Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 863
Filtrar
1.
Int J Mol Sci ; 25(19)2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39408876

RESUMEN

Preterm birth (PTB) remains a significant public health concern, and prediction is an important objective, particularly in the early stages of pregnancy. Many studies have relied on cervical characteristics in the mid-trimester, with limited results. It is therefore crucial to identify novel biomarkers to enhance the ability to identify women at risk. The complement pathway is implicated in the process of placentation, and recent proteomics studies have highlighted the potential roles of some complement proteins in the pathophysiology of PTB. To determine the association between the occurrence of spontaneous preterm birth (sPTB) and the concentration of complement C3, factor B, and factor H in the blood of pregnant women during the first trimester. This prospective cohort study included women with singleton pregnancies, both with and without a history of sPTB, from two health institutions in Bucaramanga, Colombia. The outcome was sPTB before 37 weeks. A blood sample was obtained between 11 + 0 to 13 + 6 weeks. ELISA immunoassay was performed to quantify the levels of C3, factor B, and factor H. A total of 355 patients were analyzed, with a rate of sPTB of 7.6% (27/355). The median plasma concentration for C3, factor B, and factor H were 488.3 µg/mL, 352.6 µg/mL, and 413.2 µg/mL, respectively. The median concentration of factor H was found to be significantly lower in patients who delivered preterm compared to patients who delivered at term (382 µg/mL vs. 415 µg/mL; p = 0.034). This study identified a significant association between low first-trimester levels of factor H and sPTB before 37 weeks. These results provide relevant information about a new possible early biomarker for sPTB. However, the results must be confirmed in different settings, and the predictive value must be examined.


Asunto(s)
Biomarcadores , Factor H de Complemento , Primer Trimestre del Embarazo , Nacimiento Prematuro , Humanos , Embarazo , Femenino , Nacimiento Prematuro/sangre , Primer Trimestre del Embarazo/sangre , Adulto , Factor H de Complemento/metabolismo , Factor H de Complemento/análisis , Biomarcadores/sangre , Estudios Prospectivos , Factor B del Complemento/metabolismo , Complemento C3/metabolismo , Complemento C3/análisis , Adulto Joven
2.
Front Immunol ; 15: 1449003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39295874

RESUMEN

Pseudomonas aeruginosa is a leading cause of nosocomial bloodstream infections. The outcome of these infections depends on the virulence of the microorganism as well as host-related conditions and factors. The complement system plays a crucial role in defense against bloodstream infections. P. aeruginosa counteracts complement attack by recruiting Factor H (FH) that inhibits complement amplification on the bacterial surface. Factor H-related proteins (FHRs) are a group of plasma proteins evolutionarily related to FH that have been postulated to interfere this bacterial evasion mechanism. In this study, we demonstrate that FHR-3 competes with purified FH for binding to P. aeruginosa and identify EF-Tu as a common bacterial target for both complement regulator factors. Importantly, elevated levels of FHR-3 in human serum promote complement activation, leading to increased opsonization and killing of P. aeruginosa. Conversely, physiological concentrations of FHR-3 have no significant effect. Our findings suggest that FHR-3 may serve as a protective host factor against P. aeruginosa infections.


Asunto(s)
Factor H de Complemento , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/inmunología , Humanos , Infecciones por Pseudomonas/inmunología , Factor H de Complemento/metabolismo , Factor H de Complemento/inmunología , Bacteriemia/inmunología , Bacteriemia/microbiología , Activación de Complemento/inmunología , Interacciones Huésped-Patógeno/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Unión Proteica
3.
Front Immunol ; 15: 1447991, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39136026

RESUMEN

Background: Factor H (FH) is a major soluble inhibitor of the complement system and part of a family comprising five related proteins (FHRs 1-5). Deficiency of FHR1 was described to be linked to an elevated risk of systemic lupus erythematosus (SLE). As FHR1 can partially antagonize the functionality of FH, an altered FHR1/FH ratio could not only enhance SLE vulnerability but also affect the disease expression. This study focuses on the analysis of FH and FHR1 at a protein level, and the occurrence of anti-FH autoantibodies (anti-FH) in a large cohort of SLE patients to explore their association with disease activity and/or expression. Methods: We assessed FH and FHR1 levels in plasma from 378 SLE patients compared to 84 healthy controls (normal human plasma, NHP), and sera from another cohort of 84 healthy individuals (normal human serum, NHS), using RayBio® CFH and CFHR1 ELISA kits. Patients were recruited by the Swiss SLE Cohort Study (SSCS). Unmeasurable FHR1 levels were all confirmed by Western blot, and in a subgroup of patients by PCR. Anti-FH were measured in SLE patients with non-detectable FHR1 levels and matched control patients using Abnova's CFH IgG ELISA kit. Results: Overall, FH and FHR1 levels were significantly higher in healthy controls, but there was no significant difference in FHR1/FH ratios between SLE patients and NHPs. However, SLE patients showed a significantly higher prevalence of undetectable FHR1 compared to all healthy controls (35/378 SLE patients versus 6/168 healthy controls; p= 0.0214, OR=2.751, 95% CI = 1.115 - 8.164), with a consistent trend across all ethnic subgroups. Levels of FH and FHR1, FHR1/FH ratios and absence of FHR1 were not consistently associated with disease activity and/or specific disease manifestations, but absence of FHR1 (primarily equivalent to CFHR1 deficiency) was linked to the presence of anti-FH in SLE patients (p=0.039). Conclusions: Deficiency of FHR1 is associated with a markedly elevated risk of developing SLE. A small proportion of FHR1-deficient SLE patients was found to have autoantibodies against FH but did not show clinical signs of microangiopathy.


Asunto(s)
Autoanticuerpos , Factor H de Complemento , Lupus Eritematoso Sistémico , Humanos , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/sangre , Femenino , Masculino , Factor H de Complemento/metabolismo , Factor H de Complemento/inmunología , Adulto , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Persona de Mediana Edad , Proteínas Inactivadoras del Complemento C3b/genética , Adulto Joven , Anciano , Estudios de Casos y Controles , Adolescente , Proteínas Sanguíneas
4.
J Biol Chem ; 300(9): 107624, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39098532

RESUMEN

Human complement factor H (CFH) plays a central role in regulating activated C3b to protect host cells. CFH contain 20 short complement regulator (SCR) domains and eight N-glycosylation sites. The N-terminal SCR domains mediate C3b degradation while the C-terminal CFH domains bind to host cell surfaces to protect these. Our earlier study of Pichia-generated CFH fragments indicated a self-association site at SCR-17/18 that comprises a dimerization site for human factor H. Two N-linked glycans are located on SCR-17 and SCR-18. Here, when we expressed SCR-17/18 without glycans in an Escherichia coli system, analytical ultracentrifugation showed that no dimers were now formed. To investigate this novel finding, full-length CFH and its C-terminal fragments were purified from human plasma and Pichia pastoris respectively, and their glycans were enzymatically removed using PNGase F. Using size-exclusion chromatography, mass spectrometry, and analytical ultracentrifugation, SCR-17/18 from Pichia showed notably less dimer formation without its glycans, confirming that the glycans are necessary for the formation of SCR-17/18 dimers. By surface plasmon resonance, affinity analyses interaction showed decreased binding of deglycosylated full-length CFH to immobilized C3b, showing that CFH glycosylation enhances the key CFH regulation of C3b. We conclude that our study revealed a significant new aspect of CFH regulation based on its glycosylation and its resulting dimerization.


Asunto(s)
Factor H de Complemento , Polisacáridos , Factor H de Complemento/metabolismo , Factor H de Complemento/química , Humanos , Polisacáridos/metabolismo , Polisacáridos/química , Glicosilación , Dominios Proteicos , Multimerización de Proteína , Complemento C3b/metabolismo , Complemento C3b/química , Saccharomycetales/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética
5.
Front Immunol ; 15: 1379023, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104533

RESUMEN

Antibody-mediated complement-dependent cytotoxicity (CDC) on malignant cells is regulated by several complement control proteins, including the inhibitory complement factor H (fH). fH consists of 20 short consensus repeat elements (SCRs) with specific functional domains. Previous research revealed that the fH-derived SCRs 19-20 (SCR1920) can displace full-length fH on the surface of chronic lymphocytic leukemia (CLL) cells, which sensitizes CLL cells for e.g. CD20-targeting therapeutic monoclonal antibody (mAb) induced CDC. Therefore, we constructed lentiviral vectors for the generation of cell lines that stably produce mAb-SCR-fusion variants starting from the clinically approved parental mAbs rituximab, obinutuzumab and ofatumumab, respectively. Flow-cytometry revealed that the modification of the mAbs by the SCRs does not impair the binding to CD20. Increased in vitro lysis potency compared to their parental mAbs was corroborated by showing specific and dose dependent target cell elimination by CDC when compared to their parental mAbs. Lysis of CLL cells was not affected by the depletion of NK cells, suggesting that antibody-dependent cellular cytotoxicity plays a minor role in this context. Overall, this study emphasizes the crucial role of CDC in the elimination of CLL cells by mAbs and introduces a novel approach for enhancing CDC by directly fusing fH SCR1920 with mAbs.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Antígenos CD20 , Factor H de Complemento , Leucemia Linfocítica Crónica de Células B , Rituximab , Humanos , Antígenos CD20/inmunología , Antígenos CD20/genética , Factor H de Complemento/inmunología , Factor H de Complemento/metabolismo , Factor H de Complemento/genética , Leucemia Linfocítica Crónica de Células B/inmunología , Rituximab/farmacología , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Línea Celular Tumoral
6.
Appl Microbiol Biotechnol ; 108(1): 425, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042328

RESUMEN

Borrelia, spirochetes transmitted by ticks, are the etiological agents of numerous multisystemic diseases, such as Lyme borreliosis (LB) and tick-borne relapsing fever (TBRF). This study focuses on two surface proteins from two Borrelia subspecies involved in these diseases: CspZ, expressed by Borrelia burgdorferi sensu stricto (also named BbCRASP-2 for complement regulator-acquiring surface protein 2), and the factor H binding A (FhbA), expressed by Borrelia hermsii. Numerous subspecies of Borrelia, including these latter, are able to evade the immune defenses of a variety of potential vertebrate hosts in a number of ways. In this context, previous data suggested that both surface proteins play a role in the immune evasion of both Borrelia subspecies by interacting with key regulators of the alternative pathway of the human complement system, factor H (FH) and FH-like protein 1 (FHL-1). The recombinant proteins, CspZ and FhbA, were expressed in Escherichia coli and purified by one-step metal-affinity chromatography, with yields of 15 and 20 mg or pure protein for 1 L of cultured bacteria, respectively. The purity was evaluated by SDS-PAGE and HPLC and is close to about 95%. The mass of CspZ and FhbA was checked by mass spectrometry (MS). Proper folding of CspZ and FhbA was confirmed by circular dichroism (CD), and their biological activity, namely their interaction with purified FH from human serum (recombinant FH15-20 and recombinant FHL-1), was characterized by SPR. Such a study provides the basis for the biochemical characterization of the studied proteins and their biomolecular interactions which is a necessary prerequisite for the development of new approaches to improve the current diagnosis of LB and TBRF. KEY POINTS: • DLS, CD, SEC-MALS, NMR, HPLC, and MS are tools for protein quality assessment • Borrelia spp. possesses immune evasion mechanisms, including human host complement • CspZ and FhbA interact with high affinity (pM to nM) to human FH and rFHL-1.


Asunto(s)
Proteínas Bacterianas , Proteínas Recombinantes , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Humanos , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/inmunología , Cromatografía de Afinidad , Escherichia coli/genética , Escherichia coli/metabolismo , Borrelia/genética , Borrelia/metabolismo , Borrelia/inmunología , Factor H de Complemento/metabolismo , Factor H de Complemento/genética , Enfermedad de Lyme/microbiología , Proteínas Inactivadoras del Complemento C3b/genética , Proteínas Inactivadoras del Complemento C3b/metabolismo , Expresión Génica
7.
Blood Adv ; 8(15): 4181-4193, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38865712

RESUMEN

ABSTRACT: Excessively activated or dysregulated complement activation may contribute to the pathogenesis of a wide range of human diseases, thus leading to a surge in complement inhibitors. Herein, we developed a human-derived and antibody-like C3b-targeted fusion protein (CRIg-FH-Fc) x2, termed CG001, that could potently block all 3 complement pathways. Complement receptor of the immunoglobulin superfamily (CRIg) and factor H (FH) bind to distinct sites in C3b and synergistically inhibit complement activation. CRIg occupancy in C3b prevents the recruitment of C3 and C5 substrates, whereas FH occupancy in C3b accelerates the decay of C3/C5 convertases and promotes the factor I-mediated degradation and inactivation of C3b. CG001 also showed therapeutic effects in alternative pathways-induced hemolytic mouse and classical pathways-induced mesangial proliferative glomerulonephritis rat models. In the pharmacological/toxicological evaluation in rats and cynomolgus monkeys, CG001 displayed an antibody-like pharmacokinetic profile, a convincing complement inhibitory effect, and no observable toxic effects. Therefore, CG001 holds substantial potential for human clinical studies.


Asunto(s)
Complemento C3b , Animales , Humanos , Ratas , Ratones , Complemento C3b/metabolismo , Inactivadores del Complemento/farmacología , Inactivadores del Complemento/uso terapéutico , Macaca fascicularis , Activación de Complemento/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/uso terapéutico , Factor H de Complemento/metabolismo , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos
8.
Front Immunol ; 15: 1368852, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933264

RESUMEN

The classical pathway of the complement system is activated by the binding of C1q in the C1 complex to the target activator, including immune complexes. Factor H is regarded as the key downregulatory protein of the complement alternative pathway. However, both C1q and factor H bind to target surfaces via charge distribution patterns. For a few targets, C1q and factor H compete for binding to common or overlapping sites. Factor H, therefore, can effectively regulate the classical pathway activation through such targets, in addition to its previously characterized role in the alternative pathway. Both C1q and factor H are known to recognize foreign or altered-self materials, e.g., bacteria, viruses, and apoptotic/necrotic cells. Clots, formed by the coagulation system, are an example of altered self. Factor H is present abundantly in platelets and is a well-known substrate for FXIIIa. Here, we investigated whether clots activate the complement classical pathway and whether this is regulated by factor H. We show here that both C1q and factor H bind to the fibrin formed in microtiter plates and the fibrin clots formed under in vitro physiological conditions. Both C1q and factor H become covalently bound to fibrin clots, and this is mediated via FXIIIa. We also show that fibrin clots activate the classical pathway of complement, as demonstrated by C4 consumption and membrane attack complex detection assays. Thus, factor H downregulates the activation of the classical pathway induced by fibrin clots. These results elucidate the intricate molecular mechanisms through which the complement and coagulation pathways intersect and have regulatory consequences.


Asunto(s)
Coagulación Sanguínea , Complemento C1q , Factor H de Complemento , Vía Clásica del Complemento , Fibrina , Humanos , Factor H de Complemento/metabolismo , Factor H de Complemento/inmunología , Fibrina/metabolismo , Complemento C1q/metabolismo , Complemento C1q/inmunología , Vía Clásica del Complemento/inmunología , Unión Proteica , Activación de Complemento/inmunología , Plaquetas/inmunología , Plaquetas/metabolismo
9.
Front Immunol ; 15: 1334151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919628

RESUMEN

Introduction: Complement factor H (FH) is a major regulator of the complement alternative pathway, its mutations predispose to an uncontrolled activation in the kidney and on blood cells and to secondary C3 deficiency. Plasma exchange has been used to correct for FH deficiency and although the therapeutic potential of purified FH has been suggested by in vivo experiments in animal models, a clinical approved FH concentrate is not yet available. We aimed to develop a purification process of FH from a waste fraction rather than whole plasma allowing a more efficient and ethical use of blood and plasma donations. Methods: Waste fractions from industrial plasma fractionation (pooled human plasma) were analyzed for FH content by ELISA. FH was purified from unused fraction III and its decay acceleration, cofactor, and C3 binding capacity were characterized in vitro. Biodistribution was assessed by high-resolution dynamic PET imaging. Finally, the efficacy of the purified FH preparation was tested in the mouse model of C3 glomerulopathy (Cfh-/- mice). Results: Our purification method resulted in a high yield of highly purified (92,07%), pathogen-safe FH. FH concentrate is intact and fully functional as demonstrated by in vitro functional assays. The biodistribution revealed lower renal and liver clearance of human FH in Cfh-/- mice than in wt mice. Treatment of Cfh-/- mice documented its efficacy in limiting C3 activation and promoting the clearance of C3 glomerular deposits. Conclusion: We developed an efficient and economical system for purifying intact and functional FH, starting from waste material of industrial plasma fractionation. The FH concentrate could therefore constitute possible treatments options of patients with C3 glomerulopathy, particularly for those with FH deficiency, but also for patients with other diseases associated with alternative pathway activation.


Asunto(s)
Complemento C3 , Factor H de Complemento , Ratones Noqueados , Factor H de Complemento/metabolismo , Factor H de Complemento/genética , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Prueba de Estudio Conceptual , Ratones Endogámicos C57BL
10.
Front Immunol ; 15: 1383123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799460

RESUMEN

Most drugs that target the complement system are designed to inhibit the complement pathway at either the proximal or terminal levels. The use of a natural complement regulator such as factor H (FH) could provide a superior treatment option by restoring the balance of an overactive complement system while preserving its normal physiological functions. Until now, the systemic treatment of complement-associated disorders with FH has been deemed unfeasible, primarily due to high production costs, risks related to FH purified from donors' blood, and the challenging expression of recombinant FH in different host systems. We recently demonstrated that a moss-based expression system can produce high yields of properly folded, fully functional, recombinant FH. However, the half-life of the initial variant (CPV-101) was relatively short. Here we show that the same polypeptide with modified glycosylation (CPV-104) achieves a pharmacokinetic profile comparable to that of native FH derived from human serum. The treatment of FH-deficient mice with CPV-104 significantly improved important efficacy parameters such as the normalization of serum C3 levels and the rapid degradation of C3 deposits in the kidney compared to treatment with CPV-101. Furthermore, CPV-104 showed comparable functionality to serum-derived FH in vitro, as well as similar performance in ex vivo assays involving samples from patients with atypical hemolytic uremic syndrome, C3 glomerulopathy and paroxysomal nocturnal hematuria. CPV-104 - the human FH analog expressed in moss - will therefore allow the treatment of complement-associated human diseases by rebalancing instead of inhibiting the complement cascade.


Asunto(s)
Factor H de Complemento , Humanos , Factor H de Complemento/metabolismo , Factor H de Complemento/genética , Animales , Ratones , Semivida , Polisacáridos/metabolismo , Bryopsida/metabolismo , Bryopsida/genética , Glicosilación , Proteínas Recombinantes , Ratones Noqueados , Ratones Endogámicos C57BL , Masculino
11.
Front Immunol ; 15: 1352022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698856

RESUMEN

The complement system is an innate immune mechanism against microbial infections. It involves a cascade of effector molecules that is activated via classical, lectin and alternative pathways. Consequently, many pathogens bind to or incorporate in their structures host negative regulators of the complement pathways as an evasion mechanism. Factor H (FH) is a negative regulator of the complement alternative pathway that protects "self" cells of the host from non-specific complement attack. FH has been shown to bind viruses including human influenza A viruses (IAVs). In addition to its involvement in the regulation of complement activation, FH has also been shown to perform a range of functions on its own including its direct interaction with pathogens. Here, we show that human FH can bind directly to IAVs of both human and avian origin, and the interaction is mediated via the IAV surface glycoprotein haemagglutinin (HA). HA bound to common pathogen binding footprints on the FH structure, complement control protein modules, CCP 5-7 and CCP 15-20. The FH binding to H1 and H3 showed that the interaction overlapped with the receptor binding site of both HAs, but the footprint was more extensive for the H3 HA than the H1 HA. The HA - FH interaction impeded the initial entry of H1N1 and H3N2 IAV strains but its impact on viral multicycle replication in human lung cells was strain-specific. The H3N2 virus binding to cells was significantly inhibited by preincubation with FH, whereas there was no alteration in replicative rate and progeny virus release for human H1N1, or avian H9N2 and H5N3 IAV strains. We have mapped the interaction between FH and IAV, the in vivo significance of which for the virus or host is yet to be elucidated.


Asunto(s)
Factor H de Complemento , Glicoproteínas Hemaglutininas del Virus de la Influenza , Virus de la Influenza A , Gripe Humana , Unión Proteica , Humanos , Factor H de Complemento/metabolismo , Factor H de Complemento/inmunología , Animales , Gripe Humana/inmunología , Gripe Humana/virología , Gripe Humana/metabolismo , Virus de la Influenza A/inmunología , Virus de la Influenza A/fisiología , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Sitios de Unión , Gripe Aviar/virología , Gripe Aviar/inmunología , Gripe Aviar/metabolismo , Aves/virología , Interacciones Huésped-Patógeno/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H9N2 del Virus de la Influenza A/inmunología
12.
Front Immunol ; 15: 1288597, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38817607

RESUMEN

Complement activation protects against infection but also contributes to pathological mechanisms in a range of clinical conditions such as autoimmune diseases and transplant rejection. Complement-inhibitory drugs, either approved or in development, usually act systemically, thereby increasing the risk for infections. We therefore envisioned a novel class of bispecific antibodies (bsAbs) which are capable of site-directed complement inhibition by bringing endogenous complement regulators in the vicinity of defined cell surface antigens. Here, we analyzed a comprehensive set of obligate bsAbs designed to crosslink a specific target with either complement regulator factor H (FH) or C4b-binding protein (C4BP). The bsAbs were assessed for their capacity to inhibit complement activation and cell lysis in an antigen-targeted manner. We observed that the bsAbs inhibited classical, lectin, and alternative pathway complement activation in which sufficient endogenous serum FH and C4BP could be recruited to achieve local inhibition. Importantly, the bsAbs effectively protected antigen-positive liposomes, erythrocytes, and human leukocytes from complement-mediated lysis. In conclusion, localized complement inhibition by bsAbs capable of recruiting endogenous human complement regulators (such as FH or C4BP) to cell surfaces potentially provides a novel therapeutic approach for the targeted treatment of complement-mediated diseases.


Asunto(s)
Anticuerpos Biespecíficos , Activación de Complemento , Proteína de Unión al Complemento C4b , Factor H de Complemento , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Humanos , Activación de Complemento/inmunología , Proteína de Unión al Complemento C4b/inmunología , Proteína de Unión al Complemento C4b/metabolismo , Factor H de Complemento/inmunología , Factor H de Complemento/metabolismo , Antígenos/inmunología , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Unión Proteica
13.
Invest Ophthalmol Vis Sci ; 65(4): 43, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38683564

RESUMEN

Purpose: Complement dysregulation is a key component in the pathogenesis of age-related macular degeneration (AMD) and related diseases such as early-onset macular drusen (EOMD). Although genetic variants of complement factor H (CFH) are associated with AMD risk, the impact of CFH and factor H-like protein 1 (FHL-1) expression on local complement activity in human retinal pigment epithelium (RPE) remains unclear. Methods: We identified a novel CFH variant in a family with EOMD and generated patient induced pluripotent stem cell (iPSC)-derived RPE cells. We assessed CFH and FHL-1 co-factor activity through C3b breakdown assays and measured complement activation by immunostaining for membrane attack complex (MAC) formation. Expression of CFH, FHL-1, local alternative pathway (AP) components, and regulators of complement activation (RCA) in EOMD RPE cells was determined by quantitative PCR, western blot, and immunostaining. Isogenic EOMD (cEOMD) RPE was generated using CRISPR/Cas9 gene editing. Results: The CFH variant (c.351-2A>G) resulted in loss of CFH and FHL-1 expression and significantly reduced CFH and FHL-1 protein expression (∼50%) in EOMD iPSC RPE cells. These cells exhibited increased MAC deposition upon exposure to normal human serum. Under inflammatory or oxidative stress conditions, CFH and FHL-1 expression in EOMD RPE cells paralleled that of controls, whereas RCA expression, including MAC formation inhibitors, was elevated. CRISPR/Cas9 correction restored CFH/FHL-1 expression and mitigated alternative pathway complement activity in cEOMD RPE cells. Conclusions: Identification of a novel CFH variant in patients with EOMD resulting in reduced CFH and FHL-1 and increased local complement activity in EOMD iPSC RPE supports the involvement of CFH haploinsufficiency in EOMD pathogenesis.


Asunto(s)
Factor H de Complemento , Haploinsuficiencia , Péptidos y Proteínas de Señalización Intracelular , Proteínas con Dominio LIM , Degeneración Macular , Proteínas Musculares , Epitelio Pigmentado de la Retina , Humanos , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Degeneración Macular/genética , Degeneración Macular/metabolismo , Masculino , Femenino , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Inactivadoras del Complemento C3b/genética , Proteínas Inactivadoras del Complemento C3b/metabolismo , Activación de Complemento/genética , Linaje , Western Blotting , Proteínas del Sistema Complemento/metabolismo , Proteínas del Sistema Complemento/genética , Drusas Retinianas/genética , Drusas Retinianas/metabolismo , Persona de Mediana Edad
14.
Front Immunol ; 15: 1330913, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633250

RESUMEN

Purpose: To determine and compare the serum levels of complement Factor H (FH), monomeric C-Reactive Protein (mCRP) and pentameric C-Reactive protein (pCRP) in patients with age-related macular degeneration (AMD) and to correlate them with clinical, structural and functional parameters. Methods: Cross-sectional observational study. One hundred thirty-nine individuals (88 patients and 51 healthy controls) from two referral centers were included and classified into three groups: early or intermediate AMD (n=33), advanced AMD (n=55), and age and sex matched healthy controls (n=51). Serum levels of FH, mCRP, and pCRP were determined and correlated with clinical and imaging parameters. Results: Patients with intermediate AMD presented FH levels significantly lower than controls [186.5 (72.1-931.8) µg/mL vs 415.2 (106.1-1962.2) µg/mL; p=0.039] and FH levels <200 µg/mL were associated with the presence of drusen and pigmentary changes in the fundoscopy (p=0.002). While no differences were observed in pCRP and mCRP levels, and mCRP was only detected in less than 15% of the included participants, women had a significantly higher detection rate of mCRP than men (21.0% vs. 3.8%, p=0.045). In addition, the ratio mCRP/FH (log) was significantly lower in the control group compared to intermediate AMD (p=0.031). Visual acuity (p<0.001), macular volume (p<0.001), and foveal thickness (p=0.034) were significantly lower in the advanced AMD group, and choroidal thickness was significantly lower in advanced AMD compared to early/intermediate AMD (p=0.023). Conclusion: Intermediate AMD was associated in our cohort with decreased serum FH levels together with increased serum mCRP/FH ratio. All these objective serum biomarkers may suggest an underlying systemic inflammatory process in early/intermediate AMD patients.


Asunto(s)
Proteína C-Reactiva , Factor H de Complemento , Degeneración Macular , Femenino , Humanos , Masculino , Biomarcadores , Proteína C-Reactiva/análisis , Proteína C-Reactiva/metabolismo , Factor H de Complemento/análisis , Factor H de Complemento/metabolismo , Estudios Transversales , Degeneración Macular/diagnóstico , Degeneración Macular/metabolismo
15.
Front Cell Infect Microbiol ; 14: 1328185, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510967

RESUMEN

Pseudomonas aeruginosa is an important human opportunistic pathogen responsible for a wide range of infections. The complement system is the main early host defense mechanism to control these infections. P. aeruginosa counteracts complement attack by binding Factor H (FH), a complement regulator that inactivates C3b, preventing the formation of the C3-convertase and complement amplification on the bacterial surface. Factor H-related proteins (FHRs) are a group of plasma proteins evolutionarily related to FH that have been postulated to interfere in this bacterial mechanism of resisting complement. Here, we show that FHR-1 binds to P. aeruginosa via the outer membrane protein OprG in a lipopolysaccharide (LPS) O antigen-dependent manner. Binding assays with purified components or with FHR-1-deficient serum supplemented with FHR-1 show that FHR-1 competes with FH for binding to P. aeruginosa. Blockage of FH binding to C3b deposited on the bacteria reduces FH-mediated cofactor activity of C3b degradation, increasing the opsonization of the bacteria and the formation of the potent chemoattractant C5a. Overall, our findings indicate that FHR-1 is a host factor that promotes complement activation, facilitating clearance of P. aeruginosa by opsonophagocytosis.


Asunto(s)
Proteínas Sanguíneas , Factor H de Complemento , Pseudomonas aeruginosa , Humanos , Factor H de Complemento/metabolismo , Pseudomonas aeruginosa/metabolismo , Opsonización , Unión Proteica , Proteínas del Sistema Complemento/metabolismo , Bacterias/metabolismo
16.
Front Immunol ; 15: 1351898, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464530

RESUMEN

Pregnancy is an immunologically regulated, complex process. A tightly controlled complement system plays a crucial role in the successful establishment of pregnancy and parturition. Complement inhibitors at the feto-maternal interface are likely to prevent inappropriate complement activation to protect the fetus. In the present study, we aimed to understand the role of Factor H (FH), a negative regulator of complement activation, in normal pregnancy and in a model of pathological pregnancy, i.e. preeclampsia (PE). The distribution and expression of FH was investigated in placental tissues, various placental cells, and in the sera of healthy (CTRL) or PE pregnant women via immunohistochemistry, RT-qPCR, ELISA, and Western blot. Our results showed a differential expression of FH among the placental cell types, decidual stromal cells (DSCs), decidual endothelial cells (DECs), and extravillous trophoblasts (EVTs). Interestingly, FH was found to be considerably less expressed in the placental tissues of PE patients compared to normal placental tissue both at mRNA and protein levels. Similar results were obtained by measuring circulating FH levels in the sera of third trimester CTRL and PE mothers. Syncytiotrophoblast microvesicles, isolated from the placental tissues of PE and CTRL women, downregulated FH expression by DECs. The present study appears to suggest that FH is ubiquitously present in the normal placenta and plays a homeostatic role during pregnancy.


Asunto(s)
Placenta , Preeclampsia , Femenino , Humanos , Embarazo , Factor H de Complemento/metabolismo , Células Endoteliales/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Trofoblastos/metabolismo
17.
Front Immunol ; 15: 1135490, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410512

RESUMEN

Complement is an ancient and complex network of the immune system and, as such, it plays vital physiological roles, but it is also involved in numerous pathological processes. The proper regulation of the complement system is important to allow its sufficient and targeted activity without deleterious side-effects. Factor H is a major complement regulator, and together with its splice variant factor H-like protein 1 and the five human factor H-related (FHR) proteins, they have been linked to various diseases. The role of factor H in inhibiting complement activation is well studied, but the function of the FHRs is less characterized. Current evidence supports the main role of the FHRs as enhancers of complement activation and opsonization, i.e., counter-balancing the inhibitory effect of factor H. FHRs emerge as soluble pattern recognition molecules and positive regulators of the complement system. In addition, factor H and some of the FHR proteins were shown to modulate the activity of immune cells, a non-canonical function outside the complement cascade. Recent efforts have intensified to study factor H and the FHRs and develop new tools for the distinction, quantification and functional characterization of members of this protein family. Here, we provide an update and overview on the versatile roles of factor H family proteins, what we know about their biological functions in healthy conditions and in diseases.


Asunto(s)
Factor H de Complemento , Proteínas del Sistema Complemento , Humanos , Factor H de Complemento/metabolismo , Activación de Complemento
18.
J Biol Chem ; 300(4): 105784, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401844

RESUMEN

The introduction of a therapeutic anti-C5 antibody into clinical practice in 2007 inspired a surge into the development of complement-targeted therapies. This has led to the recent approval of a C3 inhibitory peptide, an antibody directed against C1s and a full pipeline of several complement inhibitors in preclinical and clinical development. However, no inhibitor is available that efficiently inhibits all three complement initiation pathways and targets host cell surface markers as well as complement opsonins. To overcome this, we engineered a novel fusion protein combining selected domains of the three natural complement regulatory proteins decay accelerating factor, factor H and complement receptor 1. Such a triple fusion complement inhibitor (TriFu) was recombinantly expressed and purified alongside multiple variants and its building blocks. We analyzed these proteins for ligand binding affinity and decay acceleration activity by surface plasmon resonance. Additionally, we tested complement inhibition in several in vitro/ex vivo assays using standard classical and alternative pathway restricted hemolysis assays next to hemolysis assays with paroxysmal nocturnal hemoglobinuria erythrocytes. A novel in vitro model of the alternative pathway disease C3 glomerulopathy was established to evaluate the potential of the inhibitors to stop C3 deposition on endothelial cells. Next to the novel engineered triple fusion variants which inactivate complement convertases in an enzyme-like fashion, stoichiometric complement inhibitors targeting C3, C5, factor B, and factor D were tested as comparators. The triple fusion approach yielded a potent complement inhibitor that efficiently inhibits all three complement initiation pathways while targeting to surface markers.


Asunto(s)
Factor H de Complemento , Receptores de Complemento 3b , Proteínas Recombinantes de Fusión , Humanos , Factor H de Complemento/metabolismo , Factor H de Complemento/genética , Factor H de Complemento/química , Factor H de Complemento/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Activación de Complemento/efectos de los fármacos , Antígenos CD55/genética , Antígenos CD55/metabolismo , Hemólisis/efectos de los fármacos , Vía Alternativa del Complemento/efectos de los fármacos , Inactivadores del Complemento/farmacología , Eritrocitos/metabolismo
19.
Microb Cell Fact ; 22(1): 259, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104077

RESUMEN

BACKGROUND: Komagataella phaffii (Pichia pastoris) is a methylotrophic commercially important non-conventional species of yeast that grows in a fermentor to exceptionally high densities on simple media and secretes recombinant proteins efficiently. Genetic engineering strategies are being explored in this organism to facilitate cost-effective biomanufacturing. Small, stable artificial chromosomes in K. phaffii could offer unique advantages by accommodating multiple integrations of extraneous genes and their promoters without accumulating perturbations of native chromosomes or exhausting the availability of selection markers. RESULTS: Here, we describe a linear "nano"chromosome (of 15-25 kb) that, according to whole-genome sequencing, persists in K. phaffii over many generations with a copy number per cell of one, provided non-homologous end joining is compromised (by KU70-knockout). The nanochromosome includes a copy of the centromere from K. phaffii chromosome 3, a K. phaffii-derived autonomously replicating sequence on either side of the centromere, and a pair of K. phaffii-like telomeres. It contains, within its q arm, a landing zone in which genes of interest alternate with long (approx. 1-kb) non-coding DNA chosen to facilitate homologous recombination and serve as spacers. The landing zone can be extended along the nanochromosome, in an inch-worming mode of sequential gene integrations, accompanied by recycling of just two antibiotic-resistance markers. The nanochromosome was used to express PDI, a gene encoding protein disulfide isomerase. Co-expression with PDI allowed the production, from a genomically integrated gene, of secreted murine complement factor H, a plasma protein containing 40 disulfide bonds. As further proof-of-principle, we co-expressed, from a nanochromosome, both PDI and a gene for GFP-tagged human complement factor H under the control of PAOX1 and demonstrated that the secreted protein was active as a regulator of the complement system. CONCLUSIONS: We have added K. phaffii to the list of organisms that can produce human proteins from genes carried on a stable, linear, artificial chromosome. We envisage using nanochromosomes as repositories for numerous extraneous genes, allowing intensive engineering of K. phaffii without compromising its genome or weakening the resulting strain.


Asunto(s)
Pichia , Saccharomycetales , Humanos , Animales , Ratones , Pichia/genética , Pichia/metabolismo , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Saccharomycetales/genética , Recombinación Homóloga , Cromosomas
20.
J Transl Med ; 21(1): 846, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996918

RESUMEN

OBJECTIVE: To explore the role and underlying mechanism of Complement Factor H (CFH) in the peripheral and joint inflammation of RA patients. METHODS: The levels of CFH in the serum and synovial fluid were determined by ELISA. The pyroptosis of monocytes was determined by western blotting and flow cytometry. The inflammation cytokine release was tested by ELISA. The cell migration and invasion ability of fibroblast-like synoviocytes (FLS) were tested by Wound healing Assay and transwell assay, respectively. The potential target of CFH was identified by RNA sequencing. RESULTS: CFH levels were significantly elevated in the serum and synovial fluid from RA and associated with high sensitivity C-reactive protein (hs-CRP), erythrocyte sedimentation rate (ESR), and disease activity score 28 (DAS28). TNF-α could inhibit CFH expression, and CFH combined with TNF-α significantly decreased cell death, cleaved-caspase 3, gasdermin E N-terminal (GSDME-N), and inflammatory cytokines release (IL-1ß and IL-6) of RA-derived monocytes. Stimulated with TNF-α increased CFH levels in RA FLS and CFH inhibits the migration, invasion, and TNF-α-induced production of inflammatory mediators, including proinflammatory cytokines (IL-6, IL-8) as well as matrix metalloproteinases (MMPs, MMP1 and MMP3) of RA FLSs. The RNA-seq results showed that CFH treatment induced upregulation of eukaryotic translation initiation factor 3 (EIF3C) in both RA monocytes and FLS. The migration of RA FLSs was promoted and the expressions of IL-6, IL-8, and MMP-3 were enhanced upon EIF3C knockdown under the stimulation of CFH combined with TNF-α. CONCLUSION: In conclusion, we have unfolded the anti-inflammatory roles of CFH in the peripheral and joints of RA, which might provide a potential therapeutic target for RA patients.


Asunto(s)
Artritis Reumatoide , Factor de Necrosis Tumoral alfa , Humanos , Artritis Reumatoide/tratamiento farmacológico , Proliferación Celular , Células Cultivadas , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Factor H de Complemento/uso terapéutico , Citocinas/metabolismo , Fibroblastos/metabolismo , Inflamación/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Membrana Sinovial/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...