Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
J Cell Biol ; 223(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38656405

RESUMEN

Cells exposed to proteotoxic stress invoke adaptive responses aimed at restoring proteostasis. Our previous studies have established a firm role for the transcription factor Nuclear factor-erythroid derived-2-related factor-1 (Nrf1) in responding to proteotoxic stress elicited by inhibition of cellular proteasome. Following proteasome inhibition, Nrf1 mediates new proteasome synthesis, thus enabling the cells to mitigate the proteotoxic stress. Here, we report that under similar circumstances, multiple components of the autophagy-lysosomal pathway (ALP) were transcriptionally upregulated in an Nrf1-dependent fashion, thus providing the cells with an additional route to cope with proteasome insufficiency. In response to proteasome inhibitors, Nrf1-deficient cells displayed profound defects in invoking autophagy and clearance of aggresomes. This phenomenon was also recapitulated in NGLY1 knockout cells, where Nrf1 is known to be non-functional. Conversely, overexpression of Nrf1 induced ALP genes and endowed the cells with an increased capacity to clear aggresomes. Overall, our results significantly expand the role of Nrf1 in shaping the cellular response to proteotoxic stress.


Asunto(s)
Autofagia , Factor 1 Relacionado con NF-E2 , Estrés Proteotóxico , Animales , Humanos , Ratones , Autofagia/genética , Lisosomas/metabolismo , Factor 1 Relacionado con NF-E2/metabolismo , Factor 1 Relacionado con NF-E2/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Inhibidores de Proteasoma/farmacología , Proteostasis , Estrés Fisiológico
2.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119644, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37996059

RESUMEN

Since Nrf1 and Nrf2 are essential for regulating the lipid metabolism pathways, their dysregulation has thus been shown to be critically involved in the non-controllable inflammatory transformation into cancer. Herein, we have explored the molecular mechanisms underlying their distinct regulation of lipid metabolism, by comparatively analyzing the changes in those lipid metabolism-related genes in Nrf1α-/- and/or Nrf2-/- cell lines relative to wild-type controls. The results revealed that loss of Nrf1α leads to lipid metabolism disorders. That is, its lipid synthesis pathway was up-regulated by the JNK-Nrf2-AP1 signaling, while its lipid decomposition pathway was down-regulated by the nuclear receptor PPAR-PGC1 signaling, thereby resulting in severe accumulation of lipids as deposited in lipid droplets. By contrast, knockout of Nrf2 gave rise to decreases in lipid synthesis and uptake capacity. These demonstrate that Nrf1 and Nrf2 contribute to significant differences in the cellular lipid metabolism profiles and relevant pathological responses. Further experimental evidence unraveled that lipid deposition in Nrf1α-/- cells resulted from CD36 up-regulation by activating the PI3K-AKT-mTOR pathway, leading to abnormal activation of the inflammatory response. This was also accompanied by a series of adverse consequences, e.g., accumulation of reactive oxygen species (ROS) in Nrf1α-/- cells. Interestingly, treatment of Nrf1α-/- cells with 2-bromopalmitate (2BP) enabled the yield of lipid droplets to be strikingly alleviated, as accompanied by substantial abolishment of CD36 and critical inflammatory cytokines. Such Nrf1α-/- -led inflammatory accumulation of lipids, as well as ROS, was significantly ameliorated by 2BP. Overall, this study provides a potential strategy for cancer prevention and treatment by precision targeting of Nrf1, Nrf2 alone or both.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Factor 1 Relacionado con NF-E2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Factor 2 Relacionado con NF-E2/genética , Palmitatos , Fosfatidilinositol 3-Quinasas , Especies Reactivas de Oxígeno , Factor 1 Relacionado con NF-E2/genética
3.
Redox Biol ; 69: 103003, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38150994

RESUMEN

The failure of the proper protein turnover in the nervous system is mainly linked to a variety of neurodegenerative disorders. Therefore, a better understanding of key protein degradation through the ubiquitin-proteasome system is critical for effective prevention and treatment of those disorders. The proteasome expression is tightly regulated by a CNC (cap'n'collar) family of transcription factors, amongst which the nuclear factor-erythroid 2-like bZIP factor 1 (NFE2L1, also known as Nrf1, with its long isoform TCF11 and short isoform LCR-F1) has been identified as an indispensable regulator of the transcriptional expression of the ubiquitin-proteasome system. However, much less is known about how the pivotal role of NFE2L1/Nrf1, as compared to its homologous NFE2L2 (also called Nrf2), is translated to its physiological and pathophysiological functions in the nervous system insomuch as to yield its proper cytoprotective effects against neurodegenerative diseases. The potential of NFE2L1 to fulfill its unique neuronal function to serve as a novel therapeutic target for neurodegenerative diseases is explored by evaluating the hitherto established preclinical and clinical studies of Alzheimer's and Parkinson's diseases. In this review, we have also showcased a group of currently available activators of NFE2L1, along with an additional putative requirement of this CNC-bZIP factor for healthy longevity based on the experimental evidence obtained from its orthologous SKN1-A in Caenorhabditis elegans.


