Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Cell Mol Life Sci ; 81(1): 84, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345631

RESUMEN

C3G is a Rap1 GEF that plays a pivotal role in platelet-mediated processes such as angiogenesis, tumor growth, and metastasis by modulating the platelet secretome. Here, we explore the mechanisms through which C3G governs platelet secretion. For this, we utilized animal models featuring either overexpression or deletion of C3G in platelets, as well as PC12 cell clones expressing C3G mutants. We found that C3G specifically regulates α-granule secretion via PKCδ, but it does not affect δ-granules or lysosomes. C3G activated RalA through a GEF-dependent mechanism, facilitating vesicle docking, while interfering with the formation of the trans-SNARE complex, thereby restricting vesicle fusion. Furthermore, C3G promotes the formation of lamellipodia during platelet spreading on specific substrates by enhancing actin polymerization via Src and Rac1-Arp2/3 pathways, but not Rap1. Consequently, C3G deletion in platelets favored kiss-and-run exocytosis. C3G also controlled granule secretion in PC12 cells, including pore formation. Additionally, C3G-deficient platelets exhibited reduced phosphatidylserine exposure, resulting in decreased thrombin generation, which along with defective actin polymerization and spreading, led to impaired clot retraction. In summary, platelet C3G plays a dual role by facilitating platelet spreading and clot retraction through the promotion of outside-in signaling while concurrently downregulating α-granule secretion by restricting granule fusion.


Asunto(s)
Actinas , Plaquetas , Retracción del Coagulo , Factor 2 Liberador de Guanina Nucleótido , Animales , Actinas/metabolismo , Plaquetas/metabolismo , Exocitosis/fisiología , Hemostasis , Factor 2 Liberador de Guanina Nucleótido/metabolismo
2.
Cells ; 12(21)2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37947653

RESUMEN

Using constitutive GRF1/2 knockout mice, we showed previously that GRF2 is a key regulator of nuclear migration in retinal cone photoreceptors. To evaluate the functional relevance of that cellular process for two putative targets of the GEF activity of GRF2 (RAC1 and CDC42), here we compared the structural and functional retinal phenotypes resulting from conditional targeting of RAC1 or CDC42 in the cone photoreceptors of constitutive GRF2KO and GRF2WT mice. We observed that single RAC1 disruption did not cause any obvious morphological or physiological changes in the retinas of GRF2WT mice, and did not modify either the phenotypic alterations previously described in the retinal photoreceptor layer of GRF2KO mice. In contrast, the single ablation of CDC42 in the cone photoreceptors of GRF2WT mice resulted in clear alterations of nuclear movement that, unlike those of the GRF2KO retinas, were not accompanied by electrophysiological defects or slow, progressive cone cell degeneration. On the other hand, the concomitant disruption of GRF2 and CDC42 in the cone photoreceptors resulted, somewhat surprisingly, in a normalized pattern of nuclear positioning/movement, similar to that physiologically observed in GRF2WT mice, along with worsened patterns of electrophysiological responses and faster rates of cell death/disappearance than those previously recorded in single GRF2KO cone cells. Interestingly, the increased rates of cone cell apoptosis/death observed in single GRF2KO and double-knockout GRF2KO/CDC42KO retinas correlated with the electron microscopic detection of significant ultrastructural alterations (flattening) of their retinal ribbon synapses that were not otherwise observed at all in single-knockout CDC42KO retinas. Our observations identify GRF2 and CDC42 (but not RAC1) as key regulators of retinal processes controlling cone photoreceptor nuclear positioning and survival, and support the notion of GRF2 loss-of-function mutations as potential drivers of cone retinal dystrophies.


Asunto(s)
Factor 2 Liberador de Guanina Nucleótido , Células Fotorreceptoras Retinianas Conos , Animales , Ratones , Ratones Noqueados , Retina , Células Fotorreceptoras Retinianas Conos/ultraestructura , Sinapsis/ultraestructura
3.
Sci Rep ; 13(1): 14006, 2023 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-37635193

RESUMEN

The epidermis is mostly composed of keratinocytes and forms a protecting barrier against external aggressions and dehydration. Epidermal homeostasis is maintained by a fine-tuned balance between keratinocyte proliferation and differentiation. In the regulation of this process, the keratinocyte-specific miR-203 microRNA is of the outmost importance as it promotes differentiation, notably by directly targeting and down-regulating mRNA expression of genes involved in keratinocyte proliferation, such as ΔNp63, Skp2 and Msi2. We aimed at identifying new miR-203 targets involved in the regulation of keratinocyte proliferation/differentiation balance. To this end, a transcriptome analysis of human primary keratinocytes overexpressing miR-203 was performed and revealed that miR-203 overexpression inhibited functions like proliferation, mitosis and cell cycling, and activated differentiation, apoptosis and cell death. Among the down-regulated genes, 24 putative target mRNAs were identified and 8 of them were related to proliferation. We demonstrated that SRC and RAPGEF1 were direct targets of miR-203. Moreover, both were down-regulated during epidermal morphogenesis in a 3D reconstructed skin model, while miR-203 was up-regulated. Finally silencing experiments showed that SRC or RAPGEF1 contributed to keratinocyte proliferation and regulated their differentiation. Preliminary results suggest their involvement in skin carcinoma hyperproliferation. Altogether this data indicates that RAPGEF1 and SRC could be new mediators of miR-203 in epidermal homeostasis regulation.


Asunto(s)
Epidermis , Factor 2 Liberador de Guanina Nucleótido , MicroARNs , Proteínas Proto-Oncogénicas pp60(c-src) , Humanos , Homeostasis/genética , Queratinocitos , MicroARNs/genética , Mitosis , Piel , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Factor 2 Liberador de Guanina Nucleótido/genética
4.
Cell Commun Signal ; 21(1): 30, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737758

RESUMEN

BACKGROUND: C3G is a guanine nucleotide exchange factor (GEF) that activates Rap1 to promote cell adhesion. Resting C3G is autoinhibited and the GEF activity is released by stimuli that signal through tyrosine kinases. C3G is activated by tyrosine phosphorylation and interaction with Crk adaptor proteins, whose expression is elevated in multiple human cancers. However, the molecular details of C3G activation and the interplay between phosphorylation and Crk interaction are poorly understood. METHODS: We combined biochemical, biophysical, and cell biology approaches to elucidate the mechanisms of C3G activation. Binding of Crk adaptor proteins to four proline-rich motifs (P1 to P4) in C3G was characterized in vitro using isothermal titration calorimetry and sedimentation velocity, and in Jurkat and HEK293T cells by affinity pull-down assays. The nucleotide exchange activity of C3G over Rap1 was measured using nucleotide-dissociation kinetic assays. Jurkat cells were also used to analyze C3G translocation to the plasma membrane and the C3G-dependent activation of Rap1 upon ligation of T cell receptors. RESULTS: CrkL interacts through its SH3N domain with sites P1 and P2 of inactive C3G in vitro and in Jurkat and HEK293T cells, and these sites are necessary to recruit C3G to the plasma membrane. However, direct stimulation of the GEF activity requires binding of Crk proteins to the P3 and P4 sites. P3 is occluded in resting C3G and is essential for activation, while P4 contributes secondarily towards complete stimulation. Tyrosine phosphorylation of C3G alone causes marginal activation. Instead, phosphorylation primes C3G lowering the concentration of Crk proteins required for activation and increasing the maximum activity. Unexpectedly, optimal activation also requires the interaction of CrkL-SH2 domain with phosphorylated C3G. CONCLUSION: Our study revealed that phosphorylation of C3G by Src and Crk-binding form a two-factor mechanism that ensures tight control of C3G activation. Additionally, the simultaneous SH2 and SH3N interaction of CrkL with C3G, required for the activation, reveals a novel adaptor-independent function of Crk proteins relevant to understanding their role in physiological signaling and their deregulation in diseases. Video abstract.


Asunto(s)
Factor 2 Liberador de Guanina Nucleótido , Proteínas Nucleares , Humanos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Células HEK293 , Proteínas Nucleares/metabolismo , Nucleótidos/metabolismo , Proteínas Proto-Oncogénicas c-crk/metabolismo , Dominios Homologos src , Tirosina/metabolismo
5.
Mol Psychiatry ; 27(12): 5020-5027, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224258

RESUMEN

Tourette Syndrome (TS) is a heritable, early-onset neuropsychiatric disorder that typically begins in early childhood. Identifying rare genetic variants that make a significant contribution to risk in affected families may provide important insights into the molecular aetiology of this complex and heterogeneous syndrome. Here we present a whole-genome sequencing (WGS) analysis from the 11-generation pedigree (>500 individuals) of a densely affected Costa Rican family which shares ancestry from six founder pairs. By conducting an identity-by-descent (IBD) analysis using WGS data from 19 individuals from the extended pedigree we have identified putative risk haplotypes that were not seen in controls, and can be linked with four of the six founder pairs. Rare coding and non-coding variants present on the haplotypes and only seen in haplotype carriers show an enrichment in pathways such as regulation of locomotion and signal transduction, suggesting common mechanisms by which the haplotype-specific variants may be contributing to TS-risk in this pedigree. In particular we have identified a rare deleterious missense variation in RAPGEF1 on a chromosome 9 haplotype and two ultra-rare deleterious intronic variants in ERBB4 and IKZF2 on the same chromosome 2 haplotype. All three genes play a role in neurodevelopment. This study, using WGS data in a pedigree-based approach, shows the importance of investigating both coding and non-coding variants to identify genes that may contribute to disease risk. Together, the genes and variants identified on the IBD haplotypes represent biologically relevant targets for investigation in other pedigree and population-based TS data.


Asunto(s)
Neurogénesis , Síndrome de Tourette , Preescolar , Humanos , Costa Rica , Haplotipos , Linaje , Transducción de Señal , Síndrome de Tourette/genética , Neurogénesis/genética , Polimorfismo Genético , Secuenciación Completa del Genoma , Factor 2 Liberador de Guanina Nucleótido/genética
6.
Int J Mol Sci ; 22(24)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34947971

RESUMEN

Crkl is a protein involved in the onset of several cancer pathologies that exerts its function only through its protein-protein interaction domains, a SH2 domain and two SH3 domains. SH3 domains are small protein interaction modules that mediate the binding and recognition of proline-rich sequences. One of the main physiological interactors of Crkl is C3G (also known as RAPGEF1), an interaction with key implications in regulating cellular growth and differentiation, cell morphogenesis and adhesion processes. Thus, understanding the interaction between Crkl and C3G is fundamental to gaining information about the molecular determinants of the several cancer pathologies in which these proteins are involved. In this paper, through a combination of fast kinetics at different experimental conditions and site-directed mutagenesis, we characterize the binding reaction between the N-SH3 domain of Crkl and a peptide mimicking a specific portion of C3G. Our results show a clear effect of pH on the stability of the complex, due to the protonation of negatively charged residues in the binding pocket of N-SH3. Our results are discussed under the light of previous work on SH3 domains.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Mutagénesis Sitio-Dirigida/métodos , Proteínas Adaptadoras Transductoras de Señales/genética , Sitios de Unión , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Factor 2 Liberador de Guanina Nucleótido/química , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Electricidad Estática
7.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576182

RESUMEN

C3G (RAPGEF1) is a guanine nucleotide exchange factor (GEF) for GTPases from the Ras superfamily, mainly Rap1, although it also acts through GEF-independent mechanisms. C3G regulates several cellular functions. It is expressed at relatively high levels in specific brain areas, playing important roles during embryonic development. Recent studies have uncovered different roles for C3G in cancer that are likely to depend on cell context, tumour type, and stage. However, its role in brain tumours remained unknown until very recently. We found that C3G expression is downregulated in GBM, which promotes the acquisition of a more mesenchymal phenotype, enhancing migration and invasion, but not proliferation. ERKs hyperactivation, likely induced by FGFR1, is responsible for this pro-invasive effect detected in C3G silenced cells. Other RTKs (Receptor Tyrosine Kinases) are also dysregulated and could also contribute to C3G effects. However, it remains undetermined whether Rap1 is a mediator of C3G actions in GBM. Various Rap1 isoforms can promote proliferation and invasion in GBM cells, while C3G inhibits migration/invasion. Therefore, other RapGEFs could play a major role regulating Rap1 activity in these tumours. Based on the information available, C3G could represent a new biomarker for GBM diagnosis, prognosis, and personalised treatment of patients in combination with other GBM molecular markers. The quantification of C3G levels in circulating tumour cells (CTCs) in the cerebrospinal liquid and/or circulating fluids might be a useful tool to improve GBM patient treatment and survival.


Asunto(s)
Glioblastoma/metabolismo , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Animales , Glioblastoma/genética , Factor 2 Liberador de Guanina Nucleótido/genética , Humanos , Células Neoplásicas Circulantes/metabolismo , Proteínas de Unión al GTP rap1/genética , Proteínas de Unión al GTP rap1/metabolismo
8.
J Vasc Res ; 58(5): 277-285, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33951626

RESUMEN

The sodium-dependent phosphate transporter, SLC20A1, is required for elevated inorganic phosphate (Pi) induced vascular smooth muscle cell (VSMC) matrix mineralization and phenotype transdifferentiation. Recently, elevated Pi was shown to induce ERK1/2 phosphorylation through SLC20A1 by Pi uptake-independent functions in VSMCs, suggesting a cell signaling response to elevated Pi. Previous studies identified Rap1 guanine nucleotide exchange factor (RapGEF1) as an SLC20A1-interacting protein and RapGEF1 promotes ERK1/2 phosphorylation through Rap1 activation. In this study, we tested the hypothesis that RapGEF1 is a critical component of the SLC20A1-mediated Pi-induced ERK1/2 phosphorylation pathway. Co-localization of SLC20A1 and RapGEF1, knockdown of RapGEF1 with siRNA, and small molecule inhibitors of Rap1, B-Raf, and Mek1/2 were investigated. SLC20A1 and RapGEF1 were co-localized in peri-membranous structures in VSMCs. Knockdown of RapGEF1 and small molecule inhibitors against Rap1, B-Raf, and Mek1/2 eliminated elevated Pi-induced ERK1/2 phosphorylation. Knockdown of RapGEF1 inhibited SM22α mRNA expression and blocked elevated Pi-induced downregulation of SM22α mRNA. Together, these data suggest that RapGEF1 is required for SLC20A1-mediated elevated Pi signaling through a Rap1/B-Raf/Mek1/2 cell signaling pathway, thereby promoting ERK1/2 phosphorylation and inhibiting SM22α gene expression in VSMCs.


Asunto(s)
Factor 2 Liberador de Guanina Nucleótido/fisiología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Fosfatos/farmacología , Animales , Células Cultivadas , Factor 2 Liberador de Guanina Nucleótido/genética , Humanos , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Fosforilación , Transducción de Señal , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo
9.
Cell Death Dis ; 12(4): 348, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824275

RESUMEN

Glioblastoma (GBM) is the most aggressive tumor from the central nervous system (CNS). The current lack of efficient therapies makes essential to find new treatment strategies. C3G, a guanine nucleotide exchange factor for some Ras proteins, plays a dual role in cancer, but its function in GBM remains unknown. Database analyses revealed a reduced C3G mRNA expression in GBM patient samples. C3G protein levels were also decreased in a panel of human GBM cell lines as compared to astrocytes. Based on this, we characterized C3G function in GBM using in vitro and in vivo human GBM models. We report here that C3G downregulation promoted the acquisition of a more mesenchymal phenotype that enhanced the migratory and invasive capacity of GBM cells. This facilitates foci formation in anchorage-dependent and -independent growth assays and the generation of larger tumors in xenografts and chick chorioallantoic membrane (CAM) assays, but with a lower cell density, as proliferation was reduced. Mechanistically, C3G knock-down impairs EGFR signaling by reducing cell surface EGFR through recycling inhibition, while upregulating the activation of several other receptor tyrosine kinases (RTKs) that might promote invasion. In particular, FGF2, likely acting through FGFR1, promoted invasion of C3G-silenced GBM cells. Moreover, ERKs mediate this invasiveness, both in response to FGF2- and serum-induced chemoattraction. In conclusion, our data show the distinct dependency of GBM tumors on C3G for EGF/EGFR signaling versus other RTKs, suggesting that assessing C3G levels may discriminate GBM patient responders to different RTK inhibition protocols. Hence, patients with a low C3G expression might not respond to EGFR inhibitors.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Movimiento Celular/fisiología , Glioblastoma/metabolismo , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Regulación hacia Abajo , Receptores ErbB/metabolismo , Glioblastoma/patología , Humanos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/fisiología
10.
Clin Genet ; 100(2): 144-155, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33834495

RESUMEN

RAPGEF1 is a guanine nucleotide exchange factor responsible for transmitting extracellular signals to the Ras family of GTPase located at the inside of membrane. Here, we report for the first time a homozygous mutation of RAPGEF1 in a consanguineous family with two siblings affected by neuropsychiatric disorder. To confirm the correlation of the mutation and the phenotype, we utilized in silico analysis and established a zebrafish model. Survival rate was reduced in the rapgef1a-knockdown model, and the zebrafish showed global morphological abnormalities, particularly of brain and blood vessels. Co-application of human RAPGEF1 wildtype mRNA effectively rescued the abnormal phenotype, while that of RAPGEF1 mRNA carrying the human mutation did not. This work is the first report of a human Mendelian disease associated with RAPGEF1 and the first report of a zebrafish model built for this gene. The phenotype of zebrafish model provides further evidence that defective RAPGEF1 may lead to global developmental delay in human patients.


Asunto(s)
Factor 2 Liberador de Guanina Nucleótido/genética , Mutación , Pez Cebra/embriología , Pez Cebra/genética , Animales , Modelos Animales de Enfermedad , Embrión no Mamífero/anomalías , Embrión no Mamífero/irrigación sanguínea , Femenino , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Semivida , Humanos , Masculino , Trastornos del Humor/genética , Neuronas Motoras/patología , Linaje , Fenotipo , Proteínas de Pez Cebra/genética
11.
Pathol Int ; 71(4): 255-260, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33709437

RESUMEN

The expression of Ras-specific guanine nucleotide-releasing factor 2 (RasGRF2) in lung adenocarcinomas was examined using immunohistochemistry in relation to clinicopathological characteristics and prognosis. In comparison to low expression, high expression of RasGRF2 was more closely associated with poor prognosis. Interestingly, expression of phosphorylated epithelial cell transforming 2 (pECT2), which - like RasGRF2 - is also a guanine-nucleotide exchange factor, was also associated with prognosis, and patients with high expression of both RasGRF2 and pECT2 had a much poorer outcome than those who were negative for both.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Pronóstico , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Femenino , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Factores de Intercambio de Guanina Nucleótido ras/metabolismo
12.
Stem Cell Rev Rep ; 17(4): 1465-1477, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33624208

RESUMEN

C3G (RAPGEF1), engaged in multiple signaling pathways, is essential for the early development of the mouse. In this study, we have examined its role in mouse embryonic stem cell self-renewal and differentiation. C3G null cells generated by CRISPR mediated knock-in of a targeting vector exhibited enhanced clonogenicity and long-term self-renewal. They did not differentiate in response to LIF withdrawal when compared to the wild type ES cells and were defective for lineage commitment upon teratoma formation in vivo. Gene expression analysis of C3G KO cells showed misregulated expression of a large number of genes compared with WT cells. They express higher levels of self-renewal factors like KLF4 and ESRRB and show high STAT3 activity, and very low ERK activity compared to WT cells. Reintroduction of C3G expression in a KO line partially reverted expression of ESRRB, and KLF4, and ERK activity similar to that seen in WT cells. The expression of self-renewal factors was persistent for a longer time, and induction of lineage-specific markers was not seen when C3G KO cells were induced to form embryoid bodies. C3G KO cells showed poor adhesion and significantly reduced levels of pFAK, pPaxillin, and Integrin-ß1, in addition to downregulation of the cluster of genes involved in cell adhesion, compared to WT cells. Our results show that C3G is essential for the regulation of STAT3, ERK, and adhesion signaling, to maintain pluripotency of mouse embryonic stem cells and enable their lineage commitment for differentiation.


Asunto(s)
Diferenciación Celular , Factor 2 Liberador de Guanina Nucleótido/genética , Células Madre Embrionarias de Ratones , Transducción de Señal , Animales , Diferenciación Celular/genética , Quinasas MAP Reguladas por Señal Extracelular , Factor Inhibidor de Leucemia , Ratones , Células Madre Embrionarias de Ratones/citología , Factor de Transcripción STAT3 , Transducción de Señal/genética
13.
Biochim Biophys Acta Mol Cell Res ; 1868(5): 118964, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33450305

RESUMEN

GSK3ß, a ubiquitously expressed Ser/Thr kinase, regulates cell metabolism, proliferation and differentiation. Its activity is spatially and temporally regulated dependent on external stimuli and interacting partners, and its deregulation is associated with various human disorders. In this study, we identify C3G (RapGEF1), a protein essential for mammalian embryonic development as an interacting partner and substrate of GSK3ß. In vivo and in vitro interaction assays demonstrated that GSK3ß and Akt are present in complex with C3G. Molecular modelling and mutational analysis identified a domain in C3G that aids interaction with GSK3ß, and overlaps with its nuclear export sequence. GSK3ß phosphorylates C3G on primed as well as unprimed sites, and regulates its subcellular localization. Over-expression of C3G resulted in activation of Akt and inactivation of GSK3ß. Huntingtin aggregate formation, dependent on GSK3ß inhibition, was enhanced upon C3G overexpression. Stable clones of C2C12 cells generated by CRISPR/Cas9 mediated knockdown of C3G, that cannot differentiate, show reduced Akt activity and S9-GSK3ß phosphorylation compared to wild type cells. Co-expression of catalytically active GSK3ß inhibited C3G induced myocyte differentiation. C3G mutant defective for GSK3ß phosphorylation, does not alter S9-GSK3ß phosphorylation and, is compromised for inducing myocyte differentiation. Our results show complex formation and reciprocal regulation between GSK3ß and C3G. We have identified a novel function of C3G as a negative regulator of GSK3ß, a property important for its ability to induce myogenic differentiation.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Factor 2 Liberador de Guanina Nucleótido/química , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Mutación , Mioblastos/citología , Animales , Células COS , Diferenciación Celular , Línea Celular , Chlorocebus aethiops , Citoplasma/metabolismo , Regulación de la Expresión Génica , Factor 2 Liberador de Guanina Nucleótido/genética , Células HEK293 , Humanos , Ratones , Desarrollo de Músculos , Mioblastos/metabolismo , Fosforilación
14.
Sci Rep ; 10(1): 18838, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139841

RESUMEN

Mice lacking C3G (RapGEF1), a ubiquitously expressed protein essential for neuronal differentiation, show multiple defects in brain development. Function of C3G in neurogenesis is poorly defined. Here, we identify brain specific expression of a novel C3G isoform in mice and humans. This isoform has an insert in the Crk-binding region, generating a polypeptide of 175 kDa, unlike the previously known 140 kDa form expressed in all other tissues. In the adult mouse brain, C3G expression is seen in neurons, but was not detectable in GFAP-positive cells. C3G levels were high in the CA3 region of hippocampus and in mitral cells of olfactory bulb. Neural progenitor cells positive for Doublecortin and Nestin, show expression of C3G. During development, C3G is expressed in precursor cells prior to their differentiation into mature neurons or astrocytes. The 175 kDa as well as 140 kDa forms are seen in embryonic mouse brain, while only the 175 kDa variant is seen in post-natal brain. Human cerebral organoids generated from induced pluripotent stem cells predominantly expressed the 140 kDa polypeptides, and the 175 kDa isoform appeared upon maturation. This study describes developmental regulation and neuronal expression of a brain specific isoform of C3G, a molecule essential for normal development of the mammalian brain.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Expresión Génica , Factor 2 Liberador de Guanina Nucleótido/genética , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Animales , Encéfalo/embriología , Hipocampo/metabolismo , Humanos , Ratones , Bulbo Olfatorio/metabolismo , Organoides/metabolismo , Péptidos/metabolismo , Isoformas de Proteínas/metabolismo
15.
J Cell Sci ; 133(11)2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32371504

RESUMEN

C3G (also known as RAPGEF1) plays a role in cell differentiation and is essential for early embryonic development in mice. In this study, we identify C3G as a centrosomal protein that colocalizes with cenexin (also known as ODF2) at the mother centriole in interphase cells. C3G interacts with cenexin through its catalytic domain, and the two proteins show interdependence for localization to the centrosome. C3G depletion causes a decrease in cellular cenexin levels. Centrosomal localization of C3G is lost as myocytes differentiate to form myotubes. Depletion of C3G by CRISPR/Cas9 results in the formation of supernumerary centrioles, whereas overexpression of C3G, or expression of a catalytically active C3G deletion construct, inhibits centrosome duplication. Cilium length is increased in C3G knockout cells, and this phenotype is reverted upon reintroduction of C3G or its catalytic domain alone. Association of C3G with the basal body is dynamic, decreasing upon serum starvation and increasing upon re-entry into the cell cycle. C3G inhibits cilium formation and length, and this inhibition is dependent on C3G catalytic activity. We conclude that C3G regulates centrosome duplication and maintains ciliary homeostasis, properties that could be important for its role in embryonic development.


Asunto(s)
Centriolos , Cilios , Animales , Ciclo Celular , Centrosoma , Femenino , Factor 2 Liberador de Guanina Nucleótido , Proteínas de Choque Térmico , Humanos , Ratones , Madres
16.
Signal Transduct Target Ther ; 5(1): 29, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32296045

RESUMEN

C3G is a GEF (guanine nucleotide exchange factor) for Rap GTPases, among which the isoform Rap1b is an essential protein in platelet biology. Using transgenic mouse models with platelet-specific overexpression of C3G or mutant C3GΔCat, we have unveiled a new function of C3G in regulating the hemostatic function of platelets through its participation in the thrombin-PKC-Rap1b pathway. C3G also plays important roles in angiogenesis, tumor growth, and metastasis through its regulation of the platelet secretome. In addition, C3G contributes to megakaryopoiesis and thrombopoiesis. Here, we used a platelet-specific C3G-KO mouse model to further support the role of C3G in hemostasis. C3G-KO platelets showed a significant delay in platelet activation and aggregation as a consequence of the defective activation of Rap1, which resulted in decreased thrombus formation in vivo. Additionally, we explored the contribution of C3G-Rap1b to platelet signaling pathways triggered by thrombin, PMA or ADP, in the referenced transgenic mouse model, through the use of a battery of specific inhibitors. We found that platelet C3G is phosphorylated at Tyr504 by a mechanism involving PKC-Src. This phosphorylation was shown to be positively regulated by ERKs through their inhibition of the tyrosine phosphatase Shp2. Moreover, C3G participates in the ADP-P2Y12-PI3K-Rap1b pathway and is a mediator of thrombin-TXA2 activities. However, it inhibits the synthesis of TXA2 through cPLA2 regulation. Taken together, our data reveal the critical role of C3G in the main pathways leading to platelet activation and aggregation through the regulation of Rap1b.


Asunto(s)
Factor 2 Liberador de Guanina Nucleótido/genética , Receptores Purinérgicos P2Y12/genética , Trombina/genética , Proteínas de Unión al GTP rap/genética , Animales , Plaquetas/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Hemostasis/genética , Humanos , Ratones , Ratones Noqueados , Fosforilación , Activación Plaquetaria/genética , Agregación Plaquetaria/genética , Proteína Quinasa C/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Transducción de Señal/genética , Trombopoyesis/genética
17.
Biotechnol Lett ; 42(7): 1275-1286, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32236758

RESUMEN

OBJECTIVE: To investigate the functions of eIF3b in chronic myelogenous leukemia (CML). METHODS: The expression of eIF3b was inhibited by transfecting aspecifically designed shRNA into the CML cell lines of TK-6 and K562. The CCK8 assay was conducted to determine cell viability, and flow cytometry was used to examine the change in the cell cycle and cell apoptosis. RNAsequencing was applied to screen the candidate targets of eIF3b to identify the underlying mechanisms of eIF3b.An in vivo tumour xenograft mouse model was established by injecting shRNA transfected cells into the NCG mice. The tumour size and body weight of mice were monitored every other day. The mice were sacrificed 2 weeks after the tumour cell injection. The expression of eIF3b and target genes in the tumour tissues were determined by immunohistochemical staining and Western blotting. RESULTS: The group with inhibited expression of eIF3b led to about 50% lower cell viability compared with that of the control group (P < 0.05). Flow cytometry suggested that the percentage of increase in apoptotic cells was eight times higher than those in control group for TK-6 and K562 cells (P < 0.05). However, the difference between the cell amounts in the S phase for the experiment and control groups was not significant. After RNAsequencing and further validation via qPCR, C3G was screened as the potential target of eIF3b involved in the cell proliferation and apoptosis of CML cell lines. Subsequent in vivo analysis proved that the inhibition of eIF3b suppressed tumour formation and decreased C3G expression, thereby indicating that C3G was the potential target of eIF3b. CONCLUSION: eIF3b is correlated with the cell proliferation and cell apoptosis of CML. Moreover, eIF3b regulation most probably occurs via regulating the expression of C3G.


Asunto(s)
Apoptosis/fisiología , Proliferación Celular/fisiología , Factores Eucarióticos de Iniciación/metabolismo , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Animales , Xenoinjertos , Humanos , Células K562 , Ratones
19.
Cell Signal ; 65: 109425, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31689507

RESUMEN

Sildenafil, a phosphodiesterase-5 inhibitor is FDA approved drug against erectile dysfunction. It is currently undergoing many clinical trials, alone or in combinations against different diseases. Treatment of neural progenitor cells with sildenafil is known to regulate their basal cGMP levels and enhance neurogenesis and differentiation. cGMP as well as cAMP are known to play a central role in the maintenance, repair and remodelling of the nervous system. In the present study, we report the neurodifferentiation property of sildenafil in neuroblastoma cancer cell line IMR-32. Sildenafil was found to induce the formation of neurite outgrowths that were found expressing neuronal markers, such as NeuN, NF-H and ßIII tubulin. IS00384, a recently discovered PDE5 inhibitor by our laboratory, was also found to induce neurodifferentiation of IMR-32 cells. The effect of IS00384 on differentiation was even more profound than sildenafil. Both the compounds were found to elevate and activate the Guanine nucleotide exchange factor C3G, which is a regulator of differentiation in IMR-32 cells. They were also found to elevate the levels of cGMP and activate the AMPK-ACC and PI3K-Akt signalling pathways. These pathways are known to play important role in cytoskeletal rearrangements necessary for differentiation. This study highlights the role of phosphodiesterases-5 in neurodifferentiation and use of sildenafil and IS00384 as small molecule tools to study the process of cellular differentiation.


Asunto(s)
Neuroblastoma/metabolismo , Neurogénesis/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5/farmacología , Citrato de Sildenafil/farmacología , Quinasas de la Proteína-Quinasa Activada por el AMP , Antígenos Nucleares/metabolismo , Línea Celular Tumoral , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Humanos , Proteínas del Tejido Nervioso/metabolismo , Neuroblastoma/enzimología , Proteínas de Neurofilamentos/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Citrato de Sildenafil/química , Tubulina (Proteína)/metabolismo
20.
Food Funct ; 10(3): 1726-1735, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30848260

RESUMEN

Acylated anthocyanins are more stable than monomeric anthocyanins, but little is known about their physiological effects. We evaluated the hemodynamic effects of single intragastric doses of purple carrot (Daucus carota L.) anthocyanin (PCA) and two monomeric anthocyanins, cyanidin 3-O-glycoside (C3G) and delphinidin 3-O-ruthenoside (D3R). PCA, C3G, or D3R was administered orally to rat and blood flow in the cremaster artery was measured for 60 min using a laser Doppler blood flow meter. After measurements, the aorta of the animal was removed and the extent of phosphorylation of aortic epithelial nitric oxide synthase (eNOS) and Akt were determined by western blotting. PCA (10 mg kg-1) or C3G (1 mg kg-1) significantly increased rat cremaster arteriole blood flow and phosphorylation of eNOS and Akt; D3G (1 mg kg-1) only slightly altered cremaster arteriole blood flow and did not affect the phosphorylation of eNOS and Akt in the aorta. These results suggest that hemodynamic alterations depend more on the chemical structure of anthocyanins, particularly the aglycon, than on the glycoside. In addition, increase of blood flow by a single oral dose of PCA was practically reduced with treatment of carvedilol (CR), a non-specific adrenaline blocker. Blood concentrations of cyanidin or its glycoside 15, 30, or 60 min after the administration of 10 mg kg-1 PCA were below the limit of detection. These hemodynamic changes may have been associated with an indirect adrenergic action induced following a single dose of PCA.


Asunto(s)
Músculos Abdominales/irrigación sanguínea , Antocianinas/química , Antocianinas/farmacología , Velocidad del Flujo Sanguíneo/efectos de los fármacos , Daucus carota/química , Animales , Factor 2 Liberador de Guanina Nucleótido/farmacología , Masculino , Estructura Molecular , Óxido Nítrico Sintasa/clasificación , Óxido Nítrico Sintasa/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA