Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 762
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 281, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39384753

RESUMEN

Axis inhibition protein 1 (AXIN1), a scaffold protein interacting with various critical molecules, plays a vital role in determining cell fate. However, its impact on the antiviral innate immune response remains largely unknown. Here, we identify that AXIN1 acts as an effective regulator of antiviral innate immunity against both DNA and RNA virus infections. In the resting state, AXIN1 maintains the stability of the transcription factor interferon regulatory factor 3 (IRF3) by preventing p62-mediated autophagic degradation of IRF3. This is achieved by recruiting ubiquitin-specific peptidase 35 (USP35), which removes lysine (K) 48-linked ubiquitination at IRF3 K366. Upon virus infection, AXIN1 undergoes a phase separation triggered by phosphorylated TANK-binding kinase 1 (TBK1). This leads to increased phosphorylation of IRF3 and a boost in IFN-I production. Moreover, KYA1797K, a small molecule that binds to the AXIN1 RGS domain, enhances the AXIN1-IRF3 interaction and promotes the elimination of various highly pathogenic viruses. Clinically, patients with HBV-associated hepatocellular carcinoma (HCC) who show reduced AXIN1 expression in pericarcinoma tissues have low overall and disease-free survival rates, as well as higher HBV levels in their blood. Overall, our findings reveal how AXIN1 regulates IRF3 signaling and phase separation-mediated antiviral immune responses, underscoring the potential of the AXIN1 agonist KYA1797K as an effective antiviral agent.


Asunto(s)
Proteína Axina , Factor 3 Regulador del Interferón , Proteína Axina/genética , Proteína Axina/inmunología , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/virología , Carcinoma Hepatocelular/patología , Inmunidad Innata/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Animales , Ubiquitinación/genética , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/inmunología , Células HEK293 , Ratones , Antivirales/farmacología , Separación de Fases , Fragmentos de Péptidos , Sialoglicoproteínas
2.
J Cell Mol Med ; 28(19): e70130, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39365284

RESUMEN

Pancreatic ß-cell damage mediated by apoptosis is believed to be a main trigger of type 1 diabetes mellitus (T1DM), which is proposed as an organ-specific autoimmune disease mediated by T cells. Nonetheless, the fundamental origins of T1DM remain uncertain. Here, we illustrate that an increase in PLAGL1 expression induces ß-cell apoptosis, as evidenced by mitochondrial membrane impairment and nucleolar degradation. The gene expression levels from cDNA samples were determined using qRT-PCR method. Western blot and Co-immunoprecipitation were applied for protein expression and interactions, respectively. Flow cytometry and TUNEL assay were used to detect pancreatic ß cell apoptosis. Female NOD/LtJ mice with recent-onset T1DM has been used in in vivo studies. Glucose-stimulated insulin secretion (GSIS) and glucose tolerance test (GTT) method is used for islet function assessment. Haematoxylin and Eosin (H&E) and Immunohistochemistry (IHC) were performed to evalute histological improvement of islet beta. Subsequent cytoplasmic DNA accumulation triggers DNA senser, the cyclic guanosine monophosphate-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. STING activation further stimulates downstream IRF3 and NF-kB pathways, thus boost type-I interferon signalling and NF-kB mediated inflammation. These findings elucidate a molecular mechanism linking PLAGL1 induced cell apoptosis to type-I interferon signalling and suggest a potential benefit for targeting cGAS/STING in T1DM treatment.


Asunto(s)
Apoptosis , Células Secretoras de Insulina , Proteínas de la Membrana , Nucleotidiltransferasas , Animales , Femenino , Humanos , Ratones , Citoplasma/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , ADN/metabolismo , ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos NOD , FN-kappa B/metabolismo , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Transducción de Señal , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
3.
BMC Infect Dis ; 24(1): 915, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232642

RESUMEN

BACKGROUND: This study aimed to investigate the differential expression levels of the cGAS-STING pathway in peripheral blood mononuclear cells (PBMCs) of spinal tuberculosis (TB) patients with different progression and its feasibility as a diagnostic marker. METHODS: Peripheral blood and medical records of 25 patients with spinal TB and 10 healthy individuals, were prospectively collected and analyzed. PBMCs and serum were extracted from peripheral blood and the expression levels of the cGAS-STING pathway in PBMCs were measured by real-time PCR (RT-PCR) and serum interferon ß (IFN-ß) expression levels were measured by enzyme-linked immunosorbent assay (ELISA). The expression of Interferon regulatory Factor 3 (IRF3) in PBMCs was measured using western blot. Statistical analysis was performed using the SPSS 26.0 statistical package. RESULTS: The results showed that the expression level of the TANK-binding kinase 1 (TBK1) and IRF3 was significantly higher in PBMCs (P < 0.05), in patients with active lesions than in patients with stable lesions. The serum concentration of IFN-ß was significantly higher in patients with active lesions (P = 0.028). Compared with healthy individuals, the expression level of the cGAS-STING pathway was elevated in PBMCs of TB patients (P < 0.05), and the difference in the expression level of IFN-ß was not statistically significant (P > 0.05), and the serum IFN-ß concentration was elevated (P < 0.05). The calculated AUC values for TBK1 and IRF3 in PBMCs, IFN-ß in serum and erythrocyte sedimentation rate (ESR) to distinguish between patients with active and stable lesions were 0.732, 0.714, 0.839, and 0.714 respectively. CONCLUSIONS: The expression level of TBK1 and IRF3 in PBMCs, and IFN-ß in the serum of patients with spinal TB is positively correlated with disease activity. TBK1 has higher specificity and IFN-ß in serum has higher sensitivity when used to differentiate between patients with active and stable lesions.


Asunto(s)
Factor 3 Regulador del Interferón , Leucocitos Mononucleares , Proteínas de la Membrana , Nucleotidiltransferasas , Tuberculosis de la Columna Vertebral , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Femenino , Adulto , Proteínas de la Membrana/sangre , Proteínas de la Membrana/genética , Persona de Mediana Edad , Nucleotidiltransferasas/genética , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/sangre , Tuberculosis de la Columna Vertebral/sangre , Tuberculosis de la Columna Vertebral/genética , Interferón beta/sangre , Transducción de Señal , Proteínas Serina-Treonina Quinasas/genética , Biomarcadores/sangre , Estudios Prospectivos , Adulto Joven , Anciano
4.
Mol Cell ; 84(18): 3513-3529.e5, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39255795

RESUMEN

Innate immunity serves as the primary defense against viral and microbial infections in humans. The precise influence of cellular metabolites, especially fatty acids, on antiviral innate immunity remains largely elusive. Here, through screening a metabolite library, palmitic acid (PA) has been identified as a key modulator of antiviral infections in human cells. Mechanistically, PA induces mitochondrial antiviral signaling protein (MAVS) palmitoylation, aggregation, and subsequent activation, thereby enhancing the innate immune response. The palmitoyl-transferase ZDHHC24 catalyzes MAVS palmitoylation, thereby boosting the TBK1-IRF3-interferon (IFN) pathway, particularly under conditions of PA stimulation or high-fat-diet-fed mouse models, leading to antiviral immune responses. Additionally, APT2 de-palmitoylates MAVS, thus inhibiting antiviral signaling, suggesting that its inhibitors, such as ML349, effectively reverse MAVS activation in response to antiviral infections. These findings underscore the critical role of PA in regulating antiviral innate immunity through MAVS palmitoylation and provide strategies for enhancing PA intake or targeting APT2 for combating viral infections.


Asunto(s)
Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales , Inmunidad Innata , Factor 3 Regulador del Interferón , Lipoilación , Ácido Palmítico , Transducción de Señal , Inmunidad Innata/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/inmunología , Humanos , Animales , Ácido Palmítico/farmacología , Ratones , Células HEK293 , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Aciltransferasas/genética , Aciltransferasas/inmunología , Aciltransferasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones Endogámicos C57BL , Antivirales/farmacología , Proteínas de Neoplasias , Péptidos y Proteínas de Señalización Intracelular
5.
J Neuroinflammation ; 21(1): 212, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215356

RESUMEN

The pathological role of interferon signaling is emerging in neuroinflammatory disorders, yet, the specific role of Interferon Regulatory Factor 3 (IRF3) in neuroinflammation remains poorly understood. Here, we show that global IRF3 deficiency delays TLR4-mediated signaling in microglia and attenuates the hallmark features of LPS-induced inflammation such as cytokine release, microglial reactivity, astrocyte activation, myeloid cell infiltration, and inflammasome activation. Moreover, expression of a constitutively active IRF3 (S388D/S390D: IRF3-2D) in microglia induces a transcriptional program reminiscent of the Activated Response Microglia and the expression of genes associated with Alzheimer's disease, notably apolipoprotein-e. Using bulk-RNAseq of IRF3-2D brain myeloid cells, we identified Z-DNA binding protein-1 (ZBP1) as a target of IRF3 that is relevant across various neuroinflammatory disorders. Lastly, we show IRF3 phosphorylation and IRF3-dependent ZBP1 induction in response to Aß in primary microglia cultures. Together, our results identify IRF3 as an important regulator of LPS and Aß -mediated neuroinflammatory responses and highlight IRF3 as a central regulator of disease-specific gene activation in different neuroinflammatory diseases.


Asunto(s)
Enfermedad de Alzheimer , Factor 3 Regulador del Interferón , Microglía , Enfermedades Neuroinflamatorias , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Ratones , Enfermedades Neuroinflamatorias/genética , Enfermedades Neuroinflamatorias/metabolismo , Microglía/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Regulación de la Expresión Génica/efectos de los fármacos , Células Cultivadas , Humanos , Ratones Noqueados
6.
J Virol ; 98(9): e0078424, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39194214

RESUMEN

Porcine respiratory and reproductive syndrome (PRRS) is one of the most devastating infectious diseases of pigs, causing reproductive failures in sows and severe respiratory symptoms in piglets and growing pigs. MicroRNAs (miRNAs) are reported to play an essential role in virus-host interactions. In this study, we demonstrated that miR-451 enhanced type I interferon (IFN-I) production through targeting proteasome subunit ß8 (PSMB8), therefore restricting PRRS virus (PRRSV) replication. We showed that the expression of PSMB8 was upregulated by PRRSV infection, and knockdown of PSMB8 inhibited PRRSV replication by promoting IFN-I production. Moreover, we demonstrated that PSMB8 interacted with the regulatory domain of IRF3 to mediate K48-linked polyubiquitination and degradation of IRF3. Also, importantly, we showed that PSMB8, as a target gene of miR-451, negatively regulated IFN-I production by promoting IRF3 degradation, which is a previously unknown mechanism for PSMB8 to modulate innate immune responses. IMPORTANCE: Porcine respiratory and reproductive syndrome virus (PRRSV), as a huge threat to the swine industry, is a causative agent that urgently needs to be solved. The dissecting of PRRSV pathogenesis and understanding of the host-pathogen interaction will provide insights into developing effective anti-PRRSV strategies. In this study, we showed that miR-451 dramatically inhibited PRRSV replication by targeting proteasome subunit ß8 (PSMB8), a subunit of the immunoproteasome. Mutation of PSMB8 is often related to autoinflammatory diseases due to the elevated IFN production. We revealed that PSMB8 downregulated IFN production by promoting IRF3 degradation. In addition, we showed that PRRSV infection upregulated PSMB8 expression. Taken together, our findings reveal that miR-451 is a negative regulator of PRRSV replication, and PSMB8, a target gene of miR-451, negatively regulates IFN-I production by promoting IRF3 degradation, which is a previously unknown mechanism for PSMB8 to regulate innate immune responses.


Asunto(s)
Factor 3 Regulador del Interferón , MicroARNs , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Complejo de la Endopetidasa Proteasomal , Replicación Viral , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Porcinos , MicroARNs/genética , MicroARNs/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Síndrome Respiratorio y de la Reproducción Porcina/virología , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Humanos , Interferón Tipo I/metabolismo , Ubiquitinación , Inmunidad Innata , Línea Celular , Células HEK293 , Interacciones Huésped-Patógeno/genética , Proteolisis
7.
Sci Adv ; 10(32): eadn2858, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121222

RESUMEN

Viral inflammation contributes to pathogenesis and mortality during respiratory virus infections. IRF3, a critical component of innate antiviral immune responses, interacts with pro-inflammatory transcription factor NF-κB, and inhibits its activity. This mechanism helps suppress inflammatory gene expression in virus-infected cells and mice. We evaluated the cells responsible for IRF3-mediated suppression of viral inflammation using newly engineered conditional Irf3Δ/Δ mice. Irf3Δ/Δ mice, upon respiratory virus infection, showed increased susceptibility and mortality. Irf3 deficiency caused enhanced inflammatory gene expression, lung inflammation, immunopathology, and damage, accompanied by increased infiltration of pro-inflammatory macrophages. Deletion of Irf3 in macrophages (Irf3MKO) displayed, similar to Irf3Δ/Δ mice, increased inflammatory responses, macrophage infiltration, lung damage, and lethality, indicating that IRF3 in these cells suppressed lung inflammation. RNA-seq analyses revealed enhanced NF-κB-dependent gene expression along with activation of inflammatory signaling pathways in infected Irf3MKO lungs. Targeted analyses revealed activated MAPK signaling in Irf3MKO lungs. Therefore, IRF3 inhibited inflammatory signaling pathways in macrophages to prevent viral inflammation and pathogenesis.


Asunto(s)
Inflamación , Factor 3 Regulador del Interferón , Macrófagos , Ratones Noqueados , Transducción de Señal , Animales , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Inflamación/metabolismo , Inflamación/inmunología , Inflamación/patología , FN-kappa B/metabolismo , Pulmón/virología , Pulmón/patología , Pulmón/inmunología , Pulmón/metabolismo
8.
J Biol Chem ; 300(9): 107686, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39159817

RESUMEN

Heritable mutations in BRCA1 associate with increased risk of high-grade serous tubo-ovarian cancer. Nongenetic risk factors associated with this cancer, which arises from fallopian tube epithelial (FTE) cells, suggests a role for repetitive ovulation wherein FTE cells are exposed to inflammatory signaling molecules within follicular fluid. We previously reported increased NFκB and EGFR signaling in BRCA1-deficient primary FTE cells, with follicular fluid exposure further increasing abundance of interferon-stimulated gene (ISG) transcripts, including the ubiquitin-like protein ISG15 and other ISGylation pathway members. Both NFκB and type I interferon signaling are upregulated by stimulation of cGAS-STING or MDA5 and RIGI pattern recognition receptors. Since some pattern recognition receptors and their signal transduction pathway members are ISGylated, we tested the impact of ISG15 and ISGylation on interferon regulatory factor 3 (IRF3) and NFκB signaling through cGAS-STING or RIGI and MDA5 activation. Expression of ISG15 or UBA7, the E1-like ISG15-activating enzyme, in immortalized FTE cells was disrupted by CRISPR gene editing. Activation of IRF3 by RIGI or MDA5 but not cGAS-STING was attenuated by loss of either ISG15 or UBA7 and this was reflected by a similar effect on NFκB activation and downstream targets. Loss of ISGylation decreased levels of both MDA5 and RIGI, with knockdown of RIGI but not MDA5, decreasing IRF3 and NFκB activation in parental cells. These finding indicate that ISGylation enhances the ability of dsRNA to activate cytokine release and proinflammatory signaling. Further work to explore ISGylation as a target for prevention of high-grade serous tubo-ovarian cancer in BRCA1 mutation carriers is warranted.


Asunto(s)
Citocinas , Células Epiteliales , Trompas Uterinas , Factor 3 Regulador del Interferón , FN-kappa B , ARN Bicatenario , Transducción de Señal , Ubiquitinas , Humanos , Femenino , Trompas Uterinas/metabolismo , Trompas Uterinas/citología , Trompas Uterinas/patología , FN-kappa B/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/genética , Células Epiteliales/metabolismo , Citocinas/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , ARN Bicatenario/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Helicasa Inducida por Interferón IFIH1/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Proteína 58 DEAD Box/metabolismo , Proteína 58 DEAD Box/genética , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética
9.
J Biol Chem ; 300(9): 107645, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39127175

RESUMEN

Epstein-Barr virus (EBV), the causative agent of infectious mononucleosis, persistently infects over 90% of the human adult population and is associated with several human cancers. To establish life-long infection, EBV tampers with the induction of type I interferon (IFN I)-dependent antiviral immunity in the host. How various EBV genes help orchestrate this crucial strategy is incompletely defined. Here, we reveal a mechanism by which the EBV nuclear antigen 3A (EBNA3A) may inhibit IFNß induction. Using proximity biotinylation we identify the histone acetyltransferase P300, a member of the IFNß transcriptional complex, as a binding partner of EBNA3A. We further show that EBNA3A also interacts with the activated IFN-inducing transcription factor interferon regulatory factor 3 that collaborates with P300 in the nucleus. Both events are mediated by the N-terminal domain of EBNA3A. We propose that EBNA3A limits the binding of interferon regulatory factor 3 to the IFNß promoter, thereby hampering downstream IFN I signaling. Collectively, our findings suggest a new mechanism of immune evasion by EBV, affected by its latency gene EBNA3A.


Asunto(s)
Proteína p300 Asociada a E1A , Antígenos Nucleares del Virus de Epstein-Barr , Herpesvirus Humano 4 , Factor 3 Regulador del Interferón , Interferón beta , Humanos , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/genética , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Interferón beta/metabolismo , Interferón beta/genética , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 4/genética , Proteína p300 Asociada a E1A/metabolismo , Proteína p300 Asociada a E1A/genética , Células HEK293 , Regiones Promotoras Genéticas , Regulación de la Expresión Génica , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/genética , Unión Proteica , Transducción de Señal , Núcleo Celular/metabolismo
10.
J Gen Virol ; 105(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39167082

RESUMEN

Molluscum contagiosum virus (MCV) is a human-specific poxvirus that causes a highly common but mild infection characterized by distinctive and persistent papular skin lesions. These lesions can persist for long periods without an effective clearance response from the host. MCV, like all poxviruses, encodes multiple known immunosuppressive proteins which target innate immune signalling pathways involved in viral nucleic acid sensing, interferon production and inflammation which should trigger antiviral immunity leading to clearance. Two major families of transcription factors responsible for driving the immune response to viruses are the NF-κB and the interferon regulatory factor (IRF) families. While NF-κB broadly drives pro-inflammatory gene expression and IRFs chiefly drive interferon induction, both collaborate in transactivating many of the same genes in a concerted immune response to viral infection. Here, we report that the MCV protein MC089 specifically inhibits IRF activation from both DNA- and RNA-sensing pathways, making it the first characterized MCV inhibitor to selectively target IRF activation to date. MC089 interacts with proteins required for IRF activation, namely IKKε, TBKBP1 and NAP1. Additionally, MC089 targets RNA sensing by associating with the RNA-sensing adaptor protein mitochondrial antiviral-signalling protein on mitochondria. MC089 displays specificity in its inhibition of IRF3 activation by suppressing immunostimulatory nucleic acid-induced serine 396 phosphorylation without affecting the phosphorylation of serine 386. The selective interaction of MC089 with IRF-regulatory proteins and site-specific inhibition of IRF3 phosphorylation may offer a tool to provide novel insights into the biology of IRF3 regulation.


Asunto(s)
Factor 3 Regulador del Interferón , Virus del Molusco Contagioso , Proteínas Virales , Humanos , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Virus del Molusco Contagioso/inmunología , Virus del Molusco Contagioso/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/inmunología , Transducción de Señal , Inmunidad Innata , Células HEK293 , Interacciones Huésped-Patógeno/inmunología
11.
Am J Physiol Heart Circ Physiol ; 327(4): H937-H946, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39150394

RESUMEN

Influenza A virus (IAV) infection while primarily affecting the lungs, is often associated with cardiovascular complications. However, the mechanisms underlying this association are not fully understood. Here, we investigated the potential role of FBXL19, a member of the Skp1-Cullin-1-F-box family of E3 ubiquitin ligase, in IAV-induced cardiac inflammation. We demonstrated that FBXL19 overexpression in endothelial cells (ECs) reduced viral titers and IAV matrix protein 1 (M1) levels while increasing antiviral gene expression, including interferon (IFN)-α, -ß, and -γ and RANTES (regulated on activation normal T cell expressed and secreted) in the cardiac tissue of IAV-infected mice. Moreover, EC-specific overexpression of FBXL19 attenuated the IAV infection-reduced interferon regulatory factor 3 (IRF3) level without altering its mRNA level and suppressed cardiac inflammation. Furthermore, IAV infection triggered cellular senescence programs in the heart as indicated by the upregulation of p16 and p21 mRNA levels and the downregulation of lamin-B1 levels, which were partially reversed by FBXL19 overexpression in ECs. Our findings indicate that EC-specific overexpression of FBXL19 protects against IAV-induced cardiac damage by enhancing interferon-mediated antiviral signaling, reducing cardiac inflammation, and suppressing cellular senescence programs.NEW & NOTEWORTHY Our study reveals a novel facet of IAV infection, demonstrating that it can trigger cellular senescence within the heart. Intriguingly, upregulation of endothelial FBXL19 promotes host innate immunity, reduces cardiac senescence, and diminishes inflammation. These findings highlight the therapeutic potential of targeting FBXL19 to mitigate IAV-induced cardiovascular complications.


Asunto(s)
Senescencia Celular , Células Endoteliales , Factor 3 Regulador del Interferón , Infecciones por Orthomyxoviridae , Animales , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/inmunología , Células Endoteliales/virología , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Ratones Endogámicos C57BL , Ratones , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Humanos , Virus de la Influenza A/patogenicidad , Miocardio/metabolismo , Miocardio/inmunología , Miocardio/patología , Modelos Animales de Enfermedad , Transducción de Señal , Interferones/metabolismo , Interferones/genética , Masculino , Quimiocina CCL5
12.
Adv Sci (Weinh) ; 11(35): e2308890, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39004913

RESUMEN

Interferons (IFNs) activate JAK-STAT pathways to induce downstream effector genes for host defense against invaded pathogens and tumors. Here both type I (ß) and II (γ) IFNs are shown that can activate the transcription factor IRF3 in parallel with STAT1. IRF3-deficiency impairs transcription of a subset of downstream effector genes induced by IFN-ß and IFN-γ. Mechanistically, IFN-induced activation of IRF3 is dependent on the cGAS-STING-TBK1 axis. Both IFN-ß and IFN-γ cause mitochondrial DNA release into the cytosol. In addition, IFNs induce JAK1-mediated tyrosine phosphorylation of cGAS at Y214/Y215, which is essential for its DNA binding activity and signaling. Furthermore, deficiency of cGAS, STING, or IRF3 impairs IFN-ß- or IFN-γ-mediated antiviral and antitumor activities. The findings reveal a novel IRF3 activation pathway parallel with the canonical STAT1/2 activation pathways triggered by IFNs and provide an explanation for the pleiotropic roles of the cGAS-STING-IRF3 axis in host defense.


Asunto(s)
Factor 3 Regulador del Interferón , Proteínas de la Membrana , Nucleotidiltransferasas , Transducción de Señal , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Animales , Ratones , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Humanos , Interferón gamma/metabolismo , Interferón gamma/inmunología , Interferón gamma/genética , Interferón Tipo I/metabolismo , Interferón Tipo I/genética , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Interferón beta/metabolismo , Interferón beta/genética
13.
Dev Comp Immunol ; 159: 105224, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38969190

RESUMEN

Stimulator of interferon genes (STING) mediates innate immune response upon binding to cyclic GMP-AMP (cGAMP). It recruits tank-binding kinase 1 (TBK1) and transcription factor interferon regulatory factor 3 (IRF3) through its C-terminal tail and facilitates TBK1-dependent phosphorylation of IRF3 via forming STING polymers in mammalian cells. However, the mechanism behind STING-mediated activation of NF-κB transcription factor, Relish, in insect cells is unknown. Our study revealed that insect STING formed oligomers and the cryptic RIP homotypic interaction motif (cRHIM) was required for its oligomerization and its anti-viral functions. Cells expressing cRHIM-deficient mutants exhibited lower levels of anti-viral molecules, higher viral load after viral infection and weak activation of Relish. Moreover, we observed that under cGAMP stimulation, insect STING interacted with IMD, and deletion of the cRHIM motif on either protein prevented this interaction. Finally, we demonstrated that cGAMP enhanced the amyloid-like property of insect STING aggregates by ThT staining. In summary, our research showed that insect STING employed a homotypic motif to form intermolecular interactions that are essential for its antiviral signaling.


Asunto(s)
Inmunidad Innata , Factor 3 Regulador del Interferón , Proteínas de la Membrana , Transducción de Señal , Animales , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Transducción de Señal/inmunología , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Nucleótidos Cíclicos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Secuencias de Aminoácidos/genética , Humanos , Línea Celular , Unión Proteica , Fosforilación , Multimerización de Proteína , Drosophila melanogaster/inmunología , Drosophila melanogaster/virología
14.
Proc Natl Acad Sci U S A ; 121(29): e2320709121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38985760

RESUMEN

The Type-I interferon (IFN-I) response is the major outcome of stimulator of interferon genes (STING) activation in innate cells. STING is more abundantly expressed in adaptive T cells; nevertheless, its intrinsic function in T cells remains unclear. Intriguingly, we previously demonstrated that STING activation in T cells activates widespread IFN-independent activities, which stands in contrast to the well-known STING-mediated IFN response. Here, we have identified that STING activation induces regulatory T cells (Tregs) differentiation independently of IRF3 and IFN. Specifically, the translocation of STING from the endoplasmic reticulum to the Golgi activates mitogen-activated protein kinase (MAPK) activity, which subsequently triggers transcription factor cAMP response element-binding protein (CREB) activation. The activation of the STING-MAPK-CREB signaling pathway induces the expression of many cytokine genes, including interleukin-2 (IL-2) and transforming growth factor-beta 2 (TGF-ß2), to promote the Treg differentiation. Genetic knockdown of MAPK p38 or pharmacological inhibition of MAPK p38 or CREB markedly inhibits STING-mediated Treg differentiation. Administration of the STING agonist also promotes Treg differentiation in mice. In the Trex1-/- autoimmune disease mouse model, we demonstrate that intrinsic STING activation in CD4+ T cells can drive Treg differentiation, potentially counterbalancing the autoimmunity associated with Trex1 deficiency. Thus, STING-MAPK-CREB represents an IFN-independent signaling axis of STING that may have profound effects on T cell effector function and adaptive immunity.


Asunto(s)
Diferenciación Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas de la Membrana , Linfocitos T Reguladores , Animales , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ratones , Transducción de Señal , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Transporte de Proteínas , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Ratones Noqueados , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Virol Sin ; 39(4): 587-599, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823782

RESUMEN

Herpesviruses antagonize host antiviral responses through a myriad of molecular strategies culminating in the death of the host cells. Pseudorabies virus (PRV) is a significant veterinary pathogen in pigs, causing neurological sequalae that ultimately lead to the animal's demise. PRV is known to trigger apoptotic cell death during the late stages of infection. The virion host shutdown protein (VHS) encoded by UL41 plays a crucial role in the PRV infection process. In this study, we demonstrate that UL41 inhibits PRV-induced activation of inflammatory cytokine and negatively regulates the cGAS-STING-mediated antiviral activity by targeting IRF3, thereby inhibiting the translocation and phosphorylation of IRF3. Notably, mutating the conserved amino acid sites (E192, D194, and D195) in the RNase domain of UL41 or knocking down UL41 inhibits the immune evasion of PRV, suggesting that UL41 may play a crucial role in PRV's evasion of the host immune response during infection. These results enhance our understanding of how PRV structural proteins assist the virus in evading the host immune response.


Asunto(s)
Herpesvirus Suido 1 , Evasión Inmune , Factor 3 Regulador del Interferón , FN-kappa B , Herpesvirus Suido 1/inmunología , Herpesvirus Suido 1/genética , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Animales , Porcinos , FN-kappa B/metabolismo , FN-kappa B/genética , FN-kappa B/inmunología , Humanos , Interferones/inmunología , Interferones/metabolismo , Interferones/genética , Seudorrabia/virología , Seudorrabia/inmunología , Línea Celular , Interacciones Huésped-Patógeno/inmunología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/inmunología , Células HEK293 , Fosforilación , Transporte de Proteínas
16.
Emerg Microbes Infect ; 13(1): 2372344, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38916407

RESUMEN

The Orthopoxvirus (OPXV) genus of the Poxviridae includes human pathogens variola virus (VARV), monkeypox virus (MPXV), vaccinia virus (VACV), and a number of zoonotic viruses. A number of Bcl-2-like proteins of VACV are involved in escaping the host innate immunity. However, little work has been devoted to the evolution and function of their orthologues in other OPXVs. Here, we found that MPXV protein P2, encoded by the P2L gene, and P2 orthologues from other OPXVs, such as VACV protein N2, localize to the nucleus and antagonize interferon (IFN) production. Exceptions to this were the truncated P2 orthologues in camelpox virus (CMLV) and taterapox virus (TATV) that lacked the nuclear localization signal (NLS). Mechanistically, the NLS of MPXV P2 interacted with karyopherin α-2 (KPNA2) to facilitate P2 nuclear translocation, and competitively inhibited KPNA2-mediated IRF3 nuclear translocation and downstream IFN production. Deletion of the NLS in P2 or orthologues significantly enhanced IRF3 nuclear translocation and innate immune responses, thereby reducing viral replication. Moreover, deletion of NLS from N2 in VACV attenuated viral replication and virulence in mice. These data demonstrate that the NLS-mediated translocation of P2 is critical for P2-induced inhibition of innate immunity. Our findings contribute to an in-depth understanding of the mechanisms of OPXV P2 orthologue in innate immune evasion.


Asunto(s)
Inmunidad Innata , Factor 3 Regulador del Interferón , Monkeypox virus , Señales de Localización Nuclear , Proteínas Virales , Animales , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Ratones , Humanos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/inmunología , Señales de Localización Nuclear/genética , Monkeypox virus/genética , Monkeypox virus/inmunología , Células HEK293 , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Evasión Inmune , Núcleo Celular/metabolismo , Interferones/genética , Interferones/inmunología , Interferones/metabolismo , Infecciones por Poxviridae/inmunología , Infecciones por Poxviridae/virología , Infecciones por Poxviridae/veterinaria , Ratones Endogámicos C57BL
17.
Mol Cell ; 84(13): 2436-2454.e10, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38925114

RESUMEN

Signal transduction proteins containing a pLxIS motif induce interferon (IFN) responses central to antiviral immunity. Apart from their established roles in activating the IFN regulator factor (IRF) transcription factors, the existence of additional pathways and functions associated with the pLxIS motif is unknown. Using a synthetic biology-based platform, we identified two orphan pLxIS-containing proteins that stimulate IFN responses independent of all known pattern-recognition receptor pathways. We further uncovered a diversity of pLxIS signaling mechanisms, where the pLxIS motif represents one component of a multi-motif signaling entity, which has variable functions in activating IRF3, the TRAF6 ubiquitin ligase, IκB kinases, mitogen-activated protein kinases, and metabolic activities. The most diverse pLxIS signaling mechanisms were associated with the highest antiviral activities in human cells. The flexibility of domains that regulate IFN signaling may explain their prevalence in nature.


Asunto(s)
Factor 3 Regulador del Interferón , Interferones , Transducción de Señal , Factor 6 Asociado a Receptor de TNF , Humanos , Interferones/metabolismo , Células HEK293 , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Quinasa I-kappa B/metabolismo , Quinasa I-kappa B/genética , Dominios Proteicos , Animales , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Secuencias de Aminoácidos , Proteínas Quinasas Activadas por Mitógenos/metabolismo
18.
Biomolecules ; 14(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38927097

RESUMEN

MicroRNAs (miRNAs) are highly conserved endogenous single-stranded non-coding RNA molecules that play a crucial role in regulating gene expression to maintain normal physiological functions in fish. Nevertheless, the specific physiological role of miRNAs in lower vertebrates, particularly in comparison to mammals, remains elusive. Additionally, the mechanisms underlying the control of antiviral responses triggered by viral stimulation in fish are still not fully understood. In this study, we investigated the regulatory impact of miR-1388 on the signaling pathway mediated by IFN regulatory factor 3 (IRF3). Our findings revealed that following stimulation with the viral analog poly(I:C), the expression of miR-1388 was significantly upregulated in primary immune tissues and macrophages. Through a dual luciferase reporter assay, we corroborated a direct targeting relationship between miR-1388 and tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3). Furthermore, our study demonstrated a distinct negative post-transcriptional correlation between miR-1388 and TRAF3. We observed a significant negative post-transcriptional regulatory association between miR-1388 and the levels of antiviral genes following poly(I:C) stimulation. Utilizing reporter plasmids, we elucidated the role of miR-1388 in the antiviral signaling pathway activated by TRAF3. By intervening with siRNA-TRAF3, we validated that miR-1388 regulates the expression of antiviral genes and the production of type I interferons (IFN-Is) through its interaction with TRAF3. Collectively, our experiments highlight the regulatory influence of miR-1388 on the IRF3-mediated signaling pathway by targeting TRAF3 post poly(I:C) stimulation. These findings provide compelling evidence for enhancing our understanding of the mechanisms through which fish miRNAs participate in immune responses.


Asunto(s)
Carpas , MicroARNs , Poli I-C , Factor 3 Asociado a Receptor de TNF , Animales , MicroARNs/genética , MicroARNs/metabolismo , Poli I-C/farmacología , Carpas/genética , Carpas/metabolismo , Carpas/virología , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Transducción de Señal
19.
Mol Cell ; 84(13): 2423-2435.e5, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38917796

RESUMEN

The innate immune cGAS-STING pathway is activated by cytosolic double-stranded DNA (dsDNA), a ubiquitous danger signal, to produce interferon, a potent anti-viral and anti-cancer cytokine. However, STING activation must be tightly controlled because aberrant interferon production leads to debilitating interferonopathies. Here, we discover PELI2 as a crucial negative regulator of STING. Mechanistically, PELI2 inhibits the transcription factor IRF3 by binding to phosphorylated Thr354 and Thr356 on the C-terminal tail of STING, leading to ubiquitination and inhibition of the kinase TBK1. PELI2 sets a threshold for STING activation that tolerates low levels of cytosolic dsDNA, such as that caused by silenced TREX1, RNASEH2B, BRCA1, or SETX. When this threshold is reached, such as during viral infection, STING-induced interferon production temporarily downregulates PELI2, creating a positive feedback loop allowing a robust immune response. Lupus patients have insufficient PELI2 levels and high basal interferon production, suggesting that PELI2 dysregulation may drive the onset of lupus and other interferonopathies.


Asunto(s)
Factor 3 Regulador del Interferón , Proteínas de la Membrana , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Ubiquitinación , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Fosforilación , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Animales , Células HEK293 , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/virología , Inmunidad Innata , Interacciones Huésped-Patógeno , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ratones , Interferones/metabolismo , Interferones/inmunología , Interferones/genética , Retroalimentación Fisiológica , Ratones Endogámicos C57BL , Exodesoxirribonucleasas , Fosfoproteínas
20.
Vet Microbiol ; 295: 110148, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851152

RESUMEN

Water buffalo Hunnivirus (BufHuV) belongs to the family Picornaviridae and is a newly discovered member of the Hunnivirus A genus. It causes intestinal diseases in cattle, mainly lead to subclinical infections, thereby seriously threatening the health of cattle herds. In addition, it can also bring about various clinical disease syndromes which results in severe economic losses to the cattle industry. To date, there have been no reports worldwide on the study of Hunnivirus virus infecting host cells and causing innate immune responses. In this study, we found that interferon treatment effectively blocked BufHuV replication and infection with the virus weakened the host antiviral responses. Inhibiting the transcription of IFN-ß and ISGs induced by either Sendai virus (SeV) or poly(I:C) in MDBK and HCT-8 cells, were dependent on the IRF3 or NF-κB signaling pathways, and this inhibited the activation of IFN-ß promoter by TBK1 and its upstream molecules, RIGI and MDA5. By constructing and screening five BufHuV proteins, we found that VP2, 2 C, 3 C and 3D inhibited the activation of IFN-ß promoter induced by SeV. Subsequently, we showed that VP2 inhibited the activation of IRF3 induced by SeV or poly (I:C), and it inhibited IRF3 activation by inhibiting its phosphorylation and nuclear translocation. In addition, we confirmed that VP2 inhibited the activation of IFNß induced by signaling molecules, MDA5 and TBKI. In summary, these findings provide new insights into the pathogenesis of Hunnivirus and its mechanisms involved in evading host immune responses.


Asunto(s)
Factor 3 Regulador del Interferón , Interferón beta , Interferón beta/genética , Interferón beta/inmunología , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Animales , Humanos , Línea Celular , Transducción de Señal/efectos de los fármacos , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos , Inmunidad Innata , Bovinos , Búfalos/virología , FN-kappa B/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...