Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.976
Filtrar
1.
Rev Assoc Med Bras (1992) ; 70(5): e20231337, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38775506

RESUMEN

OBJECTIVE: It has been previously shown that brain-derived neurotrophic factor is linked with various types of cancer. Brain-derived neurotrophic factor is found to be highly expressed in multiple human cancers and associated with tumor growth, invasion, and metastasis. Adipokinetic hormones are functionally related to the vertebrate glucagon, as they have similar functionalities that manage the nutrient-dependent secretion of these two hormones. Migrasomes are new organelles that contain numerous small vesicles, which aid in transmitting signals between the migrating cells. Therefore, the aim of this study was to investigate the effects of Anax imperator adipokinetic hormone on brain-derived neurotrophic factor expression and ultrastructure of cells in the C6 glioma cell line. METHODS: The rat C6 glioma cells were treated with concentrations of 5 and 10 Anax imperator adipokinetic hormone for 24 h. The effects of the Anax imperator adipokinetic hormone on the migrasome formation and brain-derived neurotrophic factor expression were analyzed using immunocytochemistry and transmission electron microscope. RESULTS: The rat C6 glioma cells of the 5 and 10 µM Anax imperator adipokinetic hormone groups showed significantly high expressions of brain-derived neurotrophic factor and migrasomes numbers, compared with the control group. CONCLUSION: A positive correlation was found between the brain-derived neurotrophic factor expression level and the formation of migrasome, which indicates that the increased expression of brain-derived neurotrophic factor and the number of migrasomes may be involved to metastasis of the rat C6 glioma cell line induced by the Anax imperator adipokinetic hormone. Therefore, the expression of brain-derived neurotrophic factor and migrasome formation may be promising targets for preventing tumor proliferation, invasion, and metastasis in glioma.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Glioma , Oligopéptidos , Ácido Pirrolidona Carboxílico , Glioma/metabolismo , Glioma/patología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratas , Línea Celular Tumoral , Ácido Pirrolidona Carboxílico/análogos & derivados , Ácido Pirrolidona Carboxílico/metabolismo , Oligopéptidos/farmacología , Hormonas de Insectos/metabolismo , Movimiento Celular/efectos de los fármacos , Inmunohistoquímica , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Orgánulos/metabolismo , Orgánulos/efectos de los fármacos , Orgánulos/ultraestructura
2.
Brain Behav ; 14(5): e3515, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38702895

RESUMEN

INTRODUCTION: Maternal sleep deprivation (MSD), which induces inflammation and synaptic dysfunction in the hippocampus, has been associated with learning and memory impairment in offspring. Melatonin (Mel) has been shown to have anti-inflammatory, antioxidant, and neuroprotective function. However, the beneficial effect of Mel on MSD-induced cognitive impairment and its mechanisms are unknown. METHODS: In the present study, adult offspring suffered from MSD were injected with Mel (20 mg/kg) once a day during postnatal days 61-88. The cognitive function was evaluated by the Morris water maze test. Levels of proinflammatory cytokines were examined by enzyme-linked immunosorbent assay. The mRNA and protein levels of synaptic plasticity associated proteins were examined using reverse transcription-polymerase chain reaction and western blotting. RESULTS: The results showed that MSD impaired learning and memory in the offspring mice. MSD increased the levels of interleukin (IL)-1creIL-6, and tumor necrosis factor-α and decreased the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density protein-95, and synaptophysin in the hippocampus. Furthermore, Mel attenuated cognitive impairment and restored markers of inflammation and synaptic plasticity to control levels. CONCLUSIONS: These findings indicated that Mel could ameliorate learning and memory impairment induced by MSD, and these beneficial effects were related to improvement in inflammation and synaptic dysfunction.


Asunto(s)
Hipocampo , Melatonina , Trastornos de la Memoria , Plasticidad Neuronal , Privación de Sueño , Animales , Melatonina/farmacología , Melatonina/administración & dosificación , Privación de Sueño/complicaciones , Privación de Sueño/tratamiento farmacológico , Privación de Sueño/fisiopatología , Ratones , Masculino , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Femenino , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Trastornos de la Memoria/fisiopatología , Plasticidad Neuronal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Embarazo , Privación Materna , Disfunción Cognitiva/etiología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/fisiopatología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico
3.
Function (Oxf) ; 5(3): zqae005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706964

RESUMEN

Exercise promotes brain plasticity partly by stimulating increases in mature brain-derived neurotrophic factor (mBDNF), but the role of the pro-BDNF isoform in the regulation of BDNF metabolism in humans is unknown. We quantified the expression of pro-BDNF and mBDNF in human skeletal muscle and plasma at rest, after acute exercise (+/- lactate infusion), and after fasting. Pro-BDNF and mBDNF were analyzed with immunoblotting, enzyme-linked immunosorbent assay, immunohistochemistry, and quantitative polymerase chain reaction. Pro-BDNF was consistently and clearly detected in skeletal muscle (40-250 pg mg-1 dry muscle), whereas mBDNF was not. All methods showed a 4-fold greater pro-BDNF expression in type I muscle fibers compared to type II fibers. Exercise resulted in elevated plasma levels of mBDNF (55%) and pro-BDNF (20%), as well as muscle levels of pro-BDNF (∼10%, all P < 0.05). Lactate infusion during exercise induced a significantly greater increase in plasma mBDNF (115%, P < 0.05) compared to control (saline infusion), with no effect on pro-BDNF levels in plasma or muscle. A 3-day fast resulted in a small increase in plasma pro-BDNF (∼10%, P < 0.05), with no effect on mBDNF. Pro-BDNF is highly expressed in human skeletal muscle, particularly in type I fibers, and is increased after exercise. While exercising with higher lactate augmented levels of plasma mBDNF, exercise-mediated increases in circulating mBDNF likely derive partly from release and cleavage of pro-BDNF from skeletal muscle, and partly from neural and other tissues. These findings have implications for preclinical and clinical work related to a wide range of neurological disorders such as Alzheimer's, clinical depression, and amyotrophic lateral sclerosis.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Ejercicio Físico , Músculo Esquelético , Plasticidad Neuronal , Humanos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/sangre , Ejercicio Físico/fisiología , Músculo Esquelético/metabolismo , Plasticidad Neuronal/fisiología , Masculino , Adulto , Ácido Láctico/sangre , Ácido Láctico/metabolismo , Precursores de Proteínas/metabolismo , Adulto Joven , Femenino
4.
J Biomed Sci ; 31(1): 46, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725007

RESUMEN

BACKGROUND: Cathepsin S (CTSS) is a cysteine protease that played diverse roles in immunity, tumor metastasis, aging and other pathological alterations. At the cellular level, increased CTSS levels have been associated with the secretion of pro-inflammatory cytokines and disrupted the homeostasis of Ca2+ flux. Once CTSS was suppressed, elevated levels of anti-inflammatory cytokines and changes of Ca2+ influx were observed. These findings have inspired us to explore the potential role of CTSS on cognitive functions. METHODS: We conducted classic Y-maze and Barnes Maze tests to assess the spatial and working memory of Ctss-/- mice, Ctss+/+ mice and Ctss+/+ mice injected with the CTSS inhibitor (RJW-58). Ex vivo analyses including long-term potentiation (LTP), Golgi staining, immunofluorescence staining of sectioned whole brain tissues obtained from experimental animals were conducted. Furthermore, molecular studies were carried out using cultured HT-22 cell line and primary cortical neurons that treated with RJW-58 to comprehensively assess the gene and protein expressions. RESULTS: Our findings reported that targeting cathepsin S (CTSS) yields improvements in cognitive function, enhancing both working and spatial memory in behavior models. Ex vivo studies showed elevated levels of long-term potentiation levels and increased synaptic complexity. Microarray analysis demonstrated that brain-derived neurotrophic factor (BDNF) was upregulated when CTSS was knocked down by using siRNA. Moreover, the pharmacological blockade of the CTSS enzymatic activity promoted BDNF expression in a dose- and time-dependent manner. Notably, the inhibition of CTSS was associated with increased neurogenesis in the murine dentate gyrus. These results suggested a promising role of CTSS modulation in cognitive enhancement and neurogenesis. CONCLUSION: Our findings suggest a critical role of CTSS in the regulation of cognitive function by modulating the Ca2+ influx, leading to enhanced activation of the BDNF/TrkB axis. Our study may provide a novel strategy for improving cognitive function by targeting CTSS.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Catepsinas , Cognición , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Ratones , Catepsinas/metabolismo , Catepsinas/genética , Cognición/fisiología , Receptor trkB/metabolismo , Receptor trkB/genética , Masculino , Ratones Noqueados
5.
J Agric Food Chem ; 72(20): 11515-11530, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38726599

RESUMEN

Chronic stress is a major inducer of anxiety and insomnia. Milk casein has been studied for its stress-relieving effects. We previously prepared a casein hydrolysate (CP) rich in the sleep-enhancing peptide YPVEPF, and this study aims to systemically investigate the different protective effects of CP and casein on dysfunction and anxiety/insomnia behavior and its underlying mechanisms in chronically stressed mice. Behavioral results showed that CP ameliorated stress-induced insomnia and anxiety more effectively than milk casein, and this difference in amelioration was highly correlated with an increase in GABA, 5-HT, GABAA, 5-HT1A receptors, and BDNF and a decrease in IL-6 and NMDA receptors in stressed mice. Furthermore, CP restored these dysfunctions in the brain and colon by activating the HPA response, modulating the ERK/CREB-BDNF-TrκB signaling pathway, and alleviating inflammation. The abundant YPVEPF (1.20 ± 0.04%) and Tyr-based/Trp-containing peptides of CP may be the key reasons for its different effects compared to casein. Thus, this work revealed the main active structures of CP and provided a novel dietary intervention strategy for the prevention and treatment of chronic-stress-induced dysfunction and anxiety/insomnia behaviors.


Asunto(s)
Ansiedad , Encéfalo , Caseínas , Trastornos del Inicio y del Mantenimiento del Sueño , Animales , Caseínas/química , Caseínas/administración & dosificación , Ratones , Ansiedad/prevención & control , Masculino , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Trastornos del Inicio y del Mantenimiento del Sueño/fisiopatología , Trastornos del Inicio y del Mantenimiento del Sueño/prevención & control , Humanos , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Estrés Psicológico , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/farmacología , Sustancias Protectoras/química
6.
Bull Exp Biol Med ; 176(5): 666-671, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38727956

RESUMEN

This paper shows for the first time that co-transplantation of human olfactory ensheathing cells with neurotrophin-3 into spinal cord cysts is more effective for activation of remyelination than transplantation of cells with brain-derived neurotrophic factor and a combination of these two factors. The studied neurotrophic factors do not affect proliferation and migration of ensheathing cells in vitro. It can be concluded that the maximum improvement of motor function in rats receiving ensheathing cells with neurotrophin-3 is largely determined by activation of remyelination.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Neurotrofina 3 , Bulbo Olfatorio , Remielinización , Animales , Ratas , Neurotrofina 3/metabolismo , Humanos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Remielinización/fisiología , Bulbo Olfatorio/citología , Proliferación Celular , Médula Espinal/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/fisiología , Células Cultivadas , Movimiento Celular , Quistes/patología , Femenino , Quistes del Sistema Nervioso Central/cirugía , Quistes del Sistema Nervioso Central/patología
7.
Toxicol Appl Pharmacol ; 486: 116951, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38705401

RESUMEN

Cardiac lipotoxicity is a prevalent consequence of lipid metabolism disorders occurring in cardiomyocytes, which in turn precipitates the onset of heart failure. Mimetics of brain-derived neurotrophic factor (BDNF), such as 7,8-dihydroxyflavone (DHF) and 7,8,3'-trihydroxyflavone (THF), have demonstrated significant cardioprotective effects. However, it remains unclear whether these mimetics can protect cardiomyocytes against lipotoxicity. The aim of this study was to examine the impact of DHF and THF on the lipotoxic effects induced by palmitic acid (PA), as well as the concurrent mitochondrial dysfunction. H9c2 cells were subjected to treatment with PA alone or in conjunction with DHF or THF. Various factors such as cell viability, lactate dehydrogenase (LDH) release, death ratio, and mitochondrial function including mitochondrial membrane potential (MMP), mitochondrial-derived reactive oxygen species (mito-SOX) production, and mitochondrial respiration were assessed. PA dose-dependently reduced cell viability, which was restored by DHF or THF. Additionally, both DHF and THF decreased LDH content, death ratio, and mito-SOX production, while increasing MMP and regulating mitochondrial oxidative phosphorylation in cardiomyocytes. Moreover, DHF and THF specifically activated Akt signaling. The protective effects of DHF and THF were abolished when an Akt inhibitor was used. In conclusion, BDNF mimetics attenuate PA-induced injury in cardiomyocytes by alleviating mitochondrial impairments through the activation of Akt signaling.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Flavonas , Potencial de la Membrana Mitocondrial , Miocitos Cardíacos , Ácido Palmítico , Proteínas Proto-Oncogénicas c-akt , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ácido Palmítico/toxicidad , Ácido Palmítico/farmacología , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratas , Línea Celular , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Flavonas/farmacología , Supervivencia Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
8.
Food Funct ; 15(10): 5579-5595, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38713055

