Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Mol Biol Cell ; 32(5): 446-459, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33405949

RESUMEN

The components and subprocesses underlying the formation of COPI-coated vesicles at the Golgi are well understood. The coating cascade is initiated after the small GTPase Arf1 is activated by the Sec7 domain-containing guanine nucleotide exchange factor GBF1 (Golgi brefeldin A resistant guanine nucleotide exchange factor 1). This causes a conformational shift within Arf1 that facilitates stable association of Arf1 with the membrane, a process required for subsequent recruitment of the COPI coat. Although we have atomic-level knowledge of Arf1 activation by Sec7 domain-containing GEFs, our understanding of the biophysical processes regulating Arf1 and GBF1 dynamics is limited. We used fluorescence recovery after photobleaching data and kinetic Monte Carlo simulation to assess the behavior of Arf1 and GBF1 during COPI vesicle formation in live cells. Our analyses suggest that Arf1 and GBF1 associate with Golgi membranes independently, with an excess of GBF1 relative to Arf1. Furthermore, the GBF1-mediated Arf1 activation is much faster than GBF1 cycling on/off the membrane, suggesting that GBF1 is regulated by processes other than its interactions Arf1. Interestingly, modeling the behavior of the catalytically inactive GBF1/E794K mutant stabilized on the membrane is inconsistent with the formation of a stable complex between it and an endogenous Arf1 and suggests that GBF1/E794K is stabilized on the membrane independently of complex formation.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factor 1 de Ribosilacion-ADP/fisiología , Factores de Ribosilacion-ADP/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Proteína Coat de Complejo I/metabolismo , Endocitosis , Retículo Endoplásmico/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Células HeLa , Humanos , Cinética , Proteínas de Unión al GTP Monoméricas/metabolismo , Método de Montecarlo , Unión Proteica , Transporte de Proteínas
2.
Mol Metab ; 42: 101055, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32738348

RESUMEN

OBJECTIVE: Cholesterol plays a pivotal role in mitochondrial steroidogenesis, membrane structure, and respiration. Mitochondrial membranes are intrinsically low in cholesterol content and therefore must be replenished with cholesterol from other subcellular membranes. However, the molecular mechanisms underlying mitochondrial cholesterol transport remains poorly understood. The Aster-B gene encodes a cholesterol binding protein recently implicated in cholesterol trafficking from the plasma membrane to the endoplasmic reticulum (ER). In this study, we investigated the function and underlying mechanism of Aster-B in mediating mitochondrial cholesterol transport. METHODS: CRISPR/Cas9 gene editing was carried out to generate cell lines deficient in Aster-B expression. The effect of Aster-B deficiency on mitochondrial cholesterol transport was examined by both confocal imaging analysis and biochemical assays. Deletion mutational analysis was also carried out to identify the function of a putative mitochondrial targeting sequence (MTS) at the N-terminus of Aster-B for its role in targeting Aster-B to mitochondria and in mediating mitochondrial cholesterol trafficking. RESULTS: Ablation of Aster-B impaired cholesterol transport from the ER to mitochondria, leading to a significant decrease in mitochondrial cholesterol content. Aster-B is also required for mitochondrial transport of fatty acids derived from hydrolysis of cholesterol esters. A putative MTS at the N-terminus of Aster-B mediates the mitochondrial cholesterol uptake. Deletion of the MTS or ablation of Arf1 GTPase which is required for mitochondrial translocation of ER proteins prevented mitochondrial cholesterol transport, leading to mitochondrial dysfunction. CONCLUSIONS: We identified Aster-B as a key regulator of cholesterol transport from the ER to mitochondria. Aster-B also coordinates mitochondrial cholesterol trafficking with uptake of fatty acids derived from cholesterol esters, implicating the Aster-B protein as a novel regulator of steroidogenesis.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Colesterol/metabolismo , Proteínas de la Membrana/metabolismo , Factor 1 de Ribosilacion-ADP/fisiología , Animales , Transporte Biológico , Proteínas Portadoras , Línea Celular , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Proteínas de Transporte de Membrana/metabolismo , Ratones , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Elastasa Pancreática
3.
Mol Brain ; 13(1): 2, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31907062

RESUMEN

ADP ribosylation factors (ARFs) are a family of small GTPases composed of six members (ARF1-6) that control various cellular functions, including membrane trafficking and actin cytoskeletal rearrangement, in eukaryotic cells. Among them, ARF1 and ARF6 are the most studied in neurons, particularly at glutamatergic synapses, but their roles at GABAergic synapses have not been investigated. Here, we show that a subset of ARF6 protein is localized at GABAergic synapses in cultured hippocampal neurons. In addition, we found that knockdown (KD) of ARF6, but not ARF1, triggered a reduction in the number of GABAergic synaptic puncta in mature cultured neurons in an ARF activity-dependent manner. ARF6 KD also reduced GABAergic synaptic density in the mouse hippocampal dentate gyrus (DG) region. Furthermore, ARF6 KD in the DG increased seizure susceptibility in an induced epilepsy model. Viewed together, our results suggest that modulating ARF6 and its regulators could be a therapeutic strategy against brain pathologies involving hippocampal network dysfunction, such as epilepsy.


Asunto(s)
Factores de Ribosilacion-ADP/fisiología , Neuronas GABAérgicas/fisiología , Sinapsis/metabolismo , Factor 1 de Ribosilacion-ADP/fisiología , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/antagonistas & inhibidores , Factores de Ribosilacion-ADP/genética , Animales , Células Cultivadas , Neuronas GABAérgicas/ultraestructura , Técnicas de Silenciamiento del Gen , Vectores Genéticos/genética , Vectores Genéticos/uso terapéutico , Hipocampo/citología , Hipocampo/embriología , Humanos , Ácido Kaínico/toxicidad , Masculino , Ratones Endogámicos C57BL , Mutación Puntual , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Ratas , Proteínas Recombinantes/metabolismo , Convulsiones/inducido químicamente , Convulsiones/genética , Convulsiones/fisiopatología , Convulsiones/prevención & control
4.
FASEB J ; 33(9): 9959-9973, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31199673

RESUMEN

VEGF stimulates the formation of new blood vessels by inducing endothelial cell (EC) proliferation and migration. Brefeldin A (BFA)-inhibited guanine nucleotide-exchange protein (BIG)1 and 2 accelerate the replacement of bound GDP with GTP to activate ADP-ribosylation factor (Arf)1, which regulates vesicular transport between the Golgi and plasma membrane. Although it has been reported that treating cells with BFA interferes with Arf1 activation to inhibit VEGF secretion, the role of BIG1 and BIG2 in VEGF trafficking and expression, EC migration and proliferation, and vascular development remains unknown. Here, we found that inactivation of Arf1 reduced VEGF secretion but did not affect the levels of VEGF protein. Interestingly, however, BIG1 and BIG2 knockdown significantly decreased the levels of VEGF mRNA and protein in glioblastoma U251 cells and HUVECs. Furthermore, depletion of BIG1 and BIG2 inhibited HUVEC angiogenesis by diminishing cell migration. Angioblast migration and intersegmental vessel sprouting were also impaired when the BIG2 homolog, Arf guanine nucleotide exchange factor (arfgef)2, was knocked down in zebrafish with endothelial expression of green fluorescent protein (GFP). Depletion of arfgef2 by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) also caused defects in vascular development of zebrafish embryos. Taken together, these data reveal that BIG1 and BIG2 participate in endothelial cell angiogenesis.-Lu, F.-I., Wang, Y.-T., Wang, Y.-S., Wu, C.-Y., Li, C.-C. Involvement of BIG1 and BIG2 in regulating VEGF expression and angiogenesis.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/fisiología , Neovascularización Fisiológica/fisiología , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor 1 de Ribosilacion-ADP/antagonistas & inhibidores , Factor 1 de Ribosilacion-ADP/fisiología , Animales , Sistemas CRISPR-Cas , Movimiento Celular , Embrión no Mamífero/irrigación sanguínea , Desarrollo Embrionario , Células Endoteliales/citología , Células Endoteliales/metabolismo , Técnicas de Silenciamiento del Gen , Genes Reporteros , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neovascularización Fisiológica/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Factor A de Crecimiento Endotelial Vascular/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
5.
Nat Chem Biol ; 15(4): 358-366, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30742123

RESUMEN

Peripheral membrane proteins orchestrate many physiological and pathological processes, making regulation of their activities by small molecules highly desirable. However, they are often refractory to classical competitive inhibition. Here, we demonstrate that potent and selective inhibition of peripheral membrane proteins can be achieved by small molecules that target protein-membrane interactions by a noncompetitive mechanism. We show that the small molecule Bragsin inhibits BRAG2-mediated Arf GTPase activation in vitro in a manner that requires a membrane. In cells, Bragsin affects the trans-Golgi network in a BRAG2- and Arf-dependent manner. The crystal structure of the BRAG2-Bragsin complex and structure-activity relationship analysis reveal that Bragsin binds at the interface between the PH domain of BRAG2 and the lipid bilayer to render BRAG2 unable to activate lipidated Arf. Finally, Bragsin affects tumorsphere formation in breast cancer cell lines. Bragsin thus pioneers a novel class of drugs that function by altering protein-membrane interactions without disruption.


Asunto(s)
Factor 1 de Ribosilacion-ADP/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Factor 1 de Ribosilacion-ADP/metabolismo , Línea Celular Tumoral , GTP Fosfohidrolasas , Proteínas Activadoras de GTPasa , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Células HeLa , Humanos , Membrana Dobles de Lípidos , Glicoproteínas de Membrana/metabolismo , Nucleótidos , Dominios Homólogos a Pleckstrina/fisiología , Unión Proteica , Transducción de Señal , Relación Estructura-Actividad , Sulfotransferasas/metabolismo
6.
Cell Signal ; 46: 64-75, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29499306

RESUMEN

Vascular smooth muscle cells (VSMC) can exhibit a contractile or a synthetic phenotype depending on the extracellular stimuli present and the composition of the extracellular matrix. Uncontrolled activation of the synthetic VSMC phenotype is however associated with the development of cardiovascular diseases. Here, we aimed to elucidate the role of the ARF GTPases in the regulation of VSMC dedifferentiation. First, we observed that the inhibition of the activation of ARF proteins with SecinH3, a blocker of the cytohesin ARF GEF family, reduced the ability of the cells to migrate and proliferate. In addition, this inhibitor also blocked expression of sm22α and αSMA, two contractile markers, at the transcription level impairing cell contractility. Specific knockdown of ARF1 and ARF6 showed that both isoforms were required for migration and proliferation, but ARF1 only regulated contractility through sm22α and αSMA expression. Expression of these VSMC markers was correlated with the degree of actin polymerization. VSMC treatment with SecinH3 as well as ARF1 depletion was both able to block the formation of stress fibres and focal adhesions, demonstrating the role of this GTPase in actin filament formation. Consequently, we observed that both treatments increased the ratio of G-actin to F-actin in these cells. The elevated amounts of cytoplasmic G-actin, acting as a signaling intermediate, blocked the recruitment of the Mkl1 (MRTF-A) transcription factor in the nucleus, demonstrating its involvement in the regulation of contractile protein expression. Altogether, these findings show for the first time that ARF GTPases are actively involved in VSMC phenotypic switching through the regulation of actin function in migration and proliferation, and the control of actin dependent gene regulation.


Asunto(s)
Factor 1 de Ribosilacion-ADP/fisiología , Factores de Ribosilacion-ADP/fisiología , Actinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Factor 6 de Ribosilación del ADP , Citoesqueleto de Actina/metabolismo , Animales , Adhesión Celular , Diferenciación Celular , Regulación de la Expresión Génica , Contracción Muscular , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Fenotipo , Ratas , Transducción de Señal , Fibras de Estrés/metabolismo , Factores de Transcripción/metabolismo , Triazoles/farmacología
7.
Mol Biol Cell ; 28(12): 1676-1687, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28428254

RESUMEN

Capitalizing on CRISPR/Cas9 gene-editing techniques and super-resolution nanoscopy, we explore the role of the small GTPase ARF1 in mediating transport steps at the Golgi. Besides its well-established role in generating COPI vesicles, we find that ARF1 is also involved in the formation of long (∼3 µm), thin (∼110 nm diameter) tubular carriers. The anterograde and retrograde tubular carriers are both largely free of the classical Golgi coat proteins coatomer (COPI) and clathrin. Instead, they contain ARF1 along their entire length at a density estimated to be in the range of close packing. Experiments using a mutant form of ARF1 affecting GTP hydrolysis suggest that ARF1[GTP] is functionally required for the tubules to form. Dynamic confocal and stimulated emission depletion imaging shows that ARF1-rich tubular compartments fall into two distinct classes containing 1) anterograde cargoes and clathrin clusters or 2) retrograde cargoes and coatomer clusters.


Asunto(s)
Factor 1 de Ribosilacion-ADP/fisiología , Aparato de Golgi/fisiología , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Clatrina/metabolismo , Proteína Coat de Complejo I/metabolismo , GTP Fosfohidrolasas/metabolismo , Aparato de Golgi/metabolismo , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Hidrólisis , Membranas Intracelulares/metabolismo
8.
Development ; 144(10): 1851-1862, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28420712

RESUMEN

Pruning, whereby neurons eliminate their excess neurites, is central for the maturation of the nervous system. In Drosophila, sensory neurons, ddaCs, selectively prune their larval dendrites without affecting their axons during metamorphosis. However, it is unknown whether the secretory pathway plays a role in dendrite pruning. Here, we show that the small GTPase Arf1, an important regulator of the secretory pathway, is specifically required for dendrite pruning of ddaC/D/E sensory neurons but dispensable for apoptosis of ddaF neurons. Analyses of the GTP- and GDP-locked forms of Arf1 indicate that the cycling of Arf1 between GDP-bound and GTP-bound forms is essential for dendrite pruning. We further identified Sec71 as a guanine nucleotide exchange factor for Arf1 that preferentially interacts with its GDP-bound form. Like Arf1, Sec71 is also important for dendrite pruning, but not for apoptosis, of sensory neurons. Arf1 and Sec71 are interdependent for their localizations on Golgi. Finally, we show that the Sec71/Arf1-mediated trafficking process is a prerequisite for Rab5-dependent endocytosis to facilitate endocytosis and degradation of the cell-adhesion molecule Neuroglian (Nrg).


Asunto(s)
Factor 1 de Ribosilacion-ADP/fisiología , Drosophila , Factores de Intercambio de Guanina Nucleótido/fisiología , Plasticidad Neuronal/genética , Células Receptoras Sensoriales/fisiología , Factor 1 de Ribosilacion-ADP/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Metamorfosis Biológica/fisiología , Vías Secretoras/genética
9.
Neuro Oncol ; 19(1): 22-30, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27402815

RESUMEN

BACKGROUND: Astrocytomas are the most common primary human brain tumors. Receptor tyrosine kinases (RTKs), including tyrosine receptor kinase B (TrkB, also known as tropomyosin-related kinase B; encoded by neurotrophic tyrosine kinase receptor type 2 [NTRK2]), are frequently mutated by rearrangement/fusion in high-grade and low-grade astrocytomas. We found that activated TrkB can contribute to the development of astrocytoma and might serve as a therapeutic target in this tumor type. METHODS: To identify RTKs capable of inducing astrocytoma formation, a library of human tyrosine kinases was screened for the ability to transform murine Ink4a-/-/Arf-/- astrocytes. Orthotopic allograft studies were conducted to evaluate the effects of RTKs on the development of astrocytoma. Since TrkB was identified as a driver of astrocytoma formation, the effect of the Trk inhibitors AZD1480 and RXDX-101 was assessed in astrocytoma cells expressing activated TrkB. RNA sequencing, real-time PCR, western blotting, and enzyme-linked immunosorbent assays were conducted to characterize NTRK2 in astrocytomas. RESULTS: Activated TrkB cooperated with Ink4a/Arf loss to induce the formation of astrocytomas through a mechanism mediated by activation of signal transducer and activator of transcription 3 (STAT3). TrkB activation positively correlated with Ccl2 expression. TrkB-induced astrocytomas remained dependent on TrkB signaling for survival, highlighting a role of NTRK2 as an addictive oncogene. Furthermore, the QKI-NTRK2 fusion associated with human astrocytoma transformed Ink4a-/-/Arf-/- astrocytes, and this process was also mediated via STAT3 signaling. CONCLUSIONS: Our findings provide evidence that constitutively activated NTRK2 alleles, notably the human tumor-associated QKI-NTRK2 fusion, can cooperate with Ink4a/Arf loss to drive astrocytoma formation. Therefore, we propose NTRK2 as a potential therapeutic target in the subset of astrocytoma patients defined by QKI-NTRK2 fusion.


Asunto(s)
Factor 1 de Ribosilacion-ADP/fisiología , Astrocitos/patología , Astrocitoma/patología , Glicoproteínas de Membrana/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptor trkB/metabolismo , Animales , Astrocitos/enzimología , Astrocitoma/enzimología , Células Cultivadas , Inhibidor p16 de la Quinasa Dependiente de Ciclina/fisiología , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Ratones Noqueados , Transducción de Señal
11.
Cell Microbiol ; 18(8): 1121-33, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26814617

RESUMEN

GBF1 is a host factor required for hepatitis C virus (HCV) replication. GBF1 functions as a guanine nucleotide exchange factor for G-proteins of the Arf family, which regulate membrane dynamics in the early secretory pathway and the metabolism of cytoplasmic lipid droplets. Here we established that the Arf-guanine nucleotide exchange factor activity of GBF1 is critical for its function in HCV replication, indicating that it promotes viral replication by activating one or more Arf family members. Arf involvement was confirmed with the use of two dominant negative Arf1 mutants. However, siRNA-mediated depletion of Arf1, Arf3 (class I Arfs), Arf4 or Arf5 (class II Arfs), which potentially interact with GBF1, did not significantly inhibit HCV infection. In contrast, the simultaneous depletion of both Arf4 and Arf5, but not of any other Arf pair, imposed a significant inhibition of HCV infection. Interestingly, the simultaneous depletion of both Arf4 and Arf5 had no impact on the activity of the secretory pathway and induced a compaction of the Golgi and an accumulation of lipid droplets. A similar phenotype of lipid droplet accumulation was also observed when GBF1 was inhibited by brefeldin A. In contrast, the simultaneous depletion of both Arf1 and Arf4 resulted in secretion inhibition and Golgi scattering, two actions reminiscent of GBF1 inhibition. We conclude that GBF1 could regulate different metabolic pathways through the activation of different pairs of Arf proteins.


Asunto(s)
Factor 1 de Ribosilacion-ADP/fisiología , Factores de Intercambio de Guanina Nucleótido/fisiología , Hepacivirus/fisiología , Hepatitis C/virología , Replicación Viral , Línea Celular Tumoral , Hepatitis C/enzimología , Interacciones Huésped-Patógeno , Humanos , Gotas Lipídicas , Dominios Proteicos , Transporte de Proteínas , Vías Secretoras
12.
Int J Mol Sci ; 16(12): 29305-14, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26690137

RESUMEN

Small G-protein adenosine diphosphate (ADP)-ribosylation factors (ARFs) regulate a variety of cellular functions, including actin cytoskeleton remodeling, plasma membrane reorganization, and vesicular transport. Here, we propose the functional roles of ARF1 in multiple stages of osteoclast differentiation. ARF1 was upregulated during receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation and transiently activated in an initial stage of their differentiation. Differentiation of ARF1-deficient osteoclast precursors into mature osteoclasts temporarily increased in pre-maturation stage of osteoclasts followed by reduced formation of mature osteoclasts, indicating that ARF1 regulates the osteoclastogenic process. ARF1 deficiency resulted in reduced osteoclast precursor proliferation and migration as well as increasing cell-cell fusion. In addition, ARF1 silencing downregulated c-Jun N-terminal kinase (JNK), Akt, osteopontin, and macrophage colony-stimulating factor (M-CSF)-receptor c-Fms as well as upregulating several fusion-related genes including CD44, CD47, E-cadherin, and meltrin-α. Collectively, we showed that ARF1 stimulated proliferation and migration of osteoclast precursors while suppressing their fusion, suggesting that ARF1 may be a plausible inter-player that mediates the transition to osteoclast fusion at multiple steps during osteoclast differentiation.


Asunto(s)
Factor 1 de Ribosilacion-ADP/fisiología , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Osteoclastos/fisiología , Animales , Fusión Celular , Células Cultivadas , Masculino , Ratones Endogámicos C57BL , Transducción de Señal
13.
Cell Signal ; 27(10): 2035-2044, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26169956

RESUMEN

Mitogen-activated protein kinases (MAPK) can be activated by a number of biochemical pathways through distinct signaling molecules. We have recently revealed a novel function for the Ras-like small GTPase ADP-ribosylation factor 1 (ARF1) in mediating the activation of Raf1-MEK-ERK1/2 pathway by G protein-coupled receptors [Dong C, Li C and Wu G (2011) J Biol Chem 286, 43,361-43,369]. Here, we have further defined the underlying mechanism and the possible function of ARF1-mediated MAPK pathway. We demonstrated that the blockage of ARF1 activation and the disruption of ARF1 localization to the Golgi by mutating Thr48, a highly conserved residue involved in the exchange of GDP for GTP, and the myristoylation site Gly2 abolished ARF1's ability to activate ERK1/2. In addition, treatment with Golgi structure disrupting agents markedly attenuated ARF1-mediated ERK1/2 activation. Furthermore, ARF1 significantly promoted cell proliferation. More interestingly, ARF1 activated 90kDa ribosomal S6 kinase 1 (RSK1) without influencing Elk-1 activation and ERK2 translocation to the nuclei. These data demonstrate that, once activated, ARF1 activates the MAPK pathway likely using the Golgi as a main platform, which in turn activates the cytoplasmic RSK1, leading to cell proliferation.


Asunto(s)
Factor 1 de Ribosilacion-ADP/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Secuencia de Aminoácidos , Proliferación Celular , Activación Enzimática , Aparato de Golgi/enzimología , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas , Transporte de Proteínas , Receptor de Adenosina A2B/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteína Elk-1 con Dominio ets/metabolismo
14.
Cancer Prev Res (Phila) ; 8(6): 492-501, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25813526

RESUMEN

Loss of parietal cells initiates the development of spasmolytic polypeptide-expressing metaplasia (SPEM), a precancerous lesion in stomach. CD44 variant (CD44v) that enhances the ability to defend against reactive oxygen species (ROS) in epithelial cells is expressed de novo in SPEM of K19-Wnt1/C2mE mice, a transgenic model of gastric tumorigenesis, and is required for the efficient development of SPEM and gastric tumor in these animals. The role of ROS and its downstream signaling in CD44-dependent gastric tumorigenesis has remained unknown, however. With the use of the K19-Wnt1/C2mE mouse, we now show that parietal cells in the inflamed stomach are highly sensitive to oxidative stress and manifest activation of p38(MAPK) signaling by ROS. Oral treatment with the antioxidant ascorbic acid or genetic ablation of the Ink4a/Arf locus, a major downstream target of ROS-p38(MAPK) signaling, inhibited parietal cell loss and the subsequent gastric tumorigenesis. Our results indicate that signaling activated by oxidative stress in parietal cells plays a key role in CD44-dependent gastric tumorigenesis. .


Asunto(s)
Factor 1 de Ribosilacion-ADP/fisiología , Transformación Celular Neoplásica/patología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/fisiología , Receptores de Hialuranos/metabolismo , Estrés Oxidativo , Células Parietales Gástricas/patología , Neoplasias Gástricas/patología , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Técnicas para Inmunoenzimas , Metaplasia/metabolismo , Metaplasia/patología , Ratones , Ratones Noqueados , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Parietales Gástricas/metabolismo , Transducción de Señal , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Proteína Wnt1/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Biochem Soc Trans ; 43(1): 108-10, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25619254

RESUMEN

Mitochondria are the powerhouse of cells as they produce the bulk of ATP which is consumed by the cell. They form a highly interconnected network that is governed by fission and fusion processes. In addition, mitochondria and the endoplasmic reticulum (ER) are found in close proximity to each other and it is thought that they maintain contact sites to exchange molecules. The regulation and the function of these contact sites need to be further explored. The small GTPase Arf1 (ADP-ribosylation factor 1), which is best known for its essential role in the generation of coatomer protein I (COPI)-coated vesicles at the Golgi complex appears to be also essential for the dynamics and maintenance of mitochondrial function, presumably at ER-mitochondrial contact sites.


Asunto(s)
Factor 1 de Ribosilacion-ADP/fisiología , Mitocondrias/enzimología , Animales , Retículo Endoplásmico/metabolismo , Humanos , Mitocondrias/ultraestructura , Forma de los Orgánulos
16.
Blood ; 125(9): 1444-51, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25499760

RESUMEN

Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is initiated and driven by the oncogenic fusion protein BCR-ABL, a constitutively active tyrosine kinase. Despite major advances in the treatment of this highly aggressive disease with potent inhibitors of the BCR-ABL kinase such as dasatinib, patients in remission frequently relapse due to persistent minimal residual disease possibly supported, at least in part, by salutary cytokine-driven signaling within the hematopoietic microenvironment. Using a mouse model of Ph+ ALL that accurately mimics the genetics, clinical behavior, and therapeutic response of the human disease, we show that a combination of 2 agents approved by the US Food and Drug Administration (dasatinib and ruxolitinib, which inhibit BCR-ABL and Janus kinases, respectively), significantly extends survival by targeting parallel signaling pathways. Although the BCR-ABL kinase cancels the cytokine requirement of immature leukemic B cells, dasatinib therapy restores cytokine dependency and sensitizes leukemic cells to ruxolitinib. As predicted, ruxolitinib alone had no significant antileukemic effect in this model, but it prevented relapse when administered with dasatinib. The combination of dasatinib, ruxolitinib, and the corticosteroid dexamethasone yielded more durable remissions, in some cases after completion of therapy, avoiding the potential toxicity of other cytotoxic chemotherapeutic agents.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Quinasas Janus/antagonistas & inhibidores , Recurrencia Local de Neoplasia/tratamiento farmacológico , Cromosoma Filadelfia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Factor 1 de Ribosilacion-ADP/fisiología , Animales , Western Blotting , Dasatinib , Dexametasona/administración & dosificación , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Proteínas de Fusión bcr-abl/genética , Humanos , Interleucina-7/genética , Interleucina-7/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/patología , Nitrilos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Pirazoles/administración & dosificación , Pirimidinas/administración & dosificación , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Inducción de Remisión , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Tasa de Supervivencia , Tiazoles/administración & dosificación , Células Tumorales Cultivadas
17.
Annu Rev Cell Dev Biol ; 30: 169-206, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25150009

RESUMEN

The trans-Golgi network (TGN) is an important cargo sorting station within the cell where newly synthesized proteins are packaged into distinct transport carriers that are targeted to various destinations. To maintain the fidelity of protein transport, elaborate protein sorting machinery is employed to mediate sorting of specific cargo proteins into distinct transport carriers. Protein sorting requires assembly of the cytosolic sorting machinery onto the TGN membrane and capture of cargo proteins. We review the cytosolic and transmembrane sorting machinery that function at the TGN and describe molecular interactions and regulatory mechanisms that enable accurate protein sorting. In addition, we highlight the importance of TGN sorting in physiology and disease.


Asunto(s)
Transporte de Proteínas/fisiología , Red trans-Golgi/fisiología , Factor 1 de Ribosilacion-ADP/fisiología , Proteínas Adaptadoras del Transporte Vesicular/fisiología , Secuencias de Aminoácidos , Animales , Proteínas Portadoras/fisiología , Polaridad Celular , Citosol/fisiología , Humanos , Lípidos de la Membrana/fisiología , Proteínas de Transporte de Membrana/fisiología , Modelos Biológicos , Modelos Moleculares , Fosfolípidos/fisiología , Conformación Proteica , Señales de Clasificación de Proteína/fisiología , Transporte de Proteínas/inmunología , Relación Estructura-Actividad , Vesículas Transportadoras/fisiología , Proteínas de Transporte Vesicular/fisiología , Red trans-Golgi/inmunología
18.
Mol Cell ; 55(3): 409-21, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25002144

RESUMEN

Regulation of cell growth by nutrients is governed by highly conserved signaling pathways, yet mechanisms of nutrient sensing are still poorly understood. In yeast, glucose activates both the Ras/PKA pathway and TORC1, which coordinately regulate growth through enhancing translation and ribosome biogenesis and suppressing autophagy. Here, we show that cytosolic pH acts as a cellular signal to activate Ras and TORC1 in response to glucose availability. We demonstrate that cytosolic pH is sensitive to the quality and quantity of the available carbon source (C-source). Interestingly, Ras/PKA and TORC1 are both activated through the vacuolar ATPase (V-ATPase), which was previously identified as a sensor for cytosolic pH in vivo. V-ATPase interacts with two distinct GTPases, Arf1 and Gtr1, which are required for Ras and TORC1 activation, respectively. Together, these data provide a molecular mechanism for how cytosolic pH links C-source availability to the activity of signaling networks promoting cell growth.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Glucosa/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Factor 1 de Ribosilacion-ADP/fisiología , Citosol/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas ras/metabolismo
19.
Mol Biol Cell ; 25(1): 17-29, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24196838

RESUMEN

Invasion of tumor cells is a key step in metastasis that depends largely on the ability of these cells to degrade the extracellular matrix. Although we have showed that the GTPase ADP-ribosylation factor 1 (ARF1) is overexpressed in highly invasive breast cancer cell lines and that epidermal growth factor stimulation can activate this ARF isoform to regulate migration as well as proliferation, the role of this small GTP-binding protein has not been addressed in the context of invasiveness. Here we report that modulation of ARF1 expression and activity markedly impaired the ability of M.D. Anderson-metastatic breast-231 cells, a prototypical highly invasive breast cancer cell line, to degrade the extracellular matrix by controlling metalloproteinase-9 activity. In addition, we demonstrate that this occurs through inhibition of invadopodia maturation and shedding of membrane-derived microvesicles, the two key structures involved in invasion. To further define the molecular mechanisms by which ARF1 controls invasiveness, we show that ARF1 acts to modulate RhoA and RhoC activity, which in turn affects myosin light-chain (MLC) phosphorylation. Together our findings underscore for the first time a key role for ARF1 in invasion of breast cancer cells and suggest that targeting the ARF/Rho/MLC signaling axis might be a promising strategy to inhibit invasiveness and metastasis.


Asunto(s)
Factor 1 de Ribosilacion-ADP/fisiología , Neoplasias de la Mama/enzimología , Cadenas Ligeras de Miosina/metabolismo , Transducción de Señal , Quinasas Asociadas a rho/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Extensiones de la Superficie Celular/metabolismo , Micropartículas Derivadas de Células/metabolismo , Factor de Crecimiento Epidérmico/fisiología , Receptores ErbB/metabolismo , Femenino , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Invasividad Neoplásica , Neoplasias Hormono-Dependientes/enzimología , Neoplasias Hormono-Dependientes/patología
20.
Methods Cell Biol ; 118: 3-14, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24295297

RESUMEN

In vitro reconstitution is prerequisite to investigate complex cellular functions at the molecular level. Reconstitution systems range from combining complete cellular cytosol with organelle-enriched membrane fractions to liposomal systems where all components are chemically defined and can be chosen at will. Here, we describe the in vitro reconstitution of COPI-coated vesicles from semi-intact cells. Efficient vesicle formation is achieved by simple incubation of permeabilized cells with the minimal set of coat proteins Arf1 and coatomer, and guanosine trinucleotides. GTP hydrolysis or any mechanical manipulations are not required for efficient COPI vesicle release.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Aparato de Golgi/fisiología , Factor 1 de Ribosilacion-ADP/fisiología , Animales , Transporte Biológico , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Proteína Coatómero/fisiología , Aparato de Golgi/ultraestructura , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Ratones , Conejos , Células Sf9
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...