Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 619(7969): 378-384, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37225990

RESUMEN

Pioneer transcription factors have the ability to access DNA in compacted chromatin1. Multiple transcription factors can bind together to a regulatory element in a cooperative way, and cooperation between the pioneer transcription factors OCT4 (also known as POU5F1) and SOX2 is important for pluripotency and reprogramming2-4. However, the molecular mechanisms by which pioneer transcription factors function and cooperate on chromatin remain unclear. Here we present cryo-electron microscopy structures of human OCT4 bound to a nucleosome containing human LIN28B or nMATN1 DNA sequences, both of which bear multiple binding sites for OCT4. Our structural and biochemistry data reveal that binding of OCT4 induces changes to the nucleosome structure, repositions the nucleosomal DNA and facilitates cooperative binding of additional OCT4 and of SOX2 to their internal binding sites. The flexible activation domain of OCT4 contacts the N-terminal tail of histone H4, altering its conformation and thus promoting chromatin decompaction. Moreover, the DNA-binding domain of OCT4 engages with the N-terminal tail of histone H3, and post-translational modifications at H3K27 modulate DNA positioning and affect transcription factor cooperativity. Thus, our findings suggest that the epigenetic landscape could regulate OCT4 activity to ensure proper cell programming.


Asunto(s)
Epigénesis Genética , Código de Histonas , Histonas , Nucleosomas , Factor 3 de Transcripción de Unión a Octámeros , Factores de Transcripción SOXB1 , Humanos , Microscopía por Crioelectrón , ADN/química , ADN/genética , ADN/metabolismo , Histonas/química , Histonas/metabolismo , Histonas/ultraestructura , Nucleosomas/química , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Factor 3 de Transcripción de Unión a Octámeros/química , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/ultraestructura , Procesamiento Proteico-Postraduccional , Factores de Transcripción SOXB1/metabolismo , Regulación Alostérica , Proteínas de Unión al ARN/genética , Proteínas Matrilinas/genética , Sitios de Unión , Ensamble y Desensamble de Cromatina , Diferenciación Celular/genética , Dominios Proteicos
2.
J Mol Biol ; 435(2): 167916, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36495920

RESUMEN

Pioneer transcription factors (pTFs) can bind directly to silent chromatin and promote vital transcriptional programs. Here, by integrating high-resolution nuclear magnetic resonance (NMR) spectroscopy with biochemistry, we reveal new structural and mechanistic insights into the interaction of pluripotency pTFs and functional partners Sox2 and Oct4 with nucleosomes. We find that the affinity and conformation of Sox2 for solvent-exposed nucleosome sites depend strongly on their position and DNA sequence. Sox2, which is partially disordered but becomes structured upon DNA binding and bending, forms a super-stable nucleosome complex at superhelical location +5 (SHL+5) with similar affinity and conformation to that with naked DNA. However, at suboptimal internal and end-positioned sites where DNA may be harder to deform, Sox2 favors partially unfolded and more dynamic states that are encoded in its intrinsic flexibility. Importantly, Sox2 structure and DNA bending can be stabilized by synergistic Oct4 binding, but only on adjacent motifs near the nucleosome edge and with the full Oct4 DNA-binding domain. Further mutational studies reveal that strategically impaired Sox2 folding is coupled to reduced DNA bending and inhibits nucleosome binding and Sox2-Oct4 cooperation, while increased nucleosomal DNA flexibility enhances Sox2 association. Together, our findings fit a model where the site-specific DNA bending propensity and structural plasticity of Sox2 govern distinct modes of nucleosome engagement and modulate Sox2-Oct4 synergism. The principles outlined here can potentially guide pTF site selection in the genome and facilitate interaction with other chromatin factors or chromatin opening in vivo.


Asunto(s)
ADN , Conformación de Ácido Nucleico , Nucleosomas , Factores de Transcripción SOXB1 , Secuencia de Bases , Cromatina , ADN/química , ADN/metabolismo , Nucleosomas/metabolismo , Dominios Proteicos , Factores de Transcripción SOXB1/química , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Resonancia Magnética Nuclear Biomolecular , Factor 3 de Transcripción de Unión a Octámeros/química , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Humanos
3.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34502261

RESUMEN

SOX2 is an oncogenic transcription factor overexpressed in nearly half of the basal-like triple-negative breast cancers associated with very poor outcomes. Targeting and inhibiting SOX2 is clinically relevant as high SOX2 mRNA levels are positively correlated with decreased overall survival and progression-free survival in patients affected with breast cancer. Given its key role as a master regulator of cell proliferation, SOX2 represents an important scaffold for the engineering of dominant-negative synthetic DNA-binding domains (DBDs) that act by blocking or interfering with the oncogenic activity of the endogenous transcription factor in cancer cells. We have synthesized an interference peptide (iPep) encompassing a truncated 24 amino acid long C-terminus of SOX2 containing a potential SOX-specific nuclear localization sequence, and the determinants of the binding of SOX2 to the DNA and to its transcription factor binding partners. We found that the resulting peptide (SOX2-iPep) possessed intrinsic cell penetration and promising nuclear localization into breast cancer cells, and decreased cellular proliferation of SOX2 overexpressing cell lines. The novel SOX2-iPep was found to exhibit a random coil conformation predominantly in solution. Molecular dynamics simulations were used to characterize the interactions of both the SOX2 transcription factor and the SOX2-iPep with FGF4-enhancer DNA in the presence of the POU domain of the partner transcription factor OCT4. Predictions of the free energy of binding revealed that the iPep largely retained the binding affinity for DNA of parental SOX2. This work will enable the future engineering of novel dominant interference peptides to transport different therapeutic cargo molecules such as anti-cancer drugs into cells.


Asunto(s)
Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Factores de Transcripción SOXB1/química , Factores de Transcripción SOXB1/metabolismo , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , ADN/metabolismo , Femenino , Factor 4 de Crecimiento de Fibroblastos/química , Humanos , Estimación de Kaplan-Meier , Ratones , Simulación de Dinámica Molecular , Factor 3 de Transcripción de Unión a Octámeros/química , Unión Proteica , Factores de Transcripción SOXB1/genética , Agua/química
4.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34502264

RESUMEN

Direct conversion of one cell type into another is a trans-differentiation process. Recent advances in fibroblast research revealed that epithelial cells can give rise to fibroblasts by epithelial-mesenchymal transition. Conversely, fibroblasts can also give rise to epithelia by undergoing a mesenchymal to epithelial transition. To elicit stem cell-like properties in fibroblasts, the Oct4 transcription factor acts as a master transcriptional regulator for reprogramming somatic cells. Notably, the production of gene complexes with cell-permeable peptides, such as low-molecular-weight protamine (LMWP), was proposed to induce reprogramming without cytotoxicity and genomic mutation. We designed a complex with non-cytotoxic LMWP to prevent the degradation of Oct4 and revealed that the positively charged cell-permeable LMWP helped condense the size of the Oct4-LMWP complexes (1:5 N:P ratio). When the Oct4-LMWP complex was delivered into mouse embryonic fibroblasts (MEFs), stemness-related gene expression increased while fibroblast intrinsic properties decreased. We believe that the Oct4-LMWP complex developed in this study can be used to reprogram terminally differentiated somatic cells or convert them into stem cell-like cells without risk of cell death, improving the stemness level and stability of existing direct conversion techniques.


Asunto(s)
Péptidos de Penetración Celular/química , Técnicas de Reprogramación Celular/métodos , Fibroblastos/metabolismo , Técnicas de Transferencia de Gen , Factor 3 de Transcripción de Unión a Octámeros/química , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Antígenos CD34/metabolismo , Diferenciación Celular/genética , Péptidos de Penetración Celular/síntesis química , Péptidos de Penetración Celular/metabolismo , Células Cultivadas , Embrión de Mamíferos , Fibroblastos/citología , Fibronectinas/genética , Fibronectinas/metabolismo , Ratones Endogámicos C57BL , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Protaminas/química , Protaminas/metabolismo , Proteína de Unión al Calcio S100A4/genética , Proteína de Unión al Calcio S100A4/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Células Madre/citología , Vimentina/genética , Vimentina/metabolismo
5.
Adv Biol Regul ; 79: 100777, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33451972

RESUMEN

OCT4 (also known as Oct3 and Oct3/4), which is encoded by Pou5f1, is expressed in early embryonic cells and plays an important role in early development, pluripotency maintenance, and self-renewal of embryonic stem cells. It also regulates the reprogramming of somatic cells into induced pluripotent stem cells. Several OCT4-binding proteins, including SOX2 and NANOG, reportedly regulate gene transcription in stem cells. An increasing number of evidence suggests that not only gene transcription but also post-translational modifications of OCT4 play a pivotal role in regulating the expression and activity of OCT4. For instance, ubiquitination and sumoylation have been reported to regulate OCT4 protein stability. In addition, the phosphorylation of Ser347 in OCT4 also stabilizes the OCT4 protein level. Recently, we identified KAP1 as an OCT4-binding protein and reported the KAP1-mediated regulation of OCT4 protein stability. KAP1 overexpression led to an increased proliferation of mouse embryonic stem cells and promoted the reprogramming of somatic cells resulting in induced pluripotent stem cells. In this review, we discuss how the protein stability and function of OCT4 are regulated by protein-protein interaction in stem cells.


Asunto(s)
Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/química , Factor 3 de Transcripción de Unión a Octámeros/genética , Animales , Células Madre Embrionarias/química , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/química , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Unión Proteica , Estabilidad Proteica , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
6.
J Mol Biol ; 433(6): 166701, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33181171

RESUMEN

Nucleosomes cluster together when chromatin folds in the cell to form heterogeneous groups termed "clutches". These structural units add another level of chromatin regulation, for example during cell differentiation. Yet, the mechanisms that regulate their size and compaction remain obscure. Here, using our chromatin mesoscale model, we dissect clutch patterns in fibers with different combinations of nucleosome positions, linker histone density, and acetylation levels to investigate their role in clutch regulation. First, we isolate the effect of each chromatin parameter by studying systems with regular nucleosome spacing; second, we design systems with naturally-occurring linker lengths that fold onto specific clutch patterns; third, we model gene-encoding fibers to understand how these combined factors contribute to gene structure. Our results show how these chromatin parameters act together to produce different-sized nucleosome clutches. The length of nucleosome free regions (NFRs) profoundly affects clutch size, while the length of linker DNA has a moderate effect. In general, higher linker histone densities produce larger clutches by a chromatin compaction mechanism, while higher acetylation levels produce smaller clutches by a chromatin unfolding mechanism. We also show that it is possible to design fibers with naturally-occurring DNA linkers and NFRs that fold onto specific clutch patterns. Finally, in gene-encoding systems, a complex combination of variables dictates a gene-specific clutch pattern. Together, these results shed light into the mechanisms that regulate nucleosome clutches and suggest a new epigenetic mechanism by which chromatin parameters regulate transcriptional activity via the three-dimensional folded state of the genome at a nucleosome level.


Asunto(s)
Epigénesis Genética , Genoma , Histonas/química , Proteínas de Homeodominio/química , Nucleosomas/ultraestructura , Factor 3 de Transcripción de Unión a Octámeros/química , Procesamiento Proteico-Postraduccional , Acetilación , Animales , Ensamble y Desensamble de Cromatina , ADN/química , ADN/genética , ADN/metabolismo , Sitios Genéticos , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Nucleosomas/genética , Nucleosomas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Conformación Proteica
7.
Sci Rep ; 10(1): 11832, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678275

RESUMEN

Transcription factor binding to genomic DNA is generally prevented by nucleosome formation, in which the DNA is tightly wrapped around the histone octamer. In contrast, pioneer transcription factors efficiently bind their target DNA sequences within the nucleosome. OCT4 has been identified as a pioneer transcription factor required for stem cell pluripotency. To study the nucleosome binding by OCT4, we prepared human OCT4 as a recombinant protein, and biochemically analyzed its interactions with the nucleosome containing a natural OCT4 target, the LIN28B distal enhancer DNA sequence, which contains three potential OCT4 target sequences. By a combination of chemical mapping and cryo-electron microscopy single-particle analysis, we mapped the positions of the three target sequences within the nucleosome. A mutational analysis revealed that OCT4 preferentially binds its target DNA sequence located near the entry/exit site of the nucleosome. Crosslinking mass spectrometry consistently showed that OCT4 binds the nucleosome in the proximity of the histone H3 N-terminal region, which is close to the entry/exit site of the nucleosome. We also found that the linker histone H1 competes with OCT4 for the nucleosome binding. These findings provide important information for understanding the molecular mechanism by which OCT4 binds its target DNA in chromatin.


Asunto(s)
ADN/química , Heterocromatina/metabolismo , Histonas/química , Nucleosomas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/química , Proteínas de Unión al ARN/química , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Sistema Libre de Células , Clonación Molecular , Microscopía por Crioelectrón , ADN/genética , ADN/metabolismo , Elementos de Facilitación Genéticos , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Heterocromatina/química , Heterocromatina/ultraestructura , Histonas/genética , Histonas/metabolismo , Humanos , Conformación de Ácido Nucleico , Nucleosomas/química , Nucleosomas/ultraestructura , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Unión Proteica , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
8.
Science ; 368(6498): 1460-1465, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32327602

RESUMEN

Transcription factors (TFs) regulate gene expression through chromatin where nucleosomes restrict DNA access. To study how TFs bind nucleosome-occupied motifs, we focused on the reprogramming factors OCT4 and SOX2 in mouse embryonic stem cells. We determined TF engagement throughout a nucleosome at base-pair resolution in vitro, enabling structure determination by cryo-electron microscopy at two preferred positions. Depending on motif location, OCT4 and SOX2 differentially distort nucleosomal DNA. At one position, OCT4-SOX2 removes DNA from histone H2A and histone H3; however, at an inverted motif, the TFs only induce local DNA distortions. OCT4 uses one of its two DNA-binding domains to engage DNA in both structures, reading out a partial motif. These findings explain site-specific nucleosome engagement by the pluripotency factors OCT4 and SOX2, and they reveal how TFs distort nucleosomes to access chromatinized motifs.


Asunto(s)
Regulación de la Expresión Génica , Nucleosomas/química , Factor 3 de Transcripción de Unión a Octámeros/química , Factores de Transcripción SOXB1/química , Animales , Microscopía por Crioelectrón , ADN/química , Histonas/química , Ratones , Células Madre Embrionarias de Ratones/metabolismo
9.
Angew Chem Int Ed Engl ; 59(26): 10411-10415, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32181947

RESUMEN

Abundant phosphorylation events control the activity of nuclear proteins involved in gene regulation and DNA repair. These occur mostly on disordered regions of proteins, which often contain multiple phosphosites. Comprehensive and quantitative monitoring of phosphorylation reactions is theoretically achievable at a residue-specific level using 1 H-15 N NMR spectroscopy, but is often limited by low signal-to-noise at pH>7 and T>293 K. We have developed an improved 13 Cα-13 CO correlation NMR experiment that works equally at any pH or temperature, that is, also under conditions at which kinases are active. This allows us to obtain atomic-resolution information in physiological conditions down to 25 µm. We demonstrate the potential of this approach by monitoring phosphorylation reactions, in the presence of purified kinases or in cell extracts, on a range of previously problematic targets, namely Mdm2, BRCA2, and Oct4.


Asunto(s)
Proteína BRCA2/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína BRCA2/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Humanos , Concentración de Iones de Hidrógeno , Resonancia Magnética Nuclear Biomolecular , Factor 3 de Transcripción de Unión a Octámeros/química , Fosforilación , Proteínas Proto-Oncogénicas c-mdm2/química , Temperatura
10.
Sci Rep ; 9(1): 11960, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31427598

RESUMEN

Despite the increased interest in epigenetic research, its progress has been hampered by a lack of satisfactory tools to control epigenetic factors in specific genomic regions. Until now, many attempts to manipulate DNA methylation have been made using drugs but these drugs are not target-specific and have global effects on the whole genome. However, due to new genome editing technologies, potential epigenetic factors can now possibly be regulated in a site-specific manner. Here, we demonstrate the utility of CRISPR/Cas9 to modulate methylation at specific CpG sites and to elicit gene expression. We targeted the murine Oct4 gene which is transcriptionally locked due to hypermethylation at the promoter region in NIH3T3 cells. To induce site-specific demethylation at the Oct4 promoter region and its gene expression, we used the CRISPR/Cas9 knock-in and CRISPR/dCas9-Tet1 systems. Using these two approaches, we induced site-specific demethylation at the Oct4 promoter and confirmed the up-regulation of Oct4 expression. Furthermore, we confirmed that the synergistic effect of DNA demethylation and other epigenetic regulations increased the expression of Oct4 significantly. Based on our research, we suggest that our proven epigenetic editing methods can selectively modulate epigenetic factors such as DNA methylation and have promise for various applications in epigenetics.


Asunto(s)
Sistemas CRISPR-Cas , Metilación de ADN , Epigénesis Genética , Edición Génica , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Animales , Clonación Molecular , Islas de CpG , Técnicas de Sustitución del Gen , Marcación de Gen , Histonas/metabolismo , Ratones , Células 3T3 NIH , Factor 3 de Transcripción de Unión a Octámeros/química , Plásmidos/genética , ARN Guía de Kinetoplastida
11.
J Mol Biol ; 431(19): 3920-3932, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31306665

RESUMEN

Modifications by kinases are a fast and reversible mechanism to diversify the function of the targeted proteins. The OCT4 transcription factor is essential for preimplantation development and pluripotency of embryonic stem cells (ESC), and its activity is tightly regulated by post-transcriptional modifications. Several phosphorylation sites have been identified by systemic approaches and their functions proposed. Here, we combined molecular and cellular biology with CRISPR/Cas9-mediated genome engineering to pinpoint the function of serine 12 of OCT4 in ESCs. Using chemical inhibitors and an antibody specific to OCT4 phosphorylated on S12, we identified cyclin-dependent kinase (CDK) 7 as upstream kinase. Surprisingly, generation of isogenic mESCs that endogenously ablate S12 revealed no effects on pluripotency and self-renewal, potentially due to compensation by other phosphorylation events. Our approach reveals that modification of distinct amino acids by precise genome engineering can help to clarify the functions of post-translational modifications on proteins encoded by essential gene in an endogenous context.


Asunto(s)
Ingeniería Genética , Genoma , Biología Molecular , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , Autorrenovación de las Células , Humanos , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Mutación/genética , Factor 3 de Transcripción de Unión a Octámeros/química , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Fosforilación , Fosfoserina/metabolismo , Células Madre Pluripotentes/metabolismo
12.
Mol Cells ; 42(2): 135-142, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30622231

RESUMEN

OCT4, also known as POU5F1 (POU domain class 5 transcription factor 1), is a transcription factor that acts as a master regulator of pluripotency in embryonic stem cells and is one of the reprogramming factors required for generating induced pluripotent stem cells. The human OCT4 encodes three isoforms, OCT4A, OCT4B, and OCT4B1, which are generated by alternative splicing. Currently, the functions and expression patterns of OCT4B remain largely unknown in malignancies, especially in human glioblastomas. Here, we demonstrated the function of OCT4B in human glioblastomas. Among the isoform of OCT4B, OCT4B-190 (OCT4B19kDa) was highly expressed in human glioblastoma stem cells and glioblastoma cells and was mainly detected in the cytoplasm rather than the nucleus. Overexpression of OCT4B19kDa promoted colony formation of glioblastoma cells when grown in soft agar culture conditions. Clinical data analysis revealed that patients with gliomas that expressed OCT4B at high levels had a poorer prognosis than patients with gliomas that expressed OCT4B at low levels. Thus, OCT4B19kDa may play a crucial role in regulating cancer cell survival and adaption in a rigid environment.


Asunto(s)
Glioblastoma/metabolismo , Glioblastoma/patología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Adhesión Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Humanos , Factor 3 de Transcripción de Unión a Octámeros/química , Factor 3 de Transcripción de Unión a Octámeros/genética , Pronóstico , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrés Fisiológico , Ensayo de Tumor de Célula Madre
13.
Biosens Bioelectron ; 127: 194-199, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30611106

RESUMEN

Here, we report an electrochemical sensor for rapid and sensitive detection of octamer-binding transcription factor 4 (Oct4) in human tissue samples by utilizing a designed tetrahedral DNA nanostructure (TDN). In the design, the TDN is also extended with two additional strands from two vertices. When Oct4 is absent, the strands are linked together by complementary pairing bases. Owing to the rigid structure of TDN, contact of the redox labels on the signal strand and electrode surface is greatly prohibited, resulting in a lower electrochemical signal. However, the specific binding of Oct4 to the edge of the tetrahedron will liberate the signal strand and increase the redox current dramatically. Experimental results reveal that the proposed sensor shows a linear range of 0.5-1000 ng/mL with a detection limit of 60 pg/mL. Moreover, it can be directly applied to clinical sample detection. This sensor can also achieve one-step detection of Oct4 in less than 30 min. Furthermore, through replacing the binding site, this sensor can be easily extended to a wide application range of DNA binding proteins.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Factor 3 de Transcripción de Unión a Octámeros/aislamiento & purificación , ADN/química , Electrodos , Humanos , Límite de Detección , Nanoestructuras/química , Factor 3 de Transcripción de Unión a Octámeros/química
14.
Stem Cell Reports ; 11(4): 973-987, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30269953

RESUMEN

The protein level of OCT4, a core pluripotency transcription factor, is vital for embryonic stem cell (ESC) maintenance, differentiation, and somatic cell reprogramming. However, how OCT4 protein levels are controlled during reprogramming remains largely unknown. Here, we identify ubiquitin conjugation sites of OCT4 and report that disruption of WWP2-catalyzed OCT4 ubiquitination or ablation of Wwp2 significantly promotes the efficiency of pluripotency induction from mouse embryonic fibroblasts. Mechanistically, disruption of WWP2-mediated OCT4 ubiquitination elevates OCT4 protein stability and H3K4 methylation level during the reprogramming process. Furthermore, we reveal that OCT4 directly activates expression of Ash2l-b, and that ASH2L-B is a major isoform of ASH2L highly expressed in ESCs and required for somatic cell reprogramming. Together, this study emphasizes the importance of ubiquitination manipulation of the reprogramming factor and its interplay with the epigenetic regulator for successful reprogramming, opening a new avenue to improve the efficiency of pluripotency induction.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Lisina/metabolismo , Proteínas Nucleares/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción/metabolismo , Ubiquitinación , Secuencia de Aminoácidos , Animales , Reprogramación Celular , Embrión de Mamíferos/citología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/citología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Metilación , Ratones , Mutación/genética , Factor 3 de Transcripción de Unión a Octámeros/química , Unión Proteica , Estabilidad Proteica , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas
15.
Nat Methods ; 15(6): 449-454, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29713082

RESUMEN

Fluorescence localization microscopy has achieved near-molecular resolution capable of revealing ultra-structures, with a broad range of applications, especially in cellular biology. However, it remains challenging to attain such resolution in three dimensions and inside biological tissues beyond the first cell layer. Here we introduce SELFI, a framework for 3D single-molecule localization within multicellular specimens and tissues. The approach relies on self-interference generated within the microscope's point spread function (PSF) to simultaneously encode equiphase and intensity fluorescence signals, which together provide the 3D position of an emitter. We combined SELFI with conventional localization microscopy to visualize F-actin 3D filament networks and reveal the spatial distribution of the transcription factor OCT4 in human induced pluripotent stem cells at depths up to 50 µm inside uncleared tissue spheroids. SELFI paves the way to nanoscale investigations of native cellular processes in intact tissues.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Microscopía de Interferencia/métodos , Imagen Individual de Molécula/métodos , Actinas/química , Actinas/fisiología , Humanos , Factor 3 de Transcripción de Unión a Octámeros/química , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Células Madre Pluripotentes
16.
Cell Death Dis ; 9(6): 585, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789579

RESUMEN

OCT4A is well established as a master transcription factor for pluripotent stem cell (PSC) self-renewal and a pioneer factor for initiating somatic cell reprogramming, yet its presence and functionality in somatic cancer cells remain controversial and obscure. By combining the CRISPR-Cas9-based gene editing with highly specific PCR assays, highly sensitive immunoassays, and mass spectrometry, we provide unequivocal evidence here that full-length authentic OCT4A transcripts and proteins were both present in somatic cancer cells, and OCT4A proteins were heterogeneously expressed in the whole cell population and when expressed, they are predominantly localized in cell nucleus. Despite their extremely low abundance (approximately three orders of magnitude lower than in PSCs), OCT4A proteins bound to the promoter/enhancer regions of the AP-1 transcription factor subunit c-FOS gene and critically regulated its transcription. Knocking out OCT4A in somatic cancer cells led to dramatic reduction of the c-FOS protein level, aberrant AP-1 signaling, dampened self-renewal capacity, deficient cell migration that were associated with cell growth retardation in vitro and in vivo, and their enhanced sensitivity to anticancer drugs. Taken together, we resolve the long-standing controversy and uncertainty in the field, and reveal a fundamental role of OCT4A protein in regulating FOS/AP-1 signaling-centered genes that mediate the adhesion, migration, and propagation of somatic cancer cells.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor de Transcripción AP-1/genética , Transcripción Genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Citoesqueleto/metabolismo , Integrinas/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Biológicos , Neoplasias/patología , Factor 3 de Transcripción de Unión a Octámeros/química , Factor 3 de Transcripción de Unión a Octámeros/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Factor de Transcripción AP-1/metabolismo , Transcriptoma/genética
17.
Biochemistry ; 57(19): 2756-2761, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29658277

RESUMEN

One of the most sensitive, time-consuming, and variable steps of chromatin immunoprecipitation (ChIP) is chromatin sonication. Traditionally, this process can take hours to properly sonicate enough chromatin for multiple ChIP assays. Further, the length of sheared DNA is often inconsistent. In order to faithfully measure chemical and structural changes at the chromatin level, sonication needs to be reliable. Thus, chromatin fragmentation by sonication represents a significant bottleneck to downstream quantitative analysis. To improve the consistency and efficiency of chromatin sonication, we developed and tested a cavitation enhancing reagent based on sonically active nanodroplets. Here, we show that nanodroplets increase sonication efficiency by 16-fold and provide more consistent levels of chromatin fragmentation. Using the previously characterized chromatin in vivo assay (CiA) platform, we generated two distinct chromatin states in order to test nanodroplet-assisted sonication sensitivity in measuring post-translational chromatin marks. By comparing euchromatin to chemically induced heterochromatin at the same CiA:Oct4 locus, we quantitatively measure the capability of our new sonication technique to resolve differences in chromatin structure. We confirm that nanodroplet-assisted sonication results are indistinguishable from those of samples processed with traditional sonication in downstream applications. While the processing time for each sample was reduced from 38.4 to 2.3 min, DNA fragment distribution sizes were significantly more consistent with a coefficient of variation 2.7 times lower for samples sonicated in the presence of nanodroplets. In conclusion, sonication utilizing the nanodroplet cavitation enhancement reagent drastically reduces the amount of processing time and provides consistently fragmented chromatin of high quality for downstream applications.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Fragmentación del ADN/efectos de la radiación , ADN/genética , Sonicación/métodos , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromatina/efectos de la radiación , ADN/química , ADN/efectos de la radiación , Eucromatina/efectos de la radiación , Heterocromatina/efectos de la radiación , Ratones , Nanopartículas/química , Factor 3 de Transcripción de Unión a Octámeros/química , Factor 3 de Transcripción de Unión a Octámeros/genética
18.
Stem Cell Reports ; 10(2): 627-641, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29358085

RESUMEN

The heterochromatin protein 1 (HP1) family is involved in various functions with maintenance of chromatin structure. During murine somatic cell reprogramming, we find that early depletion of HP1γ reduces the generation of induced pluripotent stem cells, while late depletion enhances the process, with a concomitant change from a centromeric to nucleoplasmic localization and elongation-associated histone H3.3 enrichment. Depletion of heterochromatin anchoring protein SENP7 increased reprogramming efficiency to a similar extent as HP1γ, indicating the importance of HP1γ release from chromatin for pluripotency acquisition. HP1γ interacted with OCT4 and DPPA4 in HP1α and HP1ß knockouts and in H3K9 methylation depleted H3K9M embryonic stem cell (ESC) lines. HP1α and HP1γ complexes in ESCs differed in association with histones, the histone chaperone CAF1 complex, and specific components of chromatin-modifying complexes such as DPY30, implying distinct functional contributions. Taken together, our results reveal the complex contribution of the HP1 proteins to pluripotency.


Asunto(s)
Reprogramación Celular/genética , Cromatina/genética , Células Madre Pluripotentes Inducidas/química , Complejos Multiproteicos/genética , Animales , Cromatina/química , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Endopeptidasas/química , Endopeptidasas/genética , Exorribonucleasas , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Ratones Noqueados , Complejos Multiproteicos/química , Proteínas Nucleares/genética , Factor 3 de Transcripción de Unión a Octámeros/química , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteínas/química , Proteínas/genética , Proteínas Represoras , Ribonucleasas , Factores de Transcripción
19.
J Biol Chem ; 293(10): 3829-3838, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29358330

RESUMEN

Derepression of chromatin-mediated transcriptional repression of paternal and maternal genomes is considered the first major step that initiates zygotic gene expression after fertilization. The histone variant H3.3 is present in both male and female gametes and is thought to be important for remodeling the paternal and maternal genomes for activation during both fertilization and embryogenesis. However, the underlying mechanisms remain poorly understood. Using our H3.3B-HA-tagged mouse model, engineered to report H3.3 expression in live animals and to distinguish different sources of H3.3 protein in embryos, we show here that sperm-derived H3.3 (sH3.3) protein is removed from the sperm genome shortly after fertilization and extruded from the zygotes via the second polar bodies (PBII) during embryogenesis. We also found that the maternal H3.3 (mH3.3) protein is incorporated into the paternal genome as early as 2 h postfertilization and is detectable in the paternal genome until the morula stage. Knockdown of maternal H3.3 resulted in compromised embryonic development both of fertilized embryos and of androgenetic haploid embryos. Furthermore, we report that mH3.3 depletion in oocytes impairs both activation of the Oct4 pluripotency marker gene and global de novo transcription from the paternal genome important for early embryonic development. Our results suggest that H3.3-mediated paternal chromatin remodeling is essential for the development of preimplantation embryos and the activation of the paternal genome during embryogenesis.


Asunto(s)
Blastocisto/metabolismo , Ensamble y Desensamble de Cromatina , Histonas/metabolismo , Herencia Paterna , Activación Transcripcional , Animales , Blastocisto/citología , Blastómeros/citología , Blastómeros/metabolismo , Desarrollo Embrionario , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histonas/antagonistas & inhibidores , Histonas/genética , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Mórula/citología , Mórula/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/química , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
20.
J Biomol Struct Dyn ; 36(3): 767-778, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28166455

RESUMEN

Oct4 is a master regulator of the induction and maintenance of cellular pluripotency, and has crucial roles in early stages of differentiation. It is the only factor that cannot be substituted by other members of the same protein family to induce pluripotency. However, although Oct4 nuclear transport and delivery to target DNA are critical events for reprogramming to pluripotency, little is known about the molecular mechanism. Oct4 is imported to the nucleus by the classical nuclear transport mechanism, which requires importin α as an adaptor to bind the nuclear localization signal (NLS). Although there are structures of complexes of the NLS of transcription factors (TFs) in complex with importin α, there are no structures available for complexes involving intact TFs. We have therefore modeled the structure of the complex of the whole Oct4 POU domain and importin α2 using protein-protein docking and molecular dynamics. The model explains how the Ebola virus VP24 protein has a negative effect on the nuclear import of STAT1 by importin α but not on Oct4, and how Nup 50 facilitates cargo release from importin α. The model demonstrates the structural differences between the Oct4 importin α bound and DNA bound crystal states. We propose that the 'expanded linker' between the two DNA-binding domains of Oct4 is an intrinsically disordered region and that its conformational changes have a key role in the recognition/binding to both DNA and importin α. Moreover, we propose that this structural change enables efficient delivery to DNA after release from importin α.


Asunto(s)
Fiebre Hemorrágica Ebola/genética , Factor 3 de Transcripción de Unión a Octámeros/química , Proteínas Virales/química , alfa Carioferinas/química , Transporte Activo de Núcleo Celular/genética , Sitios de Unión , Núcleo Celular/química , Núcleo Celular/genética , Reprogramación Celular/genética , Ebolavirus/química , Ebolavirus/genética , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/virología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Señales de Localización Nuclear/química , Señales de Localización Nuclear/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Unión Proteica , Mapas de Interacción de Proteínas , Factor de Transcripción STAT1/química , Factor de Transcripción STAT1/genética , Proteínas Virales/genética , alfa Carioferinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...