Asunto(s)
Regulación de la Expresión Génica , Enfermedades Neurodegenerativas , Animales , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Isoformas de Proteínas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ubiquitinas/metabolismo , Factor 1 Relacionado con NF-E2/genética
4.
Genes Genomics ; 45(9): 1107-1115, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37405595

RESUMEN

BACKGROUND: Although cytoreductive surgery followed by adjuvant chemotherapy is effective as a standard treatment for early-stage ovarian cancer, the majority of ovarian cancer cases are diagnosed at the advanced stages with dissemination to the peritoneal cavity, leading to a poor prognosis. Therefore, it is crucial to understand the cellular and molecular mechanisms underlying metastasis and identify novel therapeutic targets. OBJECTIVE: In this study, we aimed to elucidate the mechanisms underlying gene expression alterations during the acquisition of metastatic potential and characterize the metastatic subpopulations within ovarian cancer cells. METHODS: We conducted single-cell RNA sequencing of two human ovarian cancer cell lines: SKOV-3 and SKOV-3-13, a highly metastatic subclone of SKOV-3. Suppression of NFE2L1 expression was performed through siRNA-mediated knockdown and CRISPR-Cas9-mediated knockout. RESULTS: Clustering and pseudotime trajectory analysis revealed pro-metastatic subpopulation within these cells. Furthermore, gene set enrichment analysis and prognosis analysis indicated that NFE2L1 could be a key transcription factor in the acquisition of metastasis potential. Inhibition of NFE2L1 significantly reduced migration and viability of both cells. In addition, NFE2L1 knockout cells exhibited significantly reduced tumor growth in a mouse xenograft model, recapitulating in silico and in vitro results. CONCLUSION: The results presented in this study deepen our understanding of the molecular pathogenesis of ovarian cancer metastasis with the ultimate goal of developing treatments targeting pro-metastatic subclones prior to metastasis.


Asunto(s)
Neoplasias Ováricas , Factores de Transcripción , Humanos , Animales , Ratones , Femenino , Factores de Transcripción/genética , Línea Celular Tumoral , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Análisis de Secuencia de ARN , Factor 1 Relacionado con NF-E2/genética
5.
Redox Biol ; 65: 102819, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37473701

RESUMEN

The nuclear factor erythroid 2 (NF-E2)-related factor 1 (NFE2L1, also known as Nrf1) is a highly conserved transcription factor that belongs to the CNC-bZIP subfamily. Its significance lies in its control over redox balance, proteasome activity, and organ integrity. Stress responses encompass a series of compensatory adaptations utilized by cells and organisms to cope with extracellular or intracellular stress initiated by stressful stimuli. Recently, extensive evidence has demonstrated that NFE2L1 plays a crucial role in cellular stress adaptation by 1) responding to oxidative stress through the induction of antioxidative responses, and 2) addressing proteotoxic stress or endoplasmic reticulum (ER) stress by regulating the ubiquitin-proteasome system (UPS), unfolded protein response (UPR), and ER-associated degradation (ERAD). It is worth noting that NFE2L1 serves as a core factor in proteotoxic stress adaptation, which has been extensively studied in cancer and neurodegeneration associated with enhanced proteasomal stress. In these contexts, utilization of NFE2L1 inhibitors to attenuate proteasome "bounce-back" response holds tremendous potential for enhancing the efficacy of proteasome inhibitors. Additionally, abnormal stress adaptations of NFE2L1 and disturbances in redox and protein homeostasis contribute to the pathophysiological complications of cardiovascular diseases, inflammatory diseases, and autoimmune diseases. Therefore, a comprehensive exploration of the molecular basis of NFE2L1 and NFE2L1-mediated diseases related to stress responses would not only facilitate the identification of novel diagnostic and prognostic indicators but also enable the identification of specific therapeutic targets for NFE2L1-related diseases.


Asunto(s)
Factor 1 Relacionado con NF-E2 , Complejo de la Endopetidasa Proteasomal , Regulación de la Expresión Génica , Factor 1 Relacionado con NF-E2/genética , Estrés Oxidativo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Humanos
6.
Proc Natl Acad Sci U S A ; 119(11): e2118646119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35271393

RESUMEN

SignificanceFerroptosis is an oxidative form of cell death whose biochemical regulation remains incompletely understood. Cap'n'collar (CNC) transcription factors including nuclear factor erythroid-2-related factor 1 (NFE2L1/NRF1) and NFE2L2/NRF2 can both regulate oxidative stress pathways but are each regulated in a distinct manner, and whether these two transcription factors can regulate ferroptosis independent of one another is unclear. We find that NFE2L1 can promote ferroptosis resistance, independent of NFE2L2, by maintaining the expression of glutathione peroxidase 4 (GPX4), a key protein that prevents lethal lipid peroxidation. NFE2L2 can also promote ferroptosis resistance but does so through a distinct mechanism that appears independent of GPX4 protein expression. These results suggest that NFE2L1 and NFE2L2 independently regulate ferroptosis.


Asunto(s)
Ferroptosis , Regulación de la Expresión Génica , Factor 1 Relacionado con NF-E2 , Estrés Oxidativo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Ferroptosis/genética , Técnicas de Inactivación de Genes , Humanos , Peroxidación de Lípido , Redes y Vías Metabólicas/genética , Factor 1 Relacionado con NF-E2/genética , Factor 1 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética
7.
Hum Mutat ; 43(4): 471-476, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35112409

RESUMEN

The NFE2L1 transcription factor (also known as Nrf1 for nuclear factor erythroid 2-related factor-1) is a broadly expressed basic leucine zipper protein that performs a critical role in the cellular stress response pathway. Here, we identified a heterozygous nonsense mutation located in the last exon of the gene that terminates translation prematurely, resulting in the production of a truncated peptide devoid of the carboxyl-terminal region containing the DNA-binding and leucine-zipper dimerization interface of the protein. Variant derivatives were well expressed in vitro, and they inhibited the transactivation function of wild-type proteins in luciferase reporter assays. Our studies suggest that this dominant-negative effect of truncated variants is through the formation of inactive heterodimers with wild-type proteins preventing the expression of its target genes. These findings suggest the potential role of diminished NFE2L1 function as an explanation for the developmental delay, hypotonia, hypospadias, bifid scrotum, and failure to thrive observed in the patient.


Asunto(s)
Insuficiencia de Crecimiento , Hipotonía Muscular , Regulación de la Expresión Génica , Genitales , Humanos , Masculino , Factor 1 Relacionado con NF-E2/genética , Factor 1 Relacionado con NF-E2/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Mol Metab ; 57: 101436, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34999280

RESUMEN

OBJECTIVE: Ferroptosis continues to emerge as a novel modality of cell death with important therapeutic implications for a variety of diseases, most notably cancer and degenerative diseases. While susceptibility, initiation, and execution of ferroptosis have been linked to reprogramming of cellular lipid metabolism, imbalances in iron-redox homeostasis, and aberrant mitochondrial respiration, the detailed mechanisms of ferroptosis are still insufficiently well understood. METHODS AND RESULTS: Here we show that diminished proteasome function is a new mechanistic feature of ferroptosis. The transcription factor nuclear factor erythroid-2, like-1 (NFE2L1) protects from ferroptosis by sustaining proteasomal activity. In cellular systems, loss of NFE2L1 reduced cellular viability after the induction of both chemically and genetically induced ferroptosis, which was linked to the regulation of proteasomal activity under these conditions. Importantly, this was reproduced in a Sedaghatian-type Spondylometaphyseal Dysplasia (SSMD) patient-derived cell line carrying mutated glutathione peroxidase-4 (GPX4), a critical regulator of ferroptosis. Also, reduced proteasomal activity was associated with ferroptosis in Gpx4-deficient mice. In a mouse model for genetic Nfe2l1 deficiency, we observed brown adipose tissue (BAT) involution, hyperubiquitination of ferroptosis regulators, including the GPX4 pathway, and other hallmarks of ferroptosis. CONCLUSION: Our data highlight the relevance of the NFE2L1-proteasome pathway in ferroptosis. Manipulation of NFE2L1 activity might enhance ferroptosis-inducing cancer therapies as well as protect from aberrant ferroptosis in neurodegeneration, general metabolism, and beyond.


Asunto(s)
Ferroptosis , Factor 1 Relacionado con NF-E2 , Animales , Homeostasis , Humanos , Ratones , Mitocondrias/metabolismo , Factor 1 Relacionado con NF-E2/genética , Factor 1 Relacionado con NF-E2/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Complejo de la Endopetidasa Proteasomal/metabolismo
9.
Blood Adv ; 6(2): 429-440, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34649278

RESUMEN

Multiple myeloma (MM) cells suffer from baseline proteotoxicity as the result of an imbalance between the load of misfolded proteins awaiting proteolysis and the capacity of the ubiquitin-proteasome system to degrade them. This intrinsic vulnerability is at the base of MM sensitivity to agents that perturb proteostasis, such as proteasome inhibitors (PIs), the mainstay of modern-day myeloma therapy. De novo and acquired PI resistance are important clinical limitations that adversely affect prognosis. The molecular mechanisms underpinning PI resistance are only partially understood, limiting the development of drugs that can overcome it. The transcription factor NRF1 is activated by the aspartic protease DNA damage inducible 1 homolog 2 (DDI2) upon proteasome insufficiency and governs proteasome biogenesis. In this article, we show that MM cells exhibit baseline NRF1 activation and are dependent upon DDI2 for survival. DDI2 knockout (KO) is cytotoxic for MM cells, both in vitro and in vivo. Protein structure-function studies show that DDI2 KO blocks NRF1 cleavage and nuclear translocation, causing impaired proteasome activity recovery upon irreversible proteasome inhibition and, thereby, increasing sensitivity to PIs. Add-back of wild-type, but not of catalytically dead DDI2, fully rescues these phenotypes. We propose that DDI2 is an unexplored promising molecular target in MM by disrupting the proteasome stress response and exacerbating proteotoxicity.


Asunto(s)
Proteasas de Ácido Aspártico/metabolismo , Mieloma Múltiple , Factor 1 Relacionado con NF-E2/metabolismo , Complejo de la Endopetidasa Proteasomal , Humanos , Factor 1 Relacionado con NF-E2/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteolisis
10.
Food Chem Toxicol ; 158: 112633, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34699923

RESUMEN

Streptozotocin (STZ) is a pancreatic ß cell-specific toxicant that is widely used to generate models of diabetes in rodents as well as in the treatment of tumors derived from pancreatic ß cells. DNA alkylation, oxidative stress and mitochondrial toxicity have been recognized as the mechanisms for STZ-induced pancreatic ß cell damage. Here, we found that pancreatic ß cell-specific deficiency of nuclear factor erythroid-derived factor 2-related factor 1 (NFE2L1), a master regulator of the cellular adaptive response to a variety of stresses, in mice led to a dramatic resistance to STZ-induced hyperglycemia. Indeed, fifteen days subsequent to last dosage of STZ, the pancreatic ß cell specific Nfe2l1 knockout [Nfe2l1(ß)-KO] mice showed reduced hyperglycemia, improved glucose tolerance, higher plasma insulin and more intact islets surrounded by exocrine acini compared to the Nfe2l1-Flox control mice with the same treatment. Immunohistochemistry staining revealed a greater amount of insulin-positive cells in the pancreas of Nfe2l1(ß)-KO mice than those in Nfe2l1-Flox mice 15 days after the last STZ injection. In line with this observation, both isolated Nfe2l1(ß)-KO islets and Nfe2l1-deficient MIN6 (Nfe2l1-KD) cells were resistant to STZ-induced toxicity and apoptosis. Furthermore, pretreatment of the MIN6 cells with glycolysis inhibitor 2-Deoxyglucose sensitized Nfe2l1-KD cells to STZ-induced toxicity. These findings demonstrated that loss of Nfe2l1 attenuates pancreatic ß cells damage and dysfunction caused by STZ exposure, partially due to Nfe2l1 deficiency-induced metabolic switch to enhanced glycolysis.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Factor 1 Relacionado con NF-E2 , Animales , Línea Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/fisiopatología , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/patología , Células Secretoras de Insulina/fisiología , Masculino , Ratones , Factor 1 Relacionado con NF-E2/genética , Factor 1 Relacionado con NF-E2/metabolismo , Estreptozocina
11.
Nat Commun ; 12(1): 5270, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489413

RESUMEN

Following injury, cells in regenerative tissues have the ability to regrow. The mechanisms whereby regenerating cells adapt to injury-induced stress conditions and activate the regenerative program remain to be defined. Here, using the mammalian neonatal heart regeneration model, we show that Nrf1, a stress-responsive transcription factor encoded by the Nuclear Factor Erythroid 2 Like 1 (Nfe2l1) gene, is activated in regenerating cardiomyocytes. Genetic deletion of Nrf1 prevented regenerating cardiomyocytes from activating a transcriptional program required for heart regeneration. Conversely, Nrf1 overexpression protected the adult mouse heart from ischemia/reperfusion (I/R) injury. Nrf1 also protected human induced pluripotent stem cell-derived cardiomyocytes from doxorubicin-induced cardiotoxicity and other cardiotoxins. The protective function of Nrf1 is mediated by a dual stress response mechanism involving activation of the proteasome and redox balance. Our findings reveal that the adaptive stress response mechanism mediated by Nrf1 is required for neonatal heart regeneration and confers cardioprotection in the adult heart.


Asunto(s)
Corazón/fisiología , Daño por Reperfusión Miocárdica/metabolismo , Factor 1 Relacionado con NF-E2/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Doxorrubicina/farmacología , Femenino , Hemo Oxigenasa (Desciclizante)/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Masculino , Ratones Noqueados , Ratones Transgénicos , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/fisiología , Factor 1 Relacionado con NF-E2/genética , Oxidación-Reducción , Proteostasis , Ratas Sprague-Dawley , Regeneración
12.
Life Sci ; 279: 119697, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34102194

RESUMEN

AIMS: Vitamin D and rosuvastatin are well-known drugs that mediate beneficial effects in treating type-2 diabetes (T2D) complications; however, their anti-neuropathic potential is debatable. Hence, our study investigates their neurotherapeutic potential and the possible underlying mechanisms using a T2D-associated neuropathy rat model. MAIN METHODS: Diabetic peripheral neuropathy (DPN) was induced with 8 weeks of administration of a high fat fructose diet followed by a single i.p. injection of streptozotocin (35 mg/kg). Six weeks later, DPN developed and rats were divided into five groups; viz., control, untreated DPN, DPN treated with vitamin D (cholecalciferol, 3500 IU/kg/week), DPN treated with rosuvastatin (10 mg/kg/day), or DPN treated with combination vitamin D and rosuvastatin. We determined their anti-neuropathic effects on small nerves (tail flick test); large nerves (electrophysiological and histological examination); neuronal inflammation (TNF-α and IL-18); apoptosis (caspase-3 activity and Bcl-2); mitochondrial function (NRF-1, TFAM, mtDNA, and ATP); and NICD1, Wnt-10α/ß-catenin, and TGF-ß/Smad-7 pathways. KEY FINDINGS: Two-month treatment with vitamin D and/or rosuvastatin regenerated neuronal function and architecture and abated neuronal inflammation and apoptosis. This was verified by the inhibition of the neuronal content of TNF-α, IL-18, and caspase-3 activity, while augmenting Bcl-2 content in the sciatic nerve. These treatments inhibited the protein expressions of NICD1, Wnt-10α, ß-catenin, and TGF-ß; increased the sciatic nerve content of Smad-7; and enhanced mitochondrial biogenesis and function. SIGNIFICANCE: Vitamin D and/or rosuvastatin alleviated diabetes-induced neuropathy by suppressing Notch1 and Wnt-10α/ß-catenin; modulating TGF-ß/Smad-7 signaling pathways; and enhancing mitochondrial function, which lessened neuronal degeneration, demyelination, and fibrosis.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Neuropatías Diabéticas/prevención & control , Regulación de la Expresión Génica/efectos de los fármacos , Rosuvastatina Cálcica/farmacología , Vitamina D/administración & dosificación , Animales , Anticolesterolemiantes/farmacología , Neuropatías Diabéticas/etiología , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/patología , Quimioterapia Combinada , Masculino , Factor 1 Relacionado con NF-E2/genética , Factor 1 Relacionado con NF-E2/metabolismo , Ratas , Ratas Wistar , Receptor Notch1/genética , Receptor Notch1/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Vitaminas/administración & dosificación , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
13.
Biochem Biophys Res Commun ; 562: 146-153, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34052660

RESUMEN

While molecular oxygen is essential for aerobic organisms, its utilization is inseparably connected with generation of oxidative insults. To cope with the detrimental aspects, cells evolved antioxidative defense systems, and insufficient management of the oxidative insults underlies the pathogenesis of a wide range of diseases. A battery of genes for this antioxidative defense are regulated by the transcription factors nuclear factor-erythroid 2-like 1 and 2 (NRF1 and NRF2). While the regulatory steps for the activation of NRFs have been investigated with particular emphasis on nuclear translocation and proteosomal degradation, unknown redundancy may exist considering the indispensable nature of these defense systems. Here we unraveled that C-terminal binding protein 2 (CtBP2), a transcriptional cofactor with redox-sensing capability, is an obligate partner of NRFs. CtBP2 forms transcriptional complexes with NRF1 and NRF2 that is required to promote the expression of antioxidant genes in response to oxidative insults. Our findings illustrate a basis for understanding the transcriptional regulation of antioxidative defense systems that may be exploited therapeutically.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas Co-Represoras/metabolismo , Factor 1 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Secuencia de Aminoácidos , Antioxidantes/metabolismo , Regulación de la Expresión Génica , Humanos , Factor 1 Relacionado con NF-E2/química , Factor 1 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/química , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , Unión Proteica , Transcripción Genética
14.
Toxicol Appl Pharmacol ; 420: 115523, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33838154

RESUMEN

Metformin, as the first-line drug for the treatment of type 2 diabetes mellitus, has been shown to possess a capability to activate or inhibit the production of reactive oxygen species (ROS) in different ways. However, the detailed mechanisms of the opposite effect are poorly understood. Here we provide evidence that metformin induces accumulation of ROS by inhibiting the expression of a core antioxidant transcription factor nuclear factor erythroid 2 like 1 (NFE2L1/Nrf1) in human hepatocellular carcinoma HepG2 cells. In the present study, we originally found that the increased ROS induced by metformin was blunted in NFE2L1 knockdown cell line. Furtherly by examining the effects of metformin on endogenous and exogenous NFE2L1, we also found metformin could not only inhibit the transcription of NFE2L1 gene, but also promote the degradation of NFE2L1 protein at the post-transcriptional level, whereas this effect can be reversed by high glucose. The inhibitory effect of metformin on NFE2L1 was investigated to occur through the N-terminal domain (NTD) of NFE2L1 protein, and its downregulation by metformin was in an AMP-activated protein kinase (AMPK)-independent manner. But the activation of AMPK signaling pathway by metformin in NFE2L1 knockdown HepG2 cells is reversed, indicating that NFE2L1 may be an important regulator of AMPK signal. Altogether, this work provides a better understanding of the relationship between metformin and oxidative stress, and hence contributes to translational study of metformin through its hypoglycemic and tumor suppressive effects.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Metformina/farmacología , Factor 1 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Factor 1 Relacionado con NF-E2/genética , Transducción de Señal
15.
Oxid Med Cell Longev ; 2020: 5097109, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33376579

RESUMEN

There is hitherto no literature available for explaining two distinct, but confused, Nrf1 transcription factors, because they shared the same abbreviations from nuclear factor erythroid 2-related factor 1 (also called Nfe2l1) and nuclear respiratory factor (originally designated α-Pal). Thus, we have here identified that Nfe2l1Nrf1 and α-PalNRF1 exert synergistic and antagonistic roles in integrative regulation of the nuclear-to-mitochondrial respiratory and antioxidant transcription profiles. In mouse embryonic fibroblasts (MEFs), knockout of Nfe2l1-/- leads to substantial decreases in expression levels of α-PalNRF1 and Nfe2l2, together with TFAM (mitochondrial transcription factor A) and other target genes. Similar inhibitory results were determined in Nfe2l2-/- MEFs but with an exception that both GSTa1 and Aldh1a1 were distinguishably upregulated in Nfe2l1-/- MEFs. Such synergistic contributions of Nfe2l1 and Nfe2l2 to the positive regulation of α-PalNRF1 and TFAM were validated in Keap1-/- MEFs. However, human α-PalNRF1 expression was unaltered by hNfe2l1α-/- , hNfe2l2-/-ΔTA , or even hNfe2l1α-/-+siNrf2, albeit TFAM was activated by Nfe2l1 but inhibited by Nfe2l2; such an antagonism occurred in HepG2 cells. Conversely, almost all of mouse Nfe2l1, Nfe2l2, and cotarget genes were downexpressed in α-PalNRF1+/- MEFs. On the contrary, upregulation of human Nfe2l1, Nfe2l2, and relevant reporter genes took place after silencing of α-PalNRF1, but their downregulation occurred upon ectopic expression of α-PalNRF1. Furtherly, Pitx2 (pituitary homeobox 2) was also identified as a direct upstream regulator of Nfe2l1 and TFAM, besides α-PalNRF1. Overall, these across-talks amongst Nfe2l1, Nfe2l2, and α-PalNRF1, along with Pitx2, are integrated from the endoplasmic reticulum towards the nuclear-to-mitochondrial communication for targeting TFAM, in order to finely tune the robust balance of distinct cellular oxidative respiratory and antioxidant gene transcription networks, albeit they differ between the mouse and the human. In addition, it is of crucial importance to note that, in view of such mutual interregulation of these transcription factors, much cautions should be severely taken for us to interpret those relevant experimental results obtained from knockout of Nfe2l1, Nfe2l2, α-Pal or Pitx2, or their gain-of-functional mutants.


Asunto(s)
Antioxidantes/metabolismo , Núcleo Celular/metabolismo , Mitocondrias/metabolismo , Factor 1 Relacionado con NF-E2/metabolismo , Factor Nuclear 1 de Respiración/metabolismo , Transcripción Genética , Animales , Línea Celular , Núcleo Celular/genética , Humanos , Ratones , Ratones Noqueados , Mitocondrias/genética , Factor 1 Relacionado con NF-E2/genética , Factor Nuclear 1 de Respiración/genética
16.
Food Chem Toxicol ; 146: 111836, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33137425

RESUMEN

Nuclear factor-erythroid 2-related factor 1 (NFE2L1, also known as NRF1) belongs to the CNC-bZIP family and is a master regulator of cellular adaptive responses to various stresses in many cells and tissues. Rosiglitazone (RGZ), a thiazolidinedione agonist of PPARγ, is widely used in the treatment of type 2 diabetes mellitus by stimulating genes which favor storage of triglycerides. Our previous studies demonstrated that loss of Nfe2l1 in adipocytes [Nfe2l1(f)-KO] resulted in diminished subcutaneous white adipose tissue (WAT) mass with adipocyte hypertrophy and severe adipose inflammation, which might be attributed, at least in part, to impaired lipolysis. However, the exact mechanism underlying this phenotype remains unclear. To further clarify the regulatory role of NFE2L1 in adipocyte lipid metabolism, we used protracted RGZ treatment to facilitate lipid accumulation in mice. In Nfe2l1flox/flox control mice, three weeks of RGZ treatment significantly downregulated mRNA levels of a group of inflammation-related genes in WAT. In contrast, the phenotype of Nfe2l1(f)-KO mice was aggravated showing increased transcript expression related to inflammation and pyroptosis in their shrunk WAT. These findings provide deeper insight into the mechanisms by which NFE2L1 regulates the expression of a set of lipolysis-related genes and controls WAT plasticity and global energy homeostasis.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Inflamación/inducido químicamente , Factor 1 Relacionado con NF-E2/metabolismo , Rosiglitazona/toxicidad , Adipogénesis , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Hipoglucemiantes/toxicidad , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Noqueados , Factor 1 Relacionado con NF-E2/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
17.
Toxicol Appl Pharmacol ; 407: 115251, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32980394

RESUMEN

Acute exposure to arsenic is known to cause bone marrow depression and result in anemia, in which the dusfunction of cells in the bone marrow niche such as mesenchymal stem cells (MSCs) is vital. However, the mechanism underlying response of MSCs to arsenic challange is not fully understood. In the present study, we investigated the role of nuclear factor erythroid 2-related factor (NRF) 1 (NRF1), a sister member of the well-known master regulator in antioxidative response NRF2, in arsenite-induced cytotoxicity in mouse bone marrow-derived MSCs (mBM-MSCs). We found that arsenite exposure induced significant increase in the protein level of long-isoform NRF1 (L-NRF1). Though short-isoform NRF1 (S-NRF1) was induced by arsenite at mRNA level, its protein level was not obviously altered. Silencing L-Nrf1 sensitized the cells to arsenite-induced cytotoxicity. L-Nrf1-silenced mBM-MSCs showed decreased arsenic efflux with reduced expression of arsenic transporter ATP-binding cassette subfamily C member 4 (ABCC4), as well as compromised NRF2-mediated antioxidative defense with elevated level of mitochondrial reactive oxygen species (mtROS) under arsenite-exposed conditions. A specific mtROS scavenger (Mito-quinone) alleviated cell apoptosis induced by arsenite in L-Nrf1-silenced mBM-MSCs. Taken together, these findings suggest that L-NRF1 protects mBM-MSCs from arsenite-induced cytotoxicity via suppressing mtROS in addition to facilitating cellular arsenic efflux.


Asunto(s)
Intoxicación por Arsénico/patología , Arsénico/metabolismo , Células de la Médula Ósea/patología , Células Madre Mesenquimatosas/patología , Mitocondrias/metabolismo , Factor 1 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Apoptosis/efectos de los fármacos , Células de la Médula Ósea/efectos de los fármacos , Silenciador del Gen , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Factor 1 Relacionado con NF-E2/biosíntesis , Factor 1 Relacionado con NF-E2/genética , Compuestos Organofosforados/farmacología , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/biosíntesis , Ubiquinona/análogos & derivados , Ubiquinona/farmacología
18.
Mol Biol Cell ; 31(20): 2158-2163, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32924844

RESUMEN

The ability to sense proteasome insufficiency and respond by directing the transcriptional synthesis of de novo proteasomes is a trait that is conserved in evolution and is found in organisms ranging from yeast to humans. This homeostatic mechanism in mammalian cells is driven by the transcription factor NRF1. Interestingly, NRF1 is synthesized as an endoplasmic reticulum (ER) membrane protein and when cellular proteasome activity is sufficient, it is retrotranslocated into the cytosol and targeted for destruction by the ER--associated degradation pathway (ERAD). However, when proteasome capacity is diminished, retrotranslocated NRF1 escapes ERAD and is activated into a mature transcription factor that traverses to the nucleus to induce proteasome genes. In this Perspective, we track the journey of NRF1 from the ER to the nucleus, with a special focus on the various molecular regulators it encounters along its way. Also, using human pathologies such as cancer and neurodegenerative diseases as examples, we explore the notion that modulating the NRF1-proteasome axis could provide the basis for a viable therapeutic strategy in these cases.


Asunto(s)
Factor 1 Relacionado con NF-E2/genética , Factor 1 Relacionado con NF-E2/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/genética , Degradación Asociada con el Retículo Endoplásmico/fisiología , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/genética
19.
Cancer Med ; 9(19): 7205-7217, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32762035

RESUMEN

Long noncoding RNAs (lncRNAs) possessed essential functions in the biological behaviors of various human cancers. SLCO4A1 antisense RNA 1 (SLCO4A1-AS1) is a lncRNA that has been reported as a oncogenic regulator in colorectal cancer and bladder cancer. However, whether it exerted functions in the gene expression and cellular processes in lung adenocarcinoma (LUAD) remains still obscure. In the present research, we unveiled the high level of SLCO4A1-AS1 in LUAD tissues and cells. Moreover, functional assays indicated that SLCO4A-AS1 facilitated LUAD cell proliferation, motility, and cisplatin-resistance. Besides, mechanism investigation revealed that miR-4701-5p could interact with SLCO4A1-AS1 and directly target to NFE2L1. The expression correlation between miR-4701-5p and SLCO4A1-AS1 or NFE2L1 was found to be negative. Moreover, NFE2L1 was expressed at a same tendency with SLCO4A1-AS1 in LUAD tissues and cells. In addition, it was confirmed that NFE2L1 was involved in SLCO4A1-AS1-mediated activation of WNT pathway. According to rescue assays, NFE2L1 could involve in SLCO4A1-AS1-mediated LUAD cell growth. Conclusively, our study demonstrated that SLCO4A1-AS1 facilitated cell growth and enhanced the resistance of LUAD cells to chemotherapy via activating WNT pathway through miR-4701-5p/NFE2L1 axis.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Resistencia a Antineoplásicos , Neoplasias Pulmonares/tratamiento farmacológico , MicroARNs/metabolismo , Factor 1 Relacionado con NF-E2/metabolismo , ARN Largo no Codificante/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Células A549 , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Animales , Movimiento Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones Desnudos , MicroARNs/genética , Factor 1 Relacionado con NF-E2/genética , Invasividad Neoplásica , ARN Largo no Codificante/genética , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Mol Med Rep ; 22(3): 2123-2131, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32705174

RESUMEN

Osteoarthritis (OA) is one of the most common degenerative disease in elderly patients worldwide. Numerous microRNAs (miRs) have been reported to serve an important role in the regulation of gene expression in the occurrence and development of OA. The present study aimed to explore the effect of miR­486­5p on lipopolysaccharide (LPS)­induced cell damage in chondrocytes, as well as the underlying mechanism. The ATDC5 cell line was treated with increasing concentrations of LPS (0, 1, 2, 4 and 8 µg/ml) for 6 h. The binding site of miR­486­5p on nuclear factor erythroid 2 like 1 (NRF1) was predicted using the miRDB database and was validated using the luciferase reporter assay. A CCK­8 assay and flow cytometry analysis were conducted to determine cell viability and apoptosis, respectively. The level of inflammatory cytokines and oxidative stress­associated factors were detected using corresponding test kits. Furthermore, the expression of associated genes were detected using reverse transcription­quantitative PCR and western blotting. LPS significantly decreased cell proliferation, induced cell apoptosis and aggravated the inflammatory response and oxidative stress. Furthermore, miR­486­5p and NRF1 were significantly upregulated and downregulated, respectively, in LPS­induced ATDC5 cells. miR­486­5p was identified to directly target and regulate the expression of NRF1. Inhibition of miR­486­5p significantly improved cell proliferation, decreased apoptosis, attenuated the production of inflammatory cytokines, regulated the level of reactive oxygen species, malondialdehyde, superoxide dismutase and lactate dehydrogenase, and improved the activity of antioxidant enzyme. Furthermore, the effect of miR­486­5p on LPS­induced cell damage was diminished following the downregulation of NRF1. To conclude, inhibition of miR­486­5p alleviated LPS­induced cell damage, including inflammatory injury, oxidative stress and apoptosis, in ATDC5 cells by targeting NRF1. Therefore, NRF1 may serve as a novel therapeutic target for OA.


Asunto(s)
Condrocitos/citología , Lipopolisacáridos/efectos adversos , MicroARNs/genética , Factor 1 Relacionado con NF-E2/metabolismo , Osteoartritis/genética , Animales , Línea Celular , Supervivencia Celular , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Modelos Biológicos , Factor 1 Relacionado con NF-E2/genética , Osteoartritis/inducido químicamente , Estrés Oxidativo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA