Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Membr Biol ; 255(6): 733-737, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36098799

RESUMEN

Blood coagulation is an intricate process, and it requires precise control of the activities of pro- and anticoagulant factors and sensitive signaling systems to monitor and respond to blood vessel insults. These requirements are fulfilled by phosphatidylserine, a relatively miniscule-sized lipid molecule amid the myriad of large coagulation proteins. This review limelight the role of platelet membrane phosphatidylserine (PS) in regulating a key enzymatic reaction of blood coagulation; conversion of factor X to factor Xa by the enzyme factor IXa and its cofactor factor VIIIa. PS is normally located on the inner leaflet of the resting platelet membrane but appears on the outer leaflet surface of the membrane surface after an injury happens. Human platelet activation leads to exposure of buried PS molecules on the surface of the platelet-derived membranes and the exposed PS binds to discrete and specific sites on factors IXa and VIIIa. PS binding to these sites allosterically regulates both factors IXa and VIIIa. The exposure of PS and its binding to factors IXa/VIIIa is a vital step during clotting. Insufficient exposure or a defective binding of PS to these clotting proteins is responsible for various hematologic diseases which are discussed in this review.


Asunto(s)
Factor IXa , Factor VIIIa , Humanos , Factor VIIIa/química , Factor VIIIa/metabolismo , Factor IXa/química , Factor IXa/metabolismo , Fosfatidilserinas/química , Factor X/metabolismo , Factor Xa/metabolismo , Cinética , Sitios de Unión
2.
Blood Adv ; 6(11): 3240-3254, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35255502

RESUMEN

The intrinsic tenase (Xase) complex, formed by factors (f) VIIIa and fIXa, forms on activated platelet surfaces and catalyzes the activation of factor X to Xa, stimulating thrombin production in the blood coagulation cascade. The structural organization of the membrane-bound Xase complex remains largely unknown, hindering our understanding of the structural underpinