Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 150, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702777

RESUMEN

BACKGROUND: Vasculopathy is the most common complication of diabetes. Endothelial cells located in the innermost layer of blood vessels are constantly affected by blood flow or vascular components; thus, their mechanosensitivity plays an important role in mediating vascular regulation. Endothelial damage, one of the main causes of hyperglycemic vascular complications, has been extensively studied. However, the role of mechanosensitive signaling in hyperglycemic endothelial damage remains unclear. METHODS: Vascular endothelial-specific Piezo1 knockout mice were generated to investigate the effects of Piezo1 on Streptozotocin-induced hyperglycemia and vascular endothelial injury. In vitro activation or knockdown of Piezo1 was performed to evaluate the effects on the proliferation, migration, and tubular function of human umbilical vein endothelial cells in high glucose. Reactive oxygen species production, mitochondrial membrane potential alternations, and oxidative stress-related products were used to assess the extent of oxidative stress damage caused by Piezo1 activation. RESULTS: Our study found that in VECreERT2;Piezo1flox/flox mice with Piezo1 conditional knockout in vascular endothelial cells, Piezo1 deficiency alleviated streptozotocin-induced hyperglycemia with reduced apoptosis and abscission of thoracic aortic endothelial cells, and decreased the inflammatory response of aortic tissue caused by high glucose. Moreover, the knockout of Piezo1 showed a thinner thoracic aortic wall, reduced tunica media damage, and increased endothelial nitric oxide synthase expression in transgenic mice, indicating the relief of endothelial damage caused by hyperglycemia. We also showed that Piezo1 activation aggravated oxidative stress injury and resulted in severe dysfunction through the Ca2+-induced CaMKII-Nrf2 axis in human umbilical vein endothelial cells. In Piezo1 conditional knockout mice, Piezo1 deficiency partially restored superoxide dismutase activity and reduced malondialdehyde content in the thoracic aorta. Mechanistically, Piezo1 deficiency decreased CaMKII phosphorylation and restored the expression of Nrf2 and its downstream molecules HO-1 and NQO1. CONCLUSION: In summary, our study revealed that Piezo1 is involved in high glucose-induced oxidative stress injury and aggravated endothelial dysfunction, which have great significance for alleviating endothelial damage caused by hyperglycemia.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Células Endoteliales de la Vena Umbilical Humana , Canales Iónicos , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III , Estrés Oxidativo , Animales , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Diabetes Mellitus Experimental/metabolismo , Canales Iónicos/metabolismo , Canales Iónicos/genética , Glucemia/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Mecanotransducción Celular , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/deficiencia , Células Cultivadas , Proliferación Celular , Apoptosis , Masculino , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/fisiopatología , Angiopatías Diabéticas/patología , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/etiología , Movimiento Celular , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Aorta Torácica/metabolismo , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Ratones , Estreptozocina , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Endotelio Vascular/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética
2.
Cell Death Differ ; 31(4): 417-430, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38374230

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fatal and irreversible disease with few effective treatments. Alveolar macrophages (AMs) are involved in the development of IPF from the initial stages due to direct exposure to air and respond to external oxidative damage (a major inducement of pulmonary fibrosis). Oxidative stress in AMs plays an indispensable role in promoting fibrosis development. The oligopeptide histidine transporter SLC15A3, mainly expressed on the lysosomal membrane of macrophages and highly expressed in the lung, has proved to be involved in innate immune and antiviral signaling pathways. In this study, we demonstrated that during bleomycin (BLM)- or radiation-induced pulmonary fibrosis, the recruitment of macrophages induced an increase of SLC15A3 in the lung, and the deficiency of SLC15A3 protected mice from pulmonary fibrosis and maintained the homeostasis of the pulmonary microenvironment. Mechanistically, deficiency of SLC15A3 resisted oxidative stress in macrophages, and SLC15A3 interacted with the scaffold protein p62 to regulate its expression and phosphorylation activation, thereby regulating p62-nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant stress pathway protein, which is related to the production of reactive oxygen species (ROS). Overall, our data provided a novel mechanism for targeting SLC15A3 to regulate oxidative stress in macrophages, supporting the therapeutic potential of inhibiting or silencing SLC15A3 for the precautions and treatment of pulmonary fibrosis.


Asunto(s)
Bleomicina , Ratones Endogámicos C57BL , Estrés Oxidativo , Fibrosis Pulmonar , Animales , Humanos , Masculino , Ratones , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Macrófagos/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/deficiencia , Estrés Oxidativo/efectos de los fármacos , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/inducido químicamente , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
3.
Cardiovasc Res ; 120(5): 531-547, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38332738

RESUMEN

AIMS: Heart failure due to ischaemic heart disease (IHD) is a leading cause of mortality worldwide. A major contributing factor to IHD-induced cardiac damage is hypoxia. Sequestosome 1 (p62) is a multi-functional adaptor protein with pleiotropic roles in autophagy, proteostasis, inflammation, and cancer. Despite abundant expression in cardiomyocytes, the role of p62 in cardiac physiology is not well understood. We hypothesized that cardiomyocyte-specific p62 deletion evokes hypoxia-induced cardiac pathology by impairing hypoxia-inducible factor 1α (Hif-1α) and nuclear factor erythroid 2-related factor 2 (Nrf2) signalling. METHODS AND RESULTS: Adult mice with germline deletion of cardiomyocyte p62 exhibited mild cardiac dysfunction under normoxic conditions. Transcriptomic analyses revealed a selective impairment in Nrf2 target genes in the hearts from these mice. Demonstrating the functional importance of this adaptor protein, adult mice with inducible depletion of cardiomyocyte p62 displayed hypoxia-induced contractile dysfunction, oxidative stress, and cell death. Mechanistically, p62-depleted hearts exhibit impaired Hif-1α and Nrf2 transcriptional activity. Because findings from these two murine models suggested a cardioprotective role for p62, mechanisms were evaluated using H9c2 cardiomyoblasts. Loss of p62 in H9c2 cells exposed to hypoxia reduced Hif-1α and Nrf2 protein levels. Further, the lack of p62 decreased Nrf2 protein expression, nuclear translocation, and transcriptional activity. Repressed Nrf2 activity associated with heightened Nrf2-Keap1 co-localization in p62-deficient cells, which was concurrent with increased Nrf2 ubiquitination facilitated by the E3 ligase Cullin 3, followed by proteasomal-mediated degradation. Substantiating our results, a gain of p62 in H9c2 cells stabilized Nrf2 and increased the transcriptional activity of Nrf2 downstream targets. CONCLUSION: Cardiac p62 mitigates hypoxia-induced cardiac dysfunction by stabilizing Hif-1α and Nrf2.


Asunto(s)
Hipoxia de la Célula , Subunidad alfa del Factor 1 Inducible por Hipoxia , Miocitos Cardíacos , Factor 2 Relacionado con NF-E2 , Proteína Sequestosoma-1 , Animales , Hipoxia de la Célula/genética , Línea Celular , Modelos Animales de Enfermedad , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factor 2 Relacionado con NF-E2/deficiencia , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Estabilidad Proteica , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/genética , Transducción de Señal , Ubiquitinación , Ratones
4.
Free Radic Biol Med ; 193(Pt 1): 342-353, 2022 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-36252808

RESUMEN

Risk of cancer often increases with aging, and radiotherapy is an essential component of treatment. As for abdominal and pelvic cancer, radiotherapy always inevitably causes injury to intestines through direct DNA damage or overload of reactive oxygen species (ROS). Nuclear factor erythroid 2-related factor 2 (NRF2) has been identified as a key protective factor against ionizing-radiation induced damage through promoting DNA damage repair and antioxidant modulation. However, the level of NRF2 always decreases with aging. Here, we demonstrated that NRF2 deficiency aggravated cellular DNA damage and the intestinal pathological lesion. Overexpression of SIRT6 or SIRT7 could improve cell proliferation and protect against radiation injury in NRF2 knock-out (KO) cells by modulating oxidative-stress and DNA damage repair. Consistently, supplement of nicotinamide mononucleotide (NMN), the agonist of sirtuins, increased the level of SIRT6 and SIRT7 in NRF2 KO cells, concomitant with reduced cellular ROS level and ameliorated DNA damage. In vivo, long-term oral administration of NMN attenuated the radiation-induced injury of jejunum, increased the number of intestinal stem cells, and promoted the ability of intestinal proliferation in NRF2-/- mice. Together, our results indicated that SIRT6 and SIRT7 had involved in scavenging ROS and repairing DNA damage, and NMN could be a promising candidate for preventing radiation damage when NRF2 is lacking.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Mononucleótido de Nicotinamida , Radiación Ionizante , Sirtuinas , Animales , Ratones , Daño del ADN , Factor 2 Relacionado con NF-E2/deficiencia , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno , Sirtuinas/genética , Sirtuinas/metabolismo , Mononucleótido de Nicotinamida/farmacología
5.
Atherosclerosis ; 347: 1-16, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35299056

RESUMEN

BACKGROUND AND AIMS: Oxidative stress and abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) influence atherosclerosis formation and development. Oxidative stress significantly influences the abnormal proliferation and migration of VSMCs, and nuclear factor erythroid 2-related factor 2 (Nrf2) is a major antioxidant factor. However, the precise function of Nrf2 in the regulation of abnormal proliferation and migration of VSMCs and atherosclerosis is unclear. METHODS: We investigated the proliferation and migration of VSMCs in atherosclerosis in male Apoe-/- and Apoe-/-Nrf2-/- mice fed a high-fat diet for 12 weeks. In cultured mouse VSMCs, we studied the effect of Nrf2 on ox-LDL-stimulated proliferation and migration by using siRNA treatment to silence Nrf2. We then performed dual luciferase reporter and immunoprecipitation assays to study the interaction between Nrf2 and the promoter sequence of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). RESULTS: Our results demonstrate that Nrf2 expression levels were increased in the aorta and VSMCs of mice in the atherosclerosis model group compared with the control group. We also provide evidence that Nrf2 deficiency attenuated atherosclerotic plaque burden, diminished proliferation, and migration of VSMCs but enhanced VSMC-specific marker gene expression in vitro and in vivo. This is related to Nrf2 binding to the promoter sequence of LOX-1. Furthermore, Nrf2 downregulation contributes to restrain both transcriptional and translational activities of LOX-1. CONCLUSIONS: Together, our data indicate that Nrf2 insufficiency is linked to attenuation of atherosclerosis, and could diminish the pathological process by blunting LOX-1-mediated proliferation and migration of VSMCs.


Asunto(s)
Aterosclerosis , Músculo Liso Vascular , Factor 2 Relacionado con NF-E2 , Receptores Depuradores de Clase E , Animales , Apolipoproteínas E/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Movimiento Celular , Proliferación Celular , Células Cultivadas , Lipoproteínas LDL/metabolismo , Masculino , Ratones , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Factor 2 Relacionado con NF-E2/deficiencia , Factor 2 Relacionado con NF-E2/metabolismo , Receptores Depuradores de Clase E/genética , Receptores Depuradores de Clase E/metabolismo , Transducción de Señal
6.
Oxid Med Cell Longev ; 2022: 3644318, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222795

RESUMEN

Reduced testosterone level is a common feature of aging in men. Aging, as a risk factor for several neurodegenerative disorders, shows declined mitochondrial function and downregulated mitochondrial biogenesis and mitochondrial dynamics. Mitochondrial biogenesis and mitochondrial dynamics are crucial in maintaining proper mitochondrial function. Supplementation with testosterone is conducive to improving mitochondrial function of males during aging. Nuclear factor erythroid 2-related factor 2 (Nrf2), a regulator of redox homeostasis, is involved in the ameliorative effects of testosterone supplementation upon aging. To explore Nrf2 role in the effects of testosterone supplementation on mitochondrial function during aging, we studied the efficiency of testosterone supplementation in improving mitochondrial function of Nrf2 knockout- (KO-) aged male mice by analyzing the changes of mitochondrial biogenesis and mitochondrial dynamics. It was found that wild-type- (WT-) aged male mice showed low mitochondrial function and expression levels of PGC-1α, NRF-1\NRF-2, and TFAM regulating mitochondrial biogenesis, as well as Drp1, Mfn1, and OPA1 controlling mitochondrial dynamics in the substantia nigra (SN). Nrf2 KO aggravated the defects above in SN of aged male mice. Testosterone supplementation to WT-aged male mice significantly ameliorated mitochondrial function and upregulated mitochondrial biogenesis and mitochondrial dynamics, which were not shown in Nrf2 KO-aged male mice due to Nrf2 deficiency. Testosterone deficiency by gonadectomy (GDX) decreased mitochondrial function, downregulated mitochondrial biogenesis, and altered mitochondrial dynamics balance in young male mice. Supplementation with testosterone to Nrf2 KO-GDX mice only ameliorated the alterations above but did not reverse them to sham level. Nrf2 deficiency attenuated testosterone efficiency in ameliorating mitochondrial function in the SN of aged male mice through mitochondrial biogenesis and mitochondrial dynamics to some extent. Activation of Nrf2 might contribute to testosterone-upregulating mitochondrial biogenesis and mitochondrial dynamics in the SN during aging to produce efficient mitochondria for ATP production.


Asunto(s)
Envejecimiento/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Factor 2 Relacionado con NF-E2/deficiencia , Sustancia Negra/efectos de los fármacos , Testosterona/farmacología , Envejecimiento/metabolismo , Animales , Suplementos Dietéticos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sustancia Negra/metabolismo , Testosterona/administración & dosificación , Testosterona/deficiencia , Caminata
7.
Cell Mol Neurobiol ; 42(6): 1859-1873, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33666795

RESUMEN

Ischemic preconditioning (IPC) is an approach of protection against cerebral ischemia by inducing endogenous cytoprotective machinery. However, few studies in neurogenesis and oligodendrogenesis after IPC have been reported, especially the latter. The purpose of this study is to test our hypothesis that IPC may also induce cell proliferation and oligodendrogenesis in the subventricular zone and striatum, as well as to investigate the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) on oligodendrogenesis. IPC was induced in mice by 12-min ischemia through the occlusion of the middle cerebral artery. Newly generated cells were labeled with 5-bromo-2'-deoxyuridine. Our findings demonstrated that IPC stimulated the proliferation of neural stem cells in the subventricular zone, promoted the generation of oligodendrocyte precursor cells in the striatum and corpus callosum/external capsule (CC/EC), and stimulated oligodendrocyte precursor cells differentiation into oligodendrocytes in the striatum and the CC/EC. Furthermore, we describe a crucial role for Nrf2 in IPC-induced oligodendrogenesis in the subventricular zone, striatum, and CC/EC and show for the first time that Nrf2 promoted the migration and differentiation of oligodendrocyte precursor cells into oligodendrocytes in the striatum and CC/EC. Our data imply that IPC stimulates the oligodendrogenesis in the brain and that Nrf2 signaling may contribute to the oligodendrogenesis.


Asunto(s)
Precondicionamiento Isquémico , Factor 2 Relacionado con NF-E2 , Células Precursoras de Oligodendrocitos , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Bromodesoxiuridina , Ratones , Factor 2 Relacionado con NF-E2/deficiencia , Factor 2 Relacionado con NF-E2/fisiología , Células Precursoras de Oligodendrocitos/citología , Oligodendroglía/citología
8.
Commun Biol ; 4(1): 1381, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34887485

RESUMEN

Space travel induces stresses that contribute to health problems, as well as inducing the expression of Nrf2 (NF-E2-related factor-2) target genes that mediate adaptive responses to oxidative and other stress responses. The volume of epididymal white adipose tissue (eWAT) in mice increases during spaceflight, a change that is attenuated by Nrf2 knockout. We conducted metabolome analyses of plasma from wild-type and Nrf2 knockout mice collected at pre-flight, in-flight and post-flight time points, as well as tissues collected post-flight to clarify the metabolic responses during and after spaceflight and the contribution of Nrf2 to these responses. Plasma glycerophospholipid and sphingolipid levels were elevated during spaceflight, whereas triacylglycerol levels were lower after spaceflight. In wild-type mouse eWAT, triacylglycerol levels were increased, but phosphatidylcholine levels were decreased, and these changes were attenuated in Nrf2 knockout mice. Transcriptome analyses revealed marked changes in the expression of lipid-related genes in the liver and eWAT after spaceflight and the effects of Nrf2 knockout on these changes. Based on these results, we concluded that space stress provokes significant responses in lipid metabolism during and after spaceflight; Nrf2 plays critical roles in these responses.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Epidídimo/metabolismo , Factor 2 Relacionado con NF-E2/genética , Vuelo Espacial , Animales , Masculino , Metaboloma , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/deficiencia , Factor 2 Relacionado con NF-E2/metabolismo
9.
Cell Prolif ; 54(12): e13144, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34697858

RESUMEN

OBJECTIVES: The mammalian tongue develops from the branchial arches (1-4) and comprises highly organized tissues compartmentalized by mesenchyme/connective tissue that is largely derived from neural crest (NC). This study aimed to understand the roles of tumour suppressor Neurofibromin 2 (Nf2) in NC-derived tongue mesenchyme in regulating Hippo signalling and cell proliferation for the proper development of tongue shape and size. MATERIALS AND METHODS: Conditional knockout (cKO) of Nf2 in NC cell lineage was generated using Wnt1-Cre (Wnt1-Cre/Nf2cKO ). Nf2 expression, Hippo signalling activities, cell proliferation and tongue shape and size were thoroughly analysed in different tongue regions and tissue types of Wnt1-Cre/Nf2cKO and Cre- /Nf2fx/fx littermates at various stages (E10.5-E18.5). RESULTS: In contrast to many other organs in which the Nf2/Hippo pathway activity restrains growth and cell proliferation and as a result, loss of Nf2 decreases Hippo pathway activity and promotes an enlarged organ development, here we report our observations of distinct, tongue region- and stage-specific alterations of Hippo signalling activity and cell proliferation in Nf2cKO in NC-derived tongue mesenchyme. Compared to Cre- /Nf2fx / fx littermates, Wnt1-Cre/Nf2cKO depicted a non-proportionally enlarged tongue (macroglossia) at E12.5-E13.5 and microglossia at later stages (E15.5-E18.5). Specifically, at E12.5 Nf2cKO mutants had a decreased level of Hippo signalling transcription factor Yes-associated protein (Yap), Yap target genes and cell proliferation anteriorly, while having an increased Yap, Yap target genes and cell proliferation posteriorly, which lead to a tip-pointed and posteriorly widened tongue. At E15.5, loss of Nf2 in the NC lineage resulted in distinct changes in cell proliferation in different regions, that is, high in epithelium and mesenchyme subjacent to the epithelium, and lower in deeper layers of the mesenchyme. At E18.5, cell proliferation was reduced throughout the Nf2cKO tongue.


Asunto(s)
Proliferación Celular , Eliminación de Gen , Vía de Señalización Hippo , Mesodermo/embriología , Factor 2 Relacionado con NF-E2/deficiencia , Cresta Neural/embriología , Lengua/embriología , Animales , Ratones , Ratones Transgénicos , Factor 2 Relacionado con NF-E2/metabolismo , Tamaño de los Órganos
10.
Cells ; 10(8)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34440821

RESUMEN

Systemic sclerosis (SSc) is an autoimmune connective tissue disease that leads to skin fibrosis. Altered metabolism has recently been described in autoimmune diseases and SSc. Itaconate is a product of the Krebs cycle intermediate cis-aconitate and is an immunomodulator. This work examines the role of the cell-permeable derivative of itaconate, 4-octyl itaconate (4-OI), in SSc. SSc and healthy dermal fibroblasts were exposed to 4-OI. The levels of collagen Nrf2-target genes and pro-inflammatory cytokines interleukin 6 (IL-6) and monocyte chemotactic protein 1 (MCP-1) were determined. Levels of reactive oxygen species (ROS) as well as the gene expression of collagen and Cellular Communication Network Factor 2 (CCN2) were measured after transforming growth factor beta 1 (TGF-ß1) stimulation in the presence or absence of 4-OI. Wild-type or Nrf2-knockout (Nrf2-KO) mouse embryonic fibroblasts (MEFs) were also treated with 4-OI to determine the role of Nrf2 in 4-OI-mediated effects. 4-OI reduced the levels of collagen in SSc dermal fibroblasts. Incubation with 4-OI led to activation of Nrf2 and its target genes heme oxygenase 1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). 4-OI activated antioxidant response element (ARE)-dependent gene expression, reduced inflammatory cytokine release and reduced TGF-ß1-induced collagen and ROS production in dermal fibroblasts. The effects of 4-OI are dependent on Nrf2. The cell-permeable derivative of itaconate 4-OI is anti-fibrotic through upregulation of Nrf2 and could be a potential therapeutic option in an intractable disease.


Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Esclerodermia Sistémica/patología , Succinatos/farmacología , Regulación hacia Arriba/efectos de los fármacos , Animales , Elementos de Respuesta Antioxidante/efectos de los fármacos , Elementos de Respuesta Antioxidante/genética , Colágeno/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Interleucina-6/metabolismo , Ratones , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/deficiencia , Factor 2 Relacionado con NF-E2/genética , Especies Reactivas de Oxígeno/metabolismo , Esclerodermia Sistémica/metabolismo , Factor de Crecimiento Transformador beta1/farmacología
11.
J Neuroinflammation ; 18(1): 148, 2021 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-34218792

RESUMEN

BACKGROUND: Macrophages play a dual role in neuroinflammatory disorders such as multiple sclerosis (MS). They are involved in lesion onset and progression but can also promote the resolution of inflammation and repair of damaged tissue. In this study, we investigate if and how phloretin, a flavonoid abundantly present in apples and strawberries, lowers the inflammatory phenotype of macrophages and suppresses neuroinflammation. METHODS: Transcriptional changes in mouse bone marrow-derived macrophages upon phloretin exposure were assessed by bulk RNA sequencing. Underlying pathways related to inflammation, oxidative stress response and autophagy were validated by quantitative PCR, fluorescent and absorbance assays, nuclear factor erythroid 2-related factor 2 (Nrf2) knockout mice, western blot, and immunofluorescence. The experimental autoimmune encephalomyelitis (EAE) model was used to study the impact of phloretin on neuroinflammation in vivo and confirm underlying mechanisms. RESULTS: We show that phloretin reduces the inflammatory phenotype of macrophages and markedly suppresses neuroinflammation in EAE. Phloretin mediates its effect by activating the Nrf2 signaling pathway. Nrf2 activation was attributed to 5' AMP-activated protein kinase (AMPK)-dependent activation of autophagy and subsequent kelch-like ECH-associated protein 1 (Keap1) degradation. CONCLUSIONS: This study opens future perspectives for phloretin as a therapeutic strategy for neuroinflammatory disorders such as MS. TRIAL REGISTRATION: Not applicable.


Asunto(s)
Autofagia/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Macrófagos/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Floretina/farmacología , Animales , Autofagia/fisiología , Células Cultivadas , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/deficiencia , Floretina/uso terapéutico
12.
Immunol Lett ; 237: 58-65, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34246712

RESUMEN

Type 2 Diabetes is a chronic disease resulting from insulin dysfunction that triggers a low-grade inflammatory state and immune impairment. Leishmaniasis is an infectious disease characterized by chronic inflammation resulted from the parasite's immunomodulation ability. Thus, due to the delicate immune balance required in the combat and resistance to Leishmania infection and the chronic deregulation of the inflammatory response observed in type 2 diabetes, we evaluated the response of PBMC from diabetic patients to in vitro Leishmania amazonensis infection. For that, peripheral blood was collected from 25 diabetic patients and 25 healthy controls matched for age for cells extraction and subsequent experimental infection for 2 or 24 h and analyzed for phagocytic and leishmanicidal capacity by optical microscopy, oxidative stress by GSSG generation, labeling of intracellular mediators by enzyme-Linked immunosorbent assay, and cytokines measurement with cytometric beads array technique. We found that the diabetic group had a higher percentage of infected cells and a greater number of amastigotes per cell. Also, even inducing NF-kB phosphorylation and increasing TNF production after infection, cells from diabetic patients were unable to downregulate NRF2 and generate oxidative stress, which may be associated with the exacerbated levels of IL-6 observed. PBMC of diabetic individuals are more susceptible to infection by L. amazonensis and fail to control the infection over time due to the inability to generate effector microbicidal molecules.


Asunto(s)
Citocinas/fisiología , Diabetes Mellitus Tipo 2/inmunología , Leishmania mexicana/patogenicidad , Leishmaniasis Cutánea/etiología , Leucocitos Mononucleares/parasitología , Factor 2 Relacionado con NF-E2/deficiencia , Anciano , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/sangre , Susceptibilidad a Enfermedades , Femenino , Glutatión/sangre , Hemoglobina Glucada/análisis , Humanos , Inmunocompetencia , Técnicas In Vitro , Inflamación , Interleucina-6/fisiología , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/parasitología , Masculino , Persona de Mediana Edad , Factor 2 Relacionado con NF-E2/fisiología , Óxido Nítrico/metabolismo , Estrés Oxidativo , Estallido Respiratorio , Factor de Necrosis Tumoral alfa/fisiología
13.
Aging Cell ; 20(8): e13444, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34313391

RESUMEN

The nuclear factor-erythroid 2-related factor-2 (Nrf2), a major antioxidant transcription factor, is decreased in several age-related diseases including age-related macular degeneration (AMD), the most common cause of blindness among the elderly in western society. Since Nrf2's mito-protective response is understudied, we investigated its antioxidant response on mitochondria. Control and Nrf2-deficient retinal pigmented epithelial (RPE) cells were compared after treating with cigarette smoke extract (CSE). Mitochondrial antioxidant abundance and reactive oxygen species (ROS) were quantified. Mitochondrial function was assessed by TMRM assay, NADPH, electron transport chain activity, and Seahorse. Results were corroborated in Nrf2-/- mice and relevance to AMD was provided by immunohistochemistry of human globes. CSE induced mitochondrial ROS to impair mitochondrial function. H2 O2 increase in particular, was magnified by Nrf2 deficiency, and corresponded with exaggerated mitochondrial dysfunction. While Nrf2 did not affect mitochondrial antioxidant abundance, oxidized PRX3 was magnified by Nrf2 deficiency due to decreased NADPH from decreased expression of IDH2 and pentose phosphate pathway (PPP) genes. With severe CSE stress, intrinsic apoptosis was activated to increase cell death. PPP component TALDO1 immunolabeling was decreased in dysmorphic RPE of human AMD globes. Despite limited regulation of mitochondrial antioxidant expression, Nrf2 influences PPP and IDH shuttle activity that indirectly supplies NADPH for the TRX2 system. These results provide insight into how Nrf2 deficiency impacts the mitochondrial antioxidant response, and its role in AMD pathobiology.


Asunto(s)
Isocitrato Deshidrogenasa/metabolismo , Mitocondrias/metabolismo , NADP/metabolismo , Factor 2 Relacionado con NF-E2/deficiencia , Estrés Oxidativo/fisiología , Epitelio Pigmentado de la Retina/metabolismo , Animales , Humanos , Células Madre Pluripotentes Inducidas , Ratones , Vía de Pentosa Fosfato , Especies Reactivas de Oxígeno/metabolismo
14.
Commun Biol ; 4(1): 787, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168270

RESUMEN

Microgravity induces skeletal muscle atrophy, particularly in the soleus muscle, which is predominantly composed of slow-twitch myofibre (type I) and is sensitive to disuse. Muscle atrophy is commonly known to be associated with increased production of reactive oxygen species. However, the role of NRF2, a master regulator of antioxidative response, in skeletal muscle plasticity during microgravity-induced atrophy, is not known. To investigate the role of NRF2 in skeletal muscle within a microgravity environment, wild-type and Nrf2-knockout (KO) mice were housed in the International Space Station for 31 days. Gene expression and histological analyses demonstrated that, under microgravity conditions, the transition of type I (oxidative) muscle fibres to type IIa (glycolytic) was accelerated in Nrf2-KO mice without affecting skeletal muscle mass. Therefore, our results suggest that NRF2 affects myofibre type transition during space flight.


Asunto(s)
Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Atrofia Muscular/etiología , Factor 2 Relacionado con NF-E2/fisiología , Vuelo Espacial , Animales , Perfilación de la Expresión Génica , Glucólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/deficiencia
15.
Toxicol Appl Pharmacol ; 426: 115617, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34116071

RESUMEN

Alcoholic liver disease (ALD) is a major cause of morbidity and mortality from liver disorders. Various mechanisms, including oxidative stress and impaired lipid metabolism, have been implicated in the pathogenesis of ALD. Our previous studies showed that nuclear factor erythroid-derived 2-like 2 (Nrf2) is a master regulator of adaptive antioxidant response and lipid metabolism by using a liver-specific Nrf2 knockout (Nrf2(L)-KO) mouse model. In the current study, an ALD model was developed by a Lieber-DeCarli liquid-based ethanol diet given to this Nrf2(L)-KO mouse strain. We found that Nrf2(L)-KO mice were quite sensitive to lethality from 6.3% ethanol diet. We thus decreased the ethanol concentration to 4.2% to obtain tissues to analyze the role of hepatic Nrf2 in the development of ALD. We found that mild hepatic steatosis occurred with both liquid control and 4.2% ethanol diet feeding, which contain 35% fat. Both the fatty acid ß-oxidation marker peroxisome proliferators-activated receptor α (PPARα), and lipogenesis regulator PPARγ were reduced with ethanol feeding in Nrf2(L)-KO mice, compared to Nrf2 floxed control mice (Nrf2-LoxP). However, Nrf2(L)-KO livers showed more cell injury than the livers of Nrf2-LoxP mice. Consistent with these data, there was increased proportion of apoptotic cells in the liver of ethanol-fed Nrf2(L)-KO mice comparing Nrf2-LoxP controls. Mechanistically, Nrf2 mediated expression of ethanol detoxification enzymes, such as alcohol dehydrogenase 1 and aldehyde dehydrogenase1a1, likely contributed to the sensitivity to ethanol toxicity. In conclusion, hepatic Nrf2 is critical to the development of ALD, particularly the morbidity and liver injury.


Asunto(s)
Hepatopatías Alcohólicas , Factor 2 Relacionado con NF-E2/deficiencia , Alcohol Deshidrogenasa/genética , Animales , Catalasa/genética , Etanol , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/mortalidad , Hepatopatías Alcohólicas/patología , Masculino , Ratones Transgénicos , Factor 2 Relacionado con NF-E2/genética , Triglicéridos/metabolismo
16.
Toxicology ; 456: 152785, 2021 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-33872730

RESUMEN

Acrylamide (ACR), a recognized neurotoxicant in humans and experimental animals, is widely used in industry and in food generated through Maillard reaction. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of the cellular defense system and activates antioxidants and cytoprotective genes. The exact roles of Nrf2 in environmental electrophile-induced neurotoxicity is poorly understood. The aim of this study was to determine the roles of Nrf2 in ACR-induced neurotoxicity including degeneration of monoaminergic axons and sensorimotor dysfunction. Male 10-week-old C57BL/6JJcl Nrf2-knockout mice and wild type (WT) counterparts were each divided into four groups of 12 and provided with drinking water containing acrylamide at 0, 67, 110 or 200 ppm for four weeks. The effects of acrylamide were examined by landing foot spread test, immunohistochemistry for noradrenaline (NA) and serotonin (5-HT)-containing axons and Iba1-positive microglia in the prefrontal cortex as well as quantitative real-time polymerase chain reaction (qRT-PCR) on antioxidant, proinflammatory and anti-inflammatory genes in the prefrontal cortex. Relative to the wild type, exposure of Nrf2-knockout mice to acrylamide increased hindlimb splay length, microglial area and process length as well as decreasing the density of NA and 5-HT-immunoreactive axons to a greater extent. Moreover, deletion of Nrf2 gene suppressed acrylamide-induced mRNA upregulation of Nrf2-antioxidants, NAD(P): quinone oxidoreductase 1 (NQO1), superoxide dismutase-1 (SOD-1) and heme oxygenase-1 (HO-1) as well as anti-inflammatory markers such as, arginase-1 (Arg1), found in the inflammatory zone-1 (Fizz1), chitinase-like 3 (Chi3l3), interleukin-4 receptor alpha (IL-4Rα), cluster of differentiation  206 (CD206) and transforming growth factor beta-1 (TGFß1) while enhancing acrylamide-induced upregulation of pro-inflammatory cytokines, interleukin-1 beta (IL-1ß), tumor necrosis-alpha (TNF-α) and inducible nitric oxide synthase (iNOS) in the prefrontal cortex. The results demonstrate susceptibility of mice lacking the Nrf2 gene to acrylamide-induced neurotoxicity and neuroinflammation with the activation of microglia. Moreover, the results suggest the role of Nrf2 not only in induction of antioxidant gene expression, but also in suppression of proinflammatory cytokine gene expression.


Asunto(s)
Acrilamida/toxicidad , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Factor 2 Relacionado con NF-E2/deficiencia , Factor 2 Relacionado con NF-E2/genética , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/metabolismo
17.
Biochem Biophys Res Commun ; 550: 142-150, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33706097

RESUMEN

BACKGROUND: Doxorubicin (DOX) is a widely used cancer chemotherapeutic drug with cardiotoxicity effect limiting its clinical use. DOX induced cardiotoxicity is mediated by oxidative stress and mitochondrial damage. Kininogen-1(KNG1) is an important pro-inflammatory and pro-oxidant factor, and studies have found that it can aggravate lung and brain damage. However, it has not been known in terms of cardiotoxicity. Therefore, the purpose of this study is to understand the mechanism of KNG1 in DOX-induced heart injury. METHODS: C57 mice were selected for intraperitoneal injection of DOX. The model was successfully established, and fresh ventricular tissues were isolated from the ctrl group and the DOX group for mass spectrometry analysis to screen for differentially expressed proteins. Nuclear Factor-Like 2 (Nrf2), Heme Oxygenase 1 (HO-1), 4-Hydroxynonenal (4-HNE) were used to evaluate oxidative stress level, Cytochrome C Oxidase Subunit 4 (COX4) was used to evaluate mitochondria function. Mitochondrial inner membrane potential (ΔΨm) was monitored with JC-1 fluorescence. RESULTS: KNG1 was identified as a core gene which was highly expressed in the DOX myocardial injury model. Following this, an overexpression adenovirus was constructed, and KNG1 was overexpressed in vivo (mice) and in vitro (neonatal mouse cardiomyocytes (NMCMs)). It was found that overexpression of KNG1 can aggravate heart oxidative stress and mitochondrial damage. Besides, a knockdown KNG1 model was constructed, and the low expression of KNG1 was performed in cytology. It was found that knockdown of KNG1 can improve cardiomyocyte oxidative stress and mitochondrial damage caused by DOX. Nrf2 is an important antioxidant factor. Further, following KNG1 knock down, Nrf2 was also knocked down, and found that its cardiomyocyte protective effect was weakened. CONCLUSION: The overexpression of KNG1 aggravates the oxidative stress and mitochondrial damage of the heart in vivo and in vitro, which might play a role by regulating Nrf2, providing a therapeutic target for DOX-induced cardiotoxicity.


Asunto(s)
Cardiotoxicidad/patología , Doxorrubicina/efectos adversos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Miocardio/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Animales Recién Nacidos , Cardiotoxicidad/metabolismo , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factor 2 Relacionado con NF-E2/deficiencia , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
18.
Oxid Med Cell Longev ; 2021: 6630281, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33628368

RESUMEN

Intracerebral hemorrhage- (ICH-) induced secondary brain injury (SBI) is a very complex pathophysiological process. However, the molecular mechanisms and drug targets of SBI are highly intricate and still elusive, yet a clear understanding is crucial for the treatment of SBI. In the current study, we aimed to confirm that nuclear factor-E2-related factor 2 (Nrf2)/Optineurin- (OPTN-) mediated mitophagy alleviated SBI by inhibiting nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation based on the isobaric tag for relative and absolute quantization (iTRAQ) quantification proteomics. Human ICH brain specimens were collected for iTRAQ-based proteomics analysis. Male Nrf2 wild-type (WT) and knockout (KO) mice were employed to establish ICH murine models. The survival rate, hematoma volume, neurofunctional outcomes, blood-brain barrier (BBB) permeability, brain edema, spatial neuronal death, NLRP3 inflammasome, inflammatory response, mitochondrial function, and mitophagy level were evaluated after ICH. The iTRAQ quantification analysis showed that the differentially expressed proteins (DEPs), Nrf2 and NLRP3, were closely associated with the initiation and development of SBI after ICH. The Nrf2 KO mice had a significantly lower survival rate, bigger hematoma volume, worse neurological deficits, and increased BBB disruption, brain edema, and neuronal death when compared with the Nrf2 WT mice after ICH. Furthermore, Nrf2 KO enhanced NLRP3 inflammasome activation and neuroinflammation as evidenced by the NF-κB activation and various proinflammatory cytokine releases following ICH. Moreover, Nrf2 could interact with and modulate the mitophagy receptor OPTN, further mediating mitophagy to remove dysfunctional mitochondria after ICH. Furthermore, OPTN small interfering RNA (siRNA) increased the NLRP3 inflammasome activation by downregulating mitophagy level and enhancing mitochondrial damage in the Nrf2 WT mice after ICH. Together, our data indicated that Nrf2/OPTN inhibited NLRP3 inflammasome activation, possibly via modulating mitophagy, therefore alleviating SBI after ICH.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Hemorragia Cerebral/metabolismo , Inflamasomas/metabolismo , Marcaje Isotópico , Mitofagia , Factor 2 Relacionado con NF-E2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteómica , Animales , Antioxidantes/metabolismo , Apoptosis , Barrera Hematoencefálica/patología , Hemorragia Cerebral/complicaciones , Humanos , Inflamación/complicaciones , Inflamación/patología , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos ICR , Ratones Noqueados , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/deficiencia , Especies Reactivas de Oxígeno/metabolismo , Reproducibilidad de los Resultados
19.
Oxid Med Cell Longev ; 2021: 8860883, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33574984

RESUMEN

Doxorubicin (DOX) could trigger congestive heart failure, which largely limited the clinical use of DOX. microRNAs (miRNAs) were closely involved in the pathogenesis of DOX-induced cardiomyopathy. Here, we aimed to investigate the effect of miR-152 on DOX-induced cardiotoxicity in mice. To study this, we used an adeno-associated viral vector to overexpress miR-152 in mice 6 weeks before DOX treatment, using a dose mimicking the concentrations used in the clinics. In response to DOX injection, miR-152 was significantly decreased in murine hearts and cardiomyocytes. After DOX treatment, mice with miR-152 overexpression in the hearts developed less cardiac dysfunction, oxidative stress, inflammation, and myocardial apoptosis. Furthermore, we found that miR-152 overexpression attenuated DOX-related oxidative stress, inflammation, and cell loss in cardiomyocytes, whereas miR-152 knockdown resulted in oxidative stress, inflammation, and cell loss in cardiomyocytes. Mechanistically, this effect of miR-152 was dependent on the activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in response to DOX. Notably, Nrf2 deficiency blocked the protective effects of miR-152 against DOX-related cardiac injury in mice. In conclusion, miR-152 protected against DOX-induced cardiotoxicity via the activation of the Nrf2 signaling pathway. These results suggest that miR-152 may be a promising therapeutic target for the treatment of DOX-induced cardiotoxicity.


Asunto(s)
Apoptosis/genética , Cardiotoxicidad/genética , Cardiotoxicidad/patología , Doxorrubicina/efectos adversos , Inflamación/genética , MicroARNs/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/genética , Animales , Animales Recién Nacidos , Cardiotoxicidad/fisiopatología , Regulación hacia Abajo/genética , Inflamación/patología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Masculino , Ratones , MicroARNs/genética , Factor 2 Relacionado con NF-E2/deficiencia , Ratas
20.
Mol Cell Biol ; 41(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33139492

RESUMEN

Activating mutations in the KEAP1-NRF2 pathway are found in approximately 25% of lung tumors, where the hijacking of NRF2's cytoprotective functions results in aggressive tumor growth, chemoresistance, and a poor prognosis for patients. There are currently no approved drugs which target aberrant NRF2 activation, which means that there is an urgent clinical need to target this orphan oncogenic pathway in human tumors. In this study, we used an isogenic pair of wild-type and Keap1 knockout cells to screen a range of chemotherapeutic and pathway-targeted anticancer drugs in order to identify compounds which display enhanced toxicity toward cells with high levels of Nrf2 activity. Through this approach, complemented by validation across a panel of eight human cancer cell lines from a range of different tissues, we identified the DNA-damaging agent mitomycin C to be significantly more toxic in cells with aberrant Nrf2 activation. Mechanistically, we found that the NRF2 target genes for cytochrome P450 reductase, NQO1, and enzymes in the pentose phosphate pathway are all responsible for the NRF2-dependent enhanced bioactivation of mitomycin C. As mitomycin C is already approved for clinical use, it represents as excellent drug repositioning candidate to target the currently untreatable NRF2 activation in human tumors.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Proteína 1 Asociada A ECH Tipo Kelch/genética , Mitomicina/farmacología , NADP/metabolismo , Factor 2 Relacionado con NF-E2/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/genética , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/deficiencia , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NADPH-Ferrihemoproteína Reductasa/genética , NADPH-Ferrihemoproteína Reductasa/metabolismo , Factor 2 Relacionado con NF-E2/deficiencia , Estrés Oxidativo , Paclitaxel/farmacología , Vía de Pentosa Fosfato/efectos de los fármacos , Vía de Pentosa Fosfato/genética , Transducción de Señal , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA