins were also induced by gentisic acid, a pathogen-induced signal in compatible interactions. The second group of proteins showed no changes at the transcriptional level and included several ribosomal proteins and translation factors, such as the elongation factors 1 and 2 and the translation initiation factor 5-alpha. These results were validated by 2D Western blot, and possible PTMs caused by CEVd infection were detected. Moreover, an interaction between eukaryotic elongation factor 1 and CEVd was observed by 2D Northwestern. The present study provides new protein-related information on the mechanisms of plant resistance to pathogens.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Solanum lycopersicum/fisiología , Viroides/fisiología , Western Blotting , Electroforesis en Gel Bidimensional , Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Gentisatos/farmacología , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/virología , Enfermedades de las Plantas , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Unión Proteica , Modificación Traduccional de las Proteínas/efectos de los fármacos , Modificación Traduccional de las Proteínas/fisiología , Proteoma/efectos de los fármacos , Proteoma/fisiología , ARN Viral/química , ARN Viral/metabolismo , Reproducibilidad de los Resultados , Ácido Salicílico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...