RESUMEN

Attention-deficit/hyperactivity disorder (ADHD) is a developmental disorder and dopaminergic dysfunction in the prefrontal cortex (PFC) may play a role. Our previous research indicated that theobromine (TB), a methylxanthine, enhances cognitive function in rodents via the PFC. This study investigates TB's effects on hyperactivity and cognitive function in stroke-prone spontaneously hypertensive rats (SHR), an ADHD animal model. Male SHRs (6-week old) received a diet containing 0.05% TB for 40 days, while control rats received normal diets. Age-matched male Wistar-Kyoto rats (WKY) served as genetic controls. During the TB administration period, we conducted open-field tests and Y-maze tasks to evaluate hyperactivity and cognitive function, then assessed dopamine concentrations and tyrosine hydroxylase (TH), dopamine receptor D1-5 (DRD1-5), dopamine transporter (DAT), vesicular monoamine transporter-2 (VMAT-2), synaptosome-associated protein-25 (SNAP-25), and brain-derived neurotrophic factor (BDNF) expressions in the PFC. Additionally, the binding affinity of TB for the adenosine receptors (ARs) was evaluated. Compared to WKY, SHR exhibited hyperactivity, inattention and working memory deficits. However, chronic TB administration significantly improved these ADHD-like behaviors in SHR. TB administration also normalized dopamine concentrations and expression levels of TH, DRD2, DRD4, SNAP-25, and BDNF in the PFC of SHR. No changes were observed in DRD1, DRD3, DRD5, DAT, and VMAT-2 expression between SHR and WKY rats, and TB intake had minimal effects. TB was found to have affinity binding to ARs. These results indicate that long-term TB supplementation mitigates hyperactivity, inattention and cognitive deficits in SHR by modulating dopaminergic nervous function and BDNF levels in the PFC, representing a potential adjunctive treatment for ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Dopamina , Memoria a Corto Plazo , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Teobromina , Animales , Masculino , Ratas , Teobromina/farmacología , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Memoria a Corto Plazo/efectos de los fármacos , Dopamina/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Lóbulo Frontal/metabolismo , Lóbulo Frontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/genética , Modelos Animales de Enfermedad , Proteína 25 Asociada a Sinaptosomas/metabolismo
9.
J Cell Mol Med ; 28(10): e18368, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38752280

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder of the brain and is manifested by motor and non-motor symptoms because of degenerative changes in dopaminergic neurons of the substantia nigra. PD neuropathology is associated with mitochondrial dysfunction, oxidative damage and apoptosis. Thus, the modulation of mitochondrial dysfunction, oxidative damage and apoptosis by growth factors could be a novel boulevard in the management of PD. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase type B (TrkB) are chiefly involved in PD neuropathology. BDNF promotes the survival of dopaminergic neurons in the substantia nigra and enhances the functional activity of striatal neurons. Deficiency of the TrkB receptor triggers degeneration of dopaminergic neurons and accumulation of α-Syn in the substantia nigra. As well, BDNF/TrkB signalling is reduced in the early phase of PD neuropathology. Targeting of BDNF/TrkB signalling by specific activators may attenuate PD neuropathology. Thus, this review aimed to discuss the potential role of BDNF/TrkB activators against PD. In conclusion, BDNF/TrkB signalling is decreased in PD and linked with disease severity and long-term complications. Activation of BDNF/TrkB by specific activators may attenuate PD neuropathology.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Enfermedad de Parkinson , Receptor trkB , Transducción de Señal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Receptor trkB/metabolismo , Animales , Glicoproteínas de Membrana/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología
10.
Transl Psychiatry ; 14(1): 193, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632257

RESUMEN

Autism Spectrum Disorders (ASD) are principally diagnosed by three core behavioural symptoms, such as stereotyped repertoire, communication impairments and social dysfunctions. This complex pathology has been linked to abnormalities of corticostriatal and limbic circuits. Despite experimental efforts in elucidating the molecular mechanisms behind these abnormalities, a clear etiopathogenic hypothesis is still lacking. To this aim, preclinical studies can be really helpful to longitudinally study behavioural alterations resembling human symptoms and to investigate the underlying neurobiological correlates. In this regard, the BTBR T+ Itpr3tf/J (BTBR) mice are an inbred mouse strain that exhibits a pattern of behaviours well resembling human ASD-like behavioural features. In this study, the BTBR mice model was used to investigate neurochemical and biomolecular alterations, regarding Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF), together with GABAergic, glutamatergic, cholinergic, dopaminergic and noradrenergic neurotransmissions and their metabolites in four different brain areas, i.e. prefrontal cortex, hippocampus, amygdala and hypothalamus. In our results, BTBR strain reported decreased noradrenaline, acetylcholine and GABA levels in prefrontal cortex, while hippocampal measurements showed reduced NGF and BDNF expression levels, together with GABA levels. Concerning hypothalamus, no differences were retrieved. As regarding amygdala, we found reduced dopamine levels, accompanied by increased dopamine metabolites in BTBR mice, together with decreased acetylcholine, NGF and GABA levels and enhanced glutamate content. Taken together, our data showed that the BTBR ASD model, beyond its face validity, is a useful tool to untangle neurotransmission alterations that could be underpinned to the heterogeneous ASD-like behaviours, highlighting the crucial role played by amygdala.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ratones , Animales , Humanos , Trastorno Autístico/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Acetilcolina , Dopamina , Factor de Crecimiento Nervioso/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos , Transmisión Sináptica/fisiología , Trastorno del Espectro Autista/metabolismo , Amígdala del Cerebelo/metabolismo , Ácido gamma-Aminobutírico , Modelos Animales de Enfermedad
11.
Behav Brain Res ; 466: 114995, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38599251

RESUMEN

Neurodegenerative disorders have a pathophysiology that heavily involves neuroinflammation. In this study, we used lipopolysaccharide (LPS) to create a model of cognitive impairment by inducing systemic and neuroinflammation in experimental animals. LPS was injected intraperitoneally at a dose of 0.5 mg/kg during the last seven days of the study. Adalimumab (ADA), a TNF-α inhibitor, was injected at a dose of 10 mg/kg a total of 3 times throughout the study. On the last two days of the experiment, 50 mg/kg of curcumin was administered orally as a positive control group. Open field (OF) and elevated plus maze tests (EPM) were used to measure anxiety-like behaviors. The tail suspension test (TST) was used to measure depression-like behaviors, while the novel object recognition test (NOR) was used to measure learning and memory activities. Blood and hippocampal TNF α and nitric oxide (NO) levels, hippocampal BDNF, CREB, and ACh levels, and AChE activity were measured by ELISA. LPS increased anxiety and depression-like behaviors while decreasing the activity of the learning-memory system. LPS exerted this effect by causing systemic and neuroinflammation, cholinergic dysfunction, and impaired BDNF release. ADA controlled LPS-induced behavioral changes and improved biochemical markers. ADA prevented cognitive impairment induced by LPS by inhibiting inflammation and regulating the release of BDNF and the cholinergic pathway.


Asunto(s)
Acetilcolina , Factor Neurotrófico Derivado del Encéfalo , Disfunción Cognitiva , Enfermedades Neuroinflamatorias , Óxido Nítrico , Sepsis , Factor de Necrosis Tumoral alfa , Animales , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Ratones , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Óxido Nítrico/metabolismo , Masculino , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/metabolismo , Acetilcolina/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Sepsis/tratamiento farmacológico , Lipopolisacáridos/farmacología , Adalimumab/farmacología , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Modelos Animales de Enfermedad , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Ansiedad/etiología , Homeostasis/efectos de los fármacos , Depresión/metabolismo , Depresión/tratamiento farmacológico , Depresión/etiología , Conducta Animal/efectos de los fármacos , Inhibidores del Factor de Necrosis Tumoral/farmacología
12.
Neurobiol Dis ; 195: 106502, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608784

RESUMEN

Synaptic changes are early manifestations of neuronal dysfunction in Huntington's disease (HD). However, the mechanisms by which mutant HTT protein impacts synaptogenesis and function are not well understood. Herein we explored HD pathogenesis in the BACHD mouse model by examining synaptogenesis and function in long term primary cortical cultures. At DIV14 (days in vitro), BACHD cortical neurons showed no difference from WT neurons in synaptogenesis as revealed by colocalization of a pre-synaptic (Synapsin I) and a post-synaptic (PSD95) marker. From DIV21 to DIV35, BACHD neurons showed progressively reduced colocalization of Synapsin I and PSD95 relative to WT neurons. The deficits were effectively rescued by treatment of BACHD neurons with BDNF. The recombinant apical domain of CCT1 (ApiCCT1) yielded a partial rescuing effect. BACHD neurons also showed culture age-related significant functional deficits as revealed by multielectrode arrays (MEAs). These deficits were prevented by BDNF, whereas ApiCCT1 showed a less potent effect. These findings are evidence that deficits in BACHD synapse and function can be replicated in vitro and that BDNF or a TRiC-inspired reagent can potentially be protective against these changes in BACHD neurons. Our findings support the use of cellular models to further explicate HD pathogenesis and potential treatments.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Corteza Cerebral , Modelos Animales de Enfermedad , Enfermedad de Huntington , Neuronas , Sinapsis , Animales , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Sinapsis/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Ratones , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Ratones Transgénicos , Células Cultivadas , Sinapsinas/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ratones Endogámicos C57BL
13.
Acta Neurobiol Exp (Wars) ; 84(1): 98-110, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38587319

RESUMEN

Neuroinflammation is a process associated with degeneration and loss of neurons in different parts of the brain. The most important damage mechanisms in its formation are oxidative stress and inflammation. This study aimed to investigate the protective effects of cannabidiol (CBD) against neuroinflammation through various mechanisms. Thirty­two female rats were randomly divided into 4 groups as control, lipopolysaccharide (LPS), LPS + CBD and CBD groups. After six hours following LPS administration, rats were sacrificed, brain and cerebellum tissues were obtained. Tissues were stained with hematoxylin­eosin for histopathological analysis. Apelin and tyrosine hydroxylase synthesis were determined immunohistochemically. Total oxidant status and total antioxidant status levels were measured, and an oxidative stress index was calculated. Protein kinase B (AKT), brain-derived neurotrophic factor (BDNF), cyclic­AMP response element­binding protein (CREB) and nuclear factor erythroid 2­related factor 2 (NRF2) mRNA expression levels were also determined. In the LPS group, hyperemia, degeneration, loss of neurons and gliosis were seen in all three tissues. Additionally, Purkinje cell loss in the cerebellum, as well as neuronal loss in the cerebral cortex and hippocampus, were found throughout the LPS group. The expressions of AKT, BDNF, CREB and NRF2, apelin and tyrosine hydroxylase synthesis all decreased significantly. CBD treatment reversed these changes and ameliorated oxidative stress parameters. CBD showed protective effects against neuroinflammation via regulating AKT, CREB, BDNF expressions, NRF2 signaling, apelin and tyrosine hydroxylase synthesis.


Asunto(s)
Cannabidiol , Fármacos Neuroprotectores , Femenino , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Cannabidiol/farmacología , Cannabidiol/metabolismo , Fármacos Neuroprotectores/farmacología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Dopamina/farmacología , Apelina/metabolismo , Apelina/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedades Neuroinflamatorias , Lipopolisacáridos/toxicidad , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/farmacología , Hipocampo/metabolismo , Expresión Génica
14.
Cell Commun Signal ; 22(1): 216, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570868

RESUMEN

BACKGROUND: Radiation-induced brain injury (RIBI) is a common and severe complication during radiotherapy for head and neck tumor. Repetitive transcranial magnetic stimulation (rTMS) is a novel and non-invasive method of brain stimulation, which has been applied in various neurological diseases. rTMS has been proved to be effective for treatment of RIBI, while its mechanisms have not been well understood. METHODS: RIBI mouse model was established by cranial irradiation, K252a was daily injected intraperitoneally to block BDNF pathway. Immunofluorescence staining, immunohistochemistry and western blotting were performed to examine the microglial pyroptosis and hippocampal neurogenesis. Behavioral tests were used to assess the cognitive function and emotionality of mice. Golgi staining was applied to observe the structure of dendritic spine in hippocampus. RESULTS: rTMS significantly promoted hippocampal neurogenesis and mitigated neuroinflammation, with ameliorating pyroptosis in microglia, as well as downregulation of the protein expression level of NLRP3 inflammasome and key pyroptosis factor Gasdermin D (GSDMD). BDNF signaling pathway might be involved in it. After blocking BDNF pathway by K252a, a specific BDNF pathway inhibitor, the neuroprotective effect of rTMS was markedly reversed. Evaluated by behavioral tests, the cognitive dysfunction and anxiety-like behavior were found aggravated with the comparison of mice in rTMS intervention group. Moreover, the level of hippocampal neurogenesis was found to be attenuated, the pyroptosis of microglia as well as the levels of GSDMD, NLRP3 inflammasome and IL-1ß were upregulated. CONCLUSION: Our study indicated that rTMS notably ameliorated RIBI-induced cognitive disorders, by mitigating pyroptosis in microglia and promoting hippocampal neurogenesis via mediating BDNF pathway.


Asunto(s)
Lesiones Encefálicas , Disfunción Cognitiva , Ratones , Animales , Estimulación Magnética Transcraneal/efectos adversos , Estimulación Magnética Transcraneal/métodos , Proteína con Dominio Pirina 3 de la Familia NLR , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Microglía/metabolismo , Piroptosis , Inflamasomas/metabolismo , Encéfalo/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Cognición , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/patología , Neurogénesis/efectos de la radiación
15.
J Affect Disord ; 355: 478-486, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574868

RESUMEN

BACKGROUND: Sleep disturbances are not only frequent symptoms, but also risk factors for major depressive disorder. We previously reported that depressed patients who experienced "Hypersomnia" showed a higher and more rapid response rate under paroxetine treatment, but the underlying mechanism remains unclear. The present study was conducted to clarify the beneficial effects of sleep rebound through an experimental "Hypersomnia" rat model on glucocorticoid and hippocampal neuroplasticity associated with antidepressive potency. METHODS: Thirty-four male Sprague-Dawley rats were subjected to sham treatment, 72-h sleep deprivation, or sleep deprivation and subsequent follow-up for one week. Approximately half of the animals were sacrificed to evaluate adrenal weight, plasma corticosterone level, hippocampal content of mRNA isoforms, and protein of the brain-derived neurotrophic factor (Bdnf) gene. In the other half of the rats, Ki-67- and doublecortin (DCX)-positive cells in the hippocampus were counted via immunostaining to quantify adult neurogenesis. RESULTS: Prolonged sleep deprivation led to adrenal hypertrophy and an increase in the plasma corticosterone level, which had returned to normal after one week follow-up. Of note, sleep deprivation-induced decreases in hippocampal Bdnf transcripts containing exons II, IV, VI, and IX and BDNF protein levels, Ki-67-(+)-proliferating cells, and DCX-(+)-newly-born neurons were not merely reversed, but overshot their normal levels with sleep rebound. LIMITATIONS: The present study did not record electroencephalogram or assess behavioral changes of the sleep-deprived rats. CONCLUSIONS: The present study demonstrated that prolonged sleep deprivation-induced adversities are reversed or recovered by sleep rebound, which supports "Hypersomnia" in depressed patients as having a beneficial pharmacological effect.


Asunto(s)
Trastorno Depresivo Mayor , Privación de Sueño , Humanos , Ratas , Masculino , Animales , Privación de Sueño/metabolismo , Ratas Sprague-Dawley , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Trastorno Depresivo Mayor/metabolismo , Corticosterona , Antígeno Ki-67/metabolismo , Hipocampo/metabolismo
16.
Eur Rev Med Pharmacol Sci ; 28(7): 2654-2661, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38639504

RESUMEN

OBJECTIVE: This study aimed to explore the effect of flipped venous catheters combined with spinal cord electrical stimulation on functional recovery in patients with sciatic nerve injury. PATIENTS AND METHODS: 160 patients with hip dislocation and sciatic nerve injury were divided into conventional release and flipped catheter + electrical stimulation groups according to the treatment methods (n=80). Motor nerve conduction velocity (MCV) and lower limb motor function were compared. Serum neurotrophic factors brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were compared. The frequency of complications and quality of life were also compared. RESULTS: The MCV levels of the common peroneal nerve and tibial nerve in the flipped catheter + electrical stimulation group were greater than the conventional lysis group (p<0.05). After treatment, the lower extremity motor score (LMEs) in the flipped catheter + electrical stimulation group was greater than the conventional lysis group (p<0.05). The serum levels of BDNF and NGF in the flip catheter + electrical stimulation group were higher than the conventional lysis group (p<0.05). The complication rate in the flipped catheter + electrical stimulation group was lower than in the conventional release group (6.25% vs. 16.25%, p<0.05). The quality-of-life score in the flip catheter + electrical stimulation group was greater than the conventional lysis group (p<0.05). CONCLUSIONS: The flipped venous catheter combined with spinal cord electrical stimulation can improve nerve conduction velocity, lower limb motor function, serum BDNF and NGF levels, reduce complications, and help improve the quality of life of sufferers with sciatic nerve injury. Chictr.org.cn ID: ChiCTR2400080984.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Neuropatía Ciática , Ratas , Animales , Humanos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratas Sprague-Dawley , Factor de Crecimiento Nervioso/metabolismo , Calidad de Vida , Neuropatía Ciática/metabolismo , Neuropatía Ciática/terapia , Médula Espinal/metabolismo , Nervio Ciático , Catéteres , Estimulación Eléctrica/métodos
17.
Front Endocrinol (Lausanne) ; 15: 1362573, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645426

RESUMEN

Brain-derived neurotrophic factor (BDNF), a key neurotrophin within the brain, by selectively activating the TrkB receptor, exerts multimodal effects on neurodevelopment, synaptic plasticity, cellular integrity and neural network dynamics. In parallel, glucocorticoids (GCs), vital steroid hormones, which are secreted by adrenal glands and rapidly diffused across the mammalian body (including the brain), activate two different groups of intracellular receptors, the mineralocorticoid and the glucocorticoid receptors, modulating a wide range of genomic, epigenomic and postgenomic events, also expressed in the neural tissue and implicated in neurodevelopment, synaptic plasticity, cellular homeostasis, cognitive and emotional processing. Recent research evidences indicate that these two major regulatory systems interact at various levels: they share common intracellular downstream pathways, GCs differentially regulate BDNF expression, under certain conditions BDNF antagonises the GC-induced effects on long-term potentiation, neuritic outgrowth and cellular death, while GCs regulate the intraneuronal transportation and the lysosomal degradation of BDNF. Currently, the BDNF-GC crosstalk features have been mainly studied in neurons, although initial findings show that this crosstalk could be equally important for other brain cell types, such as astrocytes. Elucidating the precise neurobiological significance of BDNF-GC interactions in a tempospatial manner, is crucial for understanding the subtleties of brain function and dysfunction, with implications for neurodegenerative and neuroinflammatory diseases, mood disorders and cognitive enhancement strategies.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Glucocorticoides , Humanos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/fisiología , Glucocorticoides/metabolismo , Animales , Encéfalo/metabolismo , Plasticidad Neuronal/fisiología , Receptores de Glucocorticoides/metabolismo , Transducción de Señal , Neuronas/metabolismo
18.
Ecotoxicol Environ Saf ; 276: 116294, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574646

RESUMEN

Particulate matter (PM), released into the air by a variety of natural and human activities, is a key indicator of air pollution. Although PM is known as the extensive health hazard to affect a variety of illness, few studies have specifically investigated the effects of PM10 exposure on schizophrenic development. In the present study, we aimed to investigate the impact of PM10 on MK-801, N-methyl-D-aspartate (NMDA) receptor antagonist, induced schizophrenia-like behaviors in C57BL/6 mouse. Preadolescent mice were exposed PM10 to 3.2 mg/m3 concentration for 4 h/day for 2 weeks through a compartmentalized whole-body inhalation chamber. After PM10 exposure, we conducted behavioral tests during adolescence and adulthood to investigate longitudinal development of schizophrenia. We found that PM10 exacerbated schizophrenia-like behavior, such as psychomotor agitation, social interaction deficits and cognitive deficits at adulthood in MK-801-induced schizophrenia animal model. Furthermore, the reduced expression levels of brain-derived neurotrophic factor (BDNF) and the phosphorylation of BDNF related signaling molecules, extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB), were exacerbated by PM10 exposure in the adult hippocampus of MK-801-treated mice. Thus, our present study demonstrates that exposure to PM10 in preadolescence exacerbates the cognitive impairment in animal model of schizophrenia, which are considered to be facilitated by the decreased level of BDNF through reduced ERK-CREB expression.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Maleato de Dizocilpina , Ratones Endogámicos C57BL , Material Particulado , Esquizofrenia , Transducción de Señal , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Esquizofrenia/inducido químicamente , Material Particulado/toxicidad , Maleato de Dizocilpina/farmacología , Ratones , Masculino , Transducción de Señal/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Contaminantes Atmosféricos/toxicidad , Conducta Animal/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo
19.
Biomolecules ; 14(4)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38672461

RESUMEN

Brain-derived neurotrophic factor (BDNF) is a growth factor that promotes the survival and growth of developing neurons. It also enhances circuit formation to synaptic transmission for mature neurons in the brain. However, reduced BDNF expression and single nucleotide polymorphisms (SNP) are reported to be associated with functional deficit and disease development in the brain, suggesting that BDNF is a crucial molecule for brain health. Interestingly, BDNF is also expressed in the hypothalamus in appetite and energy metabolism. Previous reports demonstrated that BDNF knockout mice exhibited overeating and obesity phenotypes remarkably. Therefore, we could raise a hypothesis that the loss of function of BDNF may be associated with metabolic syndrome and peripheral diseases. In this review, we describe our recent finding that BDNF knockout mice develop metabolic dysfunction-associated steatohepatitis and recent reports demonstrating the role of one of the BDNF receptors, TrkB-T1, in some peripheral organ functions and diseases, and would provide an insight into the role of BDNF beyond the brain.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Animales , Humanos , Receptor trkB/metabolismo , Receptor trkB/genética , Ratones , Ratones Noqueados , Metabolismo Energético/genética , Obesidad/metabolismo , Obesidad/genética , Polimorfismo de Nucleótido Simple
20.
Artículo en Ruso | MEDLINE | ID: mdl-38676673

RESUMEN

The review presents an analysis of experimental data on the study of neurobiological effects of ginkgolide B, which may find application in the therapy of Alzheimer's disease (AD). Ginkgolide B is a diterpene trilactone isolated from the leaves of the relict woody plant Ginkgo biloba L., which has been used for thousands of years in traditional Chinese medicine as a neuroprotective agent. In recent years, this compound has attracted attention because of its wide range of neurobiological effects. The neuroprotective effect of ginkgolide B on brain neurons when exposed to various neurotoxins has been established. This compound has also been shown to effectively protect neurons from the effects of beta-amyloid. Studies have revealed the ability of ginkgolide B to reduce microglia activity and regulate neurotransmitter release. In vivo experiments have shown that this substance significantly increases the expression of brain-derived neurotrophic factor (BDNF) and improves cognitive functions, including memory and learning. It is concluded that ginkgolide B, apparently, may find application in the future as a multi-targeted agent of complex therapy of AD.


Asunto(s)
Enfermedad de Alzheimer , Factor Neurotrófico Derivado del Encéfalo , Ginkgo biloba , Ginkgólidos , Lactonas , Fármacos Neuroprotectores , Ginkgólidos/farmacología , Ginkgólidos/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Lactonas/uso terapéutico , Lactonas/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Animales , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Memoria/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA