Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
1.
Cell Mol Biol Lett ; 29(1): 65, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714951

RESUMEN

The engineered clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system is currently widely applied in genetic editing and transcriptional regulation. The catalytically inactivated CasRx (dCasRx) has the ability to selectively focus on the mRNA coding region without disrupting transcription and translation, opening up new avenues for research on RNA modification and protein translation control. This research utilized dCasRx to create a translation-enhancement system for mammals called dCasRx-eIF4GI, which combined eukaryotic translation initiation factor 4G (eIF4GI) to boost translation levels of the target gene by recruiting ribosomes, without affecting mRNA levels, ultimately increasing translation levels of different endogenous proteins. Due to the small size of dCasRx, the dCasRx-eIF4GI translation enhancement system was integrated into a single viral vector, thus optimizing the delivery and transfection efficiency in subsequent applications. Previous studies reported that ferroptosis, mediated by calcium oxalate (CaOx) crystals, significantly promotes stone formation. In order to further validate its developmental potential, it was applied to a kidney stone model in vitro and in vivo. The manipulation of the ferroptosis regulatory gene FTH1 through single-guide RNA (sgRNA) resulted in a notable increase in FTH1 protein levels without affecting its mRNA levels. This ultimately prevented intracellular ferroptosis and protected against cell damage and renal impairment caused by CaOx crystals. Taken together, this study preliminarily validated the effectiveness and application prospects of the dCasRx-eIF4GI translation enhancement system in mammalian cell-based disease models, providing novel insights and a universal tool platform for protein translation research and future therapeutic approaches for nephrolithiasis.


Asunto(s)
Sistemas CRISPR-Cas , Oxalato de Calcio , Riñón , Animales , Humanos , Masculino , Ratones , Oxalato de Calcio/metabolismo , Sistemas CRISPR-Cas/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Ferritinas , Ferroptosis/genética , Edición Génica/métodos , Células HEK293 , Riñón/metabolismo , Riñón/patología , Cálculos Renales/genética , Cálculos Renales/metabolismo , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Biosíntesis de Proteínas/genética , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo
2.
Mol Cell ; 84(9): 1633-1634, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38701739

RESUMEN

The heat shock response is crucial for cell survival. In this issue of Molecular Cell, Desroches Altamirano et al.1 demonstrate that a temperature-induced conformational change in the translation initiation factor eIF4G is a key mechanism regulating translation during the heat shock response.


Asunto(s)
Factor 4G Eucariótico de Iniciación , Respuesta al Choque Térmico , Biosíntesis de Proteínas , ARN Mensajero , Factor 4G Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Humanos , Animales , Conformación Proteica , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética
3.
Mol Cell ; 84(9): 1727-1741.e12, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38547866

RESUMEN

Heat-shocked cells prioritize the translation of heat shock (HS) mRNAs, but the underlying mechanism is unclear. We report that HS in budding yeast induces the disassembly of the eIF4F complex, where eIF4G and eIF4E assemble into translationally arrested mRNA ribonucleoprotein particles (mRNPs) and HS granules (HSGs), whereas eIF4A promotes HS translation. Using in vitro reconstitution biochemistry, we show that a conformational rearrangement of the thermo-sensing eIF4A-binding domain of eIF4G dissociates eIF4A and promotes the assembly with mRNA into HS-mRNPs, which recruit additional translation factors, including Pab1p and eIF4E, to form multi-component condensates. Using extracts and cellular experiments, we demonstrate that HS-mRNPs and condensates repress the translation of associated mRNA and deplete translation factors that are required for housekeeping translation, whereas HS mRNAs can be efficiently translated by eIF4A. We conclude that the eIF4F complex is a thermo-sensing node that regulates translation during HS.


Asunto(s)
Factor 4F Eucariótico de Iniciación , Factor 4G Eucariótico de Iniciación , Respuesta al Choque Térmico , Proteínas de Unión a Poli(A) , Biosíntesis de Proteínas , ARN Mensajero , Ribonucleoproteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Respuesta al Choque Térmico/genética , Factor 4F Eucariótico de Iniciación/metabolismo , Factor 4F Eucariótico de Iniciación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4A Eucariótico de Iniciación/genética , Regulación Fúngica de la Expresión Génica , Unión Proteica , ARN de Hongos/metabolismo , ARN de Hongos/genética
4.
Phys Chem Chem Phys ; 26(14): 10660-10672, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38511550

RESUMEN

The cap-dependent mRNA translation is dysregulated in many kinds of cancers. The interaction between eIF4E and eIF4G through a canonical eIF4E-binding motif (CEBM) determines the efficacy of the cap-dependent mRNA translation. eIF4E-binding proteins (4E-BPs) share the CEBM and compete with eIF4G for the same binding surface of eIF4E and then inhibit the mRNA translation. 4E-BPs function as tumor repressors in nature. Hyperphosphorylation of 4E-BPs regulates the structure folding and causes the dissociation of 4E-BPs from eIF4E. However, until now, there has been no structure of the full-length 4E-BPs in complex with eIF4E. The regulation mechanism of phosphorylation is still unclear. In this work, we first investigate the interactions of human eIF4E with the CEBM and an auxiliary eIF4E-binding motif (AEBM) in eIF4G and 4E-BPs. The results unravel that the structure and interactions of the CEBM are highly conserved between eIF4G and 4E-BPs. However, the extended CEBM (ECEBM) in 4E-BPs forms a longer helix than that in eIF4G. The residue R62 in the ECEBM of 4E-BP2 forms salt bridges with E32 and E70 of eIF4E. The residue R63 of 4E-BP2 forms two special hydrogen bonds with N77 of eIF4E. Both of these interactions are missing in eIF4G. The AEBM of 4E-BPs folds into a ß-sheet conformation, which protects V81 inside a hydrophobic core in 4E-BP2. In eIF4G, the AEBM exists in a random coil state. The hydrophilic residues S637 and D638 of eIF4G open the hydrophobic core for solvents. The results show that the ECEBM and AEBM may be responsible for the competing advantage of 4E-BP2. Finally, based on our previous work (J. Zeng, F. Jiang and Y. D. Wu, J. Chem. Theory Comput., 2017, 13, 320), the human eIF4E:4E-BP2 complex (eIF4E:BP2P18-I88) including all reported phosphorylation sites is predicted. The eIF4E:BP2P18-I88 complex is different from the existing experimental eIF4E:eIF4G complex and provides an important structure for further studying the regulation mechanism of phosphorylation in 4E-BPs.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Factor 4G Eucariótico de Iniciación , Humanos , Proteínas Portadoras/metabolismo , Factor 4E Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Unión Proteica , Biosíntesis de Proteínas
5.
Oncogene ; 43(15): 1098-1112, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38388710

RESUMEN

The non-canonical translation initiation factor EIF4G2 plays essential roles in cellular stress responses via translation of selective mRNA cohorts. Currently there is limited and conflicting information regarding its involvement in cancer development and progression. Here we assessed its role in endometrial cancer (EC), in a cohort of 280 EC patients across different types, grades, and stages, and found that low EIF4G2 expression highly correlated with poor overall- and recurrence-free survival in Grade 2 EC patients, monitored over a period of up to 12 years. To establish a causative connection between low EIF4G2 expression and cancer progression, we stably knocked-down EIF4G2 in two human EC cell lines in parallel. EIF4G2 depletion resulted in increased resistance to conventional therapies and increased the prevalence of molecular markers for aggressive cell subsets, altering their transcriptional and proteomic landscapes. Prominent among the proteins with decreased abundance were Kinesin-1 motor proteins, KIF5B and KLC1, 2, 3. Multiplexed imaging of the EC patient tumor cohort showed a correlation between decreased expression of the kinesin proteins, and poor survival in patients with tumors of certain grades and stages. These findings reveal potential novel biomarkers for Grade 2 EC with ramifications for patient stratification and therapeutic interventions.


Asunto(s)
Neoplasias Endometriales , Cinesinas , Femenino , Humanos , Cinesinas/genética , Proteómica , Línea Celular , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo
6.
Adv Sci (Weinh) ; 11(17): e2309234, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38380498

RESUMEN

The CRISPR-Cas system, initially for DNA-level gene editing and transcription regulation, has expanded to RNA targeting with the Cas13d family, notably the RfxCas13d. This advancement allows for mRNA targeting with high specificity, particularly after catalytic inactivation, broadening the exploration of translation regulation. This study introduces a CRISPR-dCas13d-eIF4G fusion module, combining dCas13d with the eIF4G translation regulatory element, enhancing target mRNA translation levels. This module, using specially designed sgRNAs, selectively boosts protein translation in targeted tissue cells without altering transcription, leading to notable protein expression upregulation. This system is applied to a kidney stone disease model, focusing on ferroptosis-linked GPX4 gene regulation. By targeting GPX4 with sgRNAs, its protein expression is upregulated in human renal cells and mouse kidney tissue, countering ferroptosis and resisting calcium oxalate-induced cell damage, hence mitigating stone formation. This study evidences the CRISPR-dCas13d-eIF4G system's efficacy in eukaryotic cells, presenting a novel protein translation research approach and potential kidney stone disease treatment advancements.


Asunto(s)
Sistemas CRISPR-Cas , Oxalato de Calcio , Modelos Animales de Enfermedad , Factor 4G Eucariótico de Iniciación , Ferroptosis , Ferroptosis/genética , Ratones , Animales , Oxalato de Calcio/metabolismo , Sistemas CRISPR-Cas/genética , Humanos , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Cálculos Renales/genética , Cálculos Renales/metabolismo , Biosíntesis de Proteínas/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo
7.
Sci Rep ; 14(1): 251, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167853

RESUMEN

Programmable protein scaffolds are invaluable in the development of genome engineering tools. The pentatricopeptide repeat (PPR) protein is an attractive platform for RNA manipulation because of its programmable RNA-binding selectivity, which is determined by the combination of amino acid species at three specific sites in the PPR motif. Translation is a key RNA regulatory step that determines the final gene expression level and is involved in various human diseases. In this study, designer PPR protein was used to develop a translational enhancement technique by fusion with the translation initiation factor eIF4G. The results showed that the PPR-eIF4G fusion protein could activate the translation of endogenous c-Myc and p53 mRNAs and control cell fate, indicating that PPR-based translational enhancement is a versatile technique applicable to various endogenous mRNAs in mammalian cells. In addition, the translational enhancement was dependent on both the target position and presence of eIF4G, suggesting the presence of an unknown translation activation mechanism.


Asunto(s)
Factor 4G Eucariótico de Iniciación , Proteínas de Unión al ARN , Animales , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN , Mamíferos/genética , Mamíferos/metabolismo
8.
Thorac Cancer ; 15(1): 44-56, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37993106

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) have been reported to be involved in the initiation and development of cancers. The aim of this study was to determine the role of a circRNA, circ_0020123, in the development of non-small cell lung cancer (NSCLC). METHODS: The expression of circ_0020123, microRNA-146a-5p (miR-146a-5p), and eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) mRNA was detected by quantitative real-time PCR (qPCR). Western blot was used to determine the protein levels of cyclin D1, Bax, MMP-9, and EIF4G2. Cell proliferation was assessed by cell counting kit-8 (CCK-8) assay and colony formation assay. Flow cytometry assay was applied to determine cell cycle apoptosis. Cell migration and invasion were assessed using transwell assay. The potential relationship between miR-146a-5p and circ_0020123 or EIF4G2 was ascertained by dual-luciferase reporter assay and RIP assay. The role of circ_0020123 in vivo was explored by xenograft assay. RESULTS: Circ_0020123 was upregulated in NSCLC, and circ_0020123 knockdown repressed proliferation, migration, and invasion of NSCLC cells. Circ_0020123 targeted miR-146a-5p, and miR-146a-5p inhibitor reversed the effects of circ_0020123 knockdown on NSCLC cells. In addition, miR-146a-5p suppressed cell proliferation, migration, and invasion by targeting EIF4G2. Moreover, the antitumor role of circ_0020123 knockdown was verified in vivo. CONCLUSION: Knockdown of circ_0020123 inhibited NSCLC cell progression and tumor growth by targeting the miR-146a-5p/EIF4G2 axis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Apoptosis , Recuento de Células , Proliferación Celular , MicroARNs/genética , Factor 4G Eucariótico de Iniciación/genética
9.
Nat Cancer ; 5(1): 30-46, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37845485

RESUMEN

In vitro-transcribed (IVT) mRNA has arisen as a rapid method for the production of nucleic acid drugs. Here, we have constructed an oncolytic IVT mRNA that utilizes human rhinovirus type 2 (HRV2) internal ribosomal entry sites (IRESs) to selectively trigger translation in cancer cells with high expression of EIF4G2 and PTBP1. The oncolytic effect was provided by a long hGSDMDc .825 T>A/c.884 A>G-F1LCT mutant mRNA sequence with mitochondrial inner membrane cardiolipin targeting toxicity that triggers mitophagy. Utilizing the permuted intron-exon (PIE) splicing circularization strategy and lipid nanoparticle (LNP) encapsulation reduced immunogenicity of the mRNA and enabled delivery to eukaryotic cells in vivo. Engineered HRV2 IRESs-GSDMDp.D275E/E295G-F1LCT circRNA-LNPs (GSDMDENG circRNA) successfully inhibited EIF4G2+/PTBP1+ pan-adenocarcinoma xenografts growth. Importantly, in a spontaneous tumor model with abnormal EIF4G2 and PTBP1 caused by KRAS G12D mutation, GSDMDENG circRNA significantly prevented the occurrence of pancreatic, lung and colon adenocarcinoma, improved the survival rate and induced persistent KRAS G12D tumor antigen-specific cytotoxic T lymphocyte responses.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , ARN Circular , Cardiolipinas , Proteínas Proto-Oncogénicas p21(ras) , ARN Mensajero/genética , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo
10.
Life Sci Alliance ; 7(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38129098

RESUMEN

Tumor cells often exploit the protein translation machinery, resulting in enhanced protein expression essential for tumor growth. Since canonical translation initiation is often suppressed because of cell stress in the tumor microenvironment, non-canonical translation initiation mechanisms become particularly important for shaping the tumor proteome. EIF4G2 is a non-canonical translation initiation factor that mediates internal ribosome entry site (IRES)- and uORF-dependent initiation mechanisms, which can be used to modulate protein expression in cancer. Here, we explored the contribution of EIF4G2 to cancer by screening the COSMIC database for EIF4G2 somatic mutations in cancer patients. Functional examination of missense mutations revealed deleterious effects on EIF4G2 protein-protein interactions and, importantly, on its ability to mediate non-canonical translation initiation. Specifically, one mutation, R178Q, led to reductions in protein expression and near-complete loss of function. Two other mutations within the MIF4G domain specifically affected EIF4G2's ability to mediate IRES-dependent translation initiation but not that of target mRNAs with uORFs. These results shed light on both the structure-function of EIF4G2 and its potential tumor suppressor effects.


Asunto(s)
Neoplasias , Biosíntesis de Proteínas , Humanos , Biosíntesis de Proteínas/genética , Mutación/genética , Neoplasias/genética , Factor 4G Eucariótico de Iniciación/genética , Microambiente Tumoral
11.
Phys Chem Chem Phys ; 26(3): 2073-2081, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38131207

RESUMEN

Interaction between the cap-binding protein eIF4E and the scaffolding protein eIF4G is essential for the cap-dependent translation initiation in eukaryotes. In the Saccharomyces cerevisiae eIF4G/eIF4E complex, the intrinsically disordered eIF4E-binding domain of eIF4G folds into a bracelet-like structure upon binding to eIF4E. Aiming to unveil the molecular mechanism underlying the binding-wrapping process of eIF4G with eIF4E, we performed extensive coarse-grained molecular dynamics simulations and transition path analysis in this work. The major transition pathway revealed from our simulations showed that docking of the eIF4E-binding motif of eIF4G to the folded core of eIF4E initiates the binding process and then the disordered eIF4G wraps around the N-terminal tail of eIF4E. Additionally, we identified a minor transition pathway which indicates the involvement of topological frustration in the binding process. By manipulating the interaction strength of the wrapping contacts and the latching contacts, we further dissected factors affecting the formation of topological frustration and the binding transition kinetics. Our findings provide new clues for experimental studies on the binding mechanism of eIF4G to eIF4E in the future and exemplify the involvement of topological frustration in the binding process of intrinsically disordered proteins.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Factor 4G Eucariótico de Iniciación , Factor 4E Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Simulación de Dinámica Molecular , Biosíntesis de Proteínas , Saccharomyces cerevisiae , Unión Proteica
12.
J Biosci ; 482023.
Artículo en Inglés | MEDLINE | ID: mdl-38018538

RESUMEN

Initiation of translation is the first of the three obligatory steps required for protein synthesis and is carried out by a large number of protein factors called initiation factors in conjunction with ribosomes. One of the key conserved protein factors in eukaryotes that plays a role in this process is eIF4A, which has three homologues in humans with eIF4A1 being the primary factor playing a role in translation initiation. eIF4As are members of the family of DEAD-box helicases that carry out different biological functions. eIF4A1s are recruited to translation initiation complexes via association with eIF4G and have ATP binding, ATP hydrolysis, RNA binding, and unwinding activities. Plasmodium and trypanosomatids such as Leishmania and Trypanosoma are parasites that cause human disease. While mechanistically the function of eIF4A1s in eukaryotes is wellunderstood, the orthologues peIF4A1s and keIF4A1s in Plasmodium and trypanosomatids are not well-studied. Here, we have used bioinformatics tools and homology modelling/structure prediction to study the motifs and functional signatures of Plasmodium and trypanosomatid peIF4A1s/keIF4A1s. We report a high degree of sequence conservation, structural conservation, and conservation of protein-protein interaction signatures of Plasmodium and trypanosomatid peIF4A1s/keIF4A1s in comparison with human eIF4A1. Thus, in spite of the great divergence in evolution between these parasites and higher eukaryotes, there is remarkable conservation of motifs and functional signatures in Plasmodium and trypanosomatid peIF4A1s/keIF4A1s.


Asunto(s)
Factor 4G Eucariótico de Iniciación , Plasmodium , Humanos , Secuencia de Aminoácidos , Unión Proteica , Factor 4G Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Proteínas/metabolismo , Eucariontes , Plasmodium/genética , Plasmodium/metabolismo , Adenosina Trifosfato/metabolismo
13.
EMBO J ; 42(24): e113240, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37984430

RESUMEN

Protein requirements of eukaryotic cells are ensured by proteostasis, which is mediated by tight control of TORC1 activity. Upon TORC1 inhibition, protein degradation is increased and protein synthesis is reduced through inhibition of translation initiation to maintain cell viability. Here, we show that the ribosome-associated complex (RAC)/Ssb chaperone system, composed of the HSP70 chaperone Ssb and its HSP40 co-chaperone Zuo1, is required to maintain proteostasis and cell viability under TORC1 inhibition in Saccharomyces cerevisiae. In the absence of Zuo1, translation does not decrease in response to the loss of TORC1 activity. A functional interaction between Zuo1 and Ssb is required for proper translational control and proteostasis maintenance upon TORC1 inhibition. Furthermore, we have shown that the rapid degradation of eIF4G following TORC1 inhibition is mediated by autophagy and is prevented in zuo1Δ cells, contributing to decreased survival in these conditions. We found that autophagy is defective in zuo1Δ cells, which impedes eIF4G degradation upon TORC1 inhibition. Our findings identify an essential role for RAC/Ssb in regulating translation in response to changes in TORC1 signalling.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Mol Cell Biol ; 43(10): 485-499, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37724583

RESUMEN

IRES mediated translation initiation requires a different repertoire of factors than canonical cap-dependent translation. Treatments that inhibit the canonical translation factor EIF4G1 have little or no effect on the ability of the Insr and Igf1r cellular IRESes to promote translation. Transcripts for two cellular receptors contain RNA elements that facilitate translation initiation without intact EIF4G1. Cellular IRES mechanisms may resemble viral type III IRESes allowing them to promote translate with a limited number of initiation factors allowing them to work under stress conditions when canonical translation is repressed.


Asunto(s)
Péptidos Similares a la Insulina , Biosíntesis de Proteínas , Regiones no Traducidas 5'/genética , Ribosomas/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Somatomedina/metabolismo , ARN Viral/metabolismo
15.
J Alzheimers Dis ; 94(4): 1477-1485, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37393500

RESUMEN

BACKGROUND: Most previous studies supported that the mammalian target of rapamycin (mTOR) is over-activated in Alzheimer's disease (AD) and exacerbates the development of AD. It is unclear whether the causal associations between the mTOR signaling-related protein and the risk for AD exist. OBJECTIVE: This study aims to investigate the causal effects of the mTOR signaling targets on AD. METHODS: We explored whether the risk of AD varied with genetically predicted AKT, RP-S6K, EIF4E-BP, eIF4E, eIF4A, and eIF4G circulating levels using a two-sample Mendelian randomization analysis. The summary data for targets of the mTOR signaling were acquired from published genome-wide association studies for the INTERVAL study. Genetic associations with AD were retrieved from the International Genomics of Alzheimer's Project. We utilized the inverse variance weighted as the primary approach to calculate the effect estimates. RESULTS: The elevated levels of AKT (OR = 0.910, 95% CI=0.840-0.986, p = 0.02) and RP-S6K (OR = 0.910, 95% CI=0.840-0.986, p = 0.02) may decrease the AD risk. In contrast, the elevated eIF4E levels (OR = 1.805, 95% CI=1.002-1.174, p = 0.045) may genetically increase the AD risk. No statistical significance was identified for levels of EIF4-BP, eIF4A, and eIF4G with AD risk (p > 0.05). CONCLUSION: There was a causal relationship between the mTOR signaling and the risk for AD. Activating AKT and RP-S6K, or inhibiting eIF4E may be potentially beneficial to the prevention and treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Factor 4E Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple/genética , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR/genética
16.
Nucleic Acids Res ; 51(16): 8820-8835, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37449412

RESUMEN

Translation initiation factor 4G (eIF4G) is an integral component of the eIF4F complex which is key to translation initiation for most eukaryotic mRNAs. Many eIF4G isoforms have been described in diverse eukaryotic organisms but we currently have a poor understanding of their functional roles and whether they regulate translation in an mRNA specific manner. The yeast Saccharomyces cerevisiae expresses two eIF4G isoforms, eIF4G1 and eIF4G2, that have previously been considered as functionally redundant with any phenotypic differences arising due to alteration in eIF4G expression levels. Using homogenic strains that express eIF4G1 or eIF4G2 as the sole eIF4G isoforms at comparable expression levels to total eIF4G, we show that eIF4G1 is specifically required to mediate the translational response to oxidative stress. eIF4G1 binds the mRNA cap and remains associated with actively translating ribosomes during oxidative stress conditions and we use quantitative proteomics to show that eIF4G1 promotes oxidative stress-specific proteome changes. eIF4G1, but not eIF4G2, binds the Slf1 LARP protein which appears to mediate the eIF4G1-dependent translational response to oxidative stress. We show similar isoform specific roles for eIF4G in human cells suggesting convergent evolution of multiple eIF4G isoforms offers significant advantages especially where translation must continue under stress conditions.


Asunto(s)
Factor 4G Eucariótico de Iniciación , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Biosíntesis de Proteínas , Proteínas Portadoras/genética , Isoformas de Proteínas/metabolismo , Estrés Oxidativo/genética
17.
Cell Rep ; 42(6): 112646, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37314929

RESUMEN

Cancer cell plasticity enables cell survival in harsh physiological environments and fate transitions such as the epithelial-to-mesenchymal transition (EMT) that underlies invasion and metastasis. Using genome-wide transcriptomic and translatomic studies, an alternate mechanism of cap-dependent mRNA translation by the DAP5/eIF3d complex is shown to be essential for metastasis, EMT, and tumor directed angiogenesis. DAP5/eIF3d carries out selective translation of mRNAs encoding EMT transcription factors and regulators, cell migration integrins, metalloproteinases, and cell survival and angiogenesis factors. DAP5 is overexpressed in metastatic human breast cancers associated with poor metastasis-free survival. In human and murine breast cancer animal models, DAP5 is not required for primary tumor growth but is essential for EMT, cell migration, invasion, metastasis, angiogenesis, and resistance to anoikis. Thus, cancer cell mRNA translation involves two cap-dependent mRNA translation mechanisms, eIF4E/mTORC1 and DAP5/eIF3d. These findings highlight a surprising level of plasticity in mRNA translation during cancer progression and metastasis.


Asunto(s)
Neoplasias de la Mama , Factor 3 de Iniciación Eucariótica , Factor 4G Eucariótico de Iniciación , Biosíntesis de Proteínas , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal/genética , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Metástasis de la Neoplasia , ARN Mensajero/genética , Factores de Transcripción/genética , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo
18.
Neurobiol Dis ; 184: 106212, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37352983

RESUMEN

Neurodegeneration in Fragile X-associated tremor/ataxia syndrome (FXTAS) is caused by a CGG trinucleotide repeat expansion in the 5' UTR of FMR1. Expanded CGG repeat RNAs form stable secondary structures, which in turn support repeat-associated non-AUG (RAN) translation to produce toxic peptides. The parameters that impact RAN translation initiation efficiency are not well understood. Here we used a Drosophila melanogaster model of FXTAS to evaluate the role of the eIF4G family of eukaryotic translation initiation factors (EIF4G1, EIF4GII and EIF4G2/DAP5) in modulating RAN translation and CGG repeat-associated toxicity. DAP5 knockdown robustly suppressed CGG repeat-associated toxicity and inhibited RAN translation. Furthermore, knockdown of initiation factors that preferentially associate with DAP5 (such as EIF2ß, EIF3F and EIF3G) also selectively suppressed CGG repeat-induced eye degeneration. In mammalian cellular reporter assays, DAP5 knockdown exhibited modest and cell-type specific effects on RAN translation. Taken together, these data support a role for DAP5 in CGG repeat associated toxicity possibly through modulation of RAN translation.


Asunto(s)
Proteínas de Drosophila , Síndrome del Cromosoma X Frágil , Animales , Drosophila/metabolismo , Temblor/genética , Drosophila melanogaster/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Expansión de Repetición de Trinucleótido , Ataxia/genética , Mamíferos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
19.
Biochemistry ; 62(11): 1767-1775, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37132650

RESUMEN

During cellular stress conditions, particularly those seen in multiple cancers, canonical cap-dependent translation is suppressed and a subset of cellular mRNAs (e.g., those encoding FGF-9, HIF-1α, and p53, among others) is known to translate in a cap-independent manner. Human eIF4GI specifically binds to the highly structured 5'-untranslated regions (5'UTRs) of these mRNAs to promote cap-independent translation. The thermodynamics of these protein-RNA interactions have not been explored, and such information will aid in understanding the basic interactions and in potential design of therapeutic drugs. Using fluorescence quenching-based assays and site-directed mutagenesis, we determined the thermodynamic properties of three eIF4GI constructs binding to the 5'UTRs of FGF-9, HIF-1α, and p53 mRNA. These three constructs were designed to explore the importance of the eIF4E binding domain of eIF4GI, which has been shown to be important in binding and selectivity. eIF4GI557-1599, containing the eIF4E binding domain, had higher binding enthalpy (-21 to -14 kJ mol-1 higher), suggesting increased hydrogen bonding, whereas for eIF4GI682-1599 lacking the eIF4E binding domain, binding was entropically favored (TΔS/ΔG of 46-85%), suggesting hydrophobic forces and/or less specific binding. A third construct where a cluster of positively charged amino acids was changed to neutral amino acids showed intermediate properties. Circular dichroism spectra confirmed the significant role of eIF4E binding domain in stable bond formation between eIF4GI and mRNAs via conformational changes. Together, these data contribute to a better understanding of the molecular forces involved in eIF4GI-mRNA recognition and elucidate properties important for the design of small molecules to mediate these interactions.


Asunto(s)
Factor 4G Eucariótico de Iniciación , Proteína p53 Supresora de Tumor , Humanos , ARN Mensajero/metabolismo , Regiones no Traducidas 5' , Proteína p53 Supresora de Tumor/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/metabolismo , Unión Proteica , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Caperuzas de ARN/metabolismo
20.
Hum Cell ; 36(3): 1099-1107, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36897548

RESUMEN

Eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) is highly expressed in many cancers and affects their occurrence and development. However, the effect of EIF4G1 on the prognosis, biological function and the relevant mechanism in lung squamous cell carcinoma (LSCC) is unclear. Through clinical cases, Cox's proportional hazard model and Kaplan-Meier plotter survival analysis, we find the expression levels of EIF4G1 are dependent on age and clinical stage, high expression of EIF4G1 could be used to predict the overall survival of LSCC patients. LSCC cell line NCI-H1703, NCI-H226 and SK-MES-1infected with EIF4G1 siRNA are used to detect the function of EIF4G1 with cell proliferation and tumorigenesis in vivo and vitro. The data show that EIF4G1 promotes tumor cell proliferation and the G1/S transition of cell cycle in LSCC, then the biological function of LSCC is effected by the AKT/mTOR pathway. Above all, these results have demonstrated that EIF4G1 promotes LSCC cell proliferation and may represent an indicator of prognosis in LSCC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Pronóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/patología , Proliferación Celular/genética , Neoplasias Pulmonares/patología , Pulmón/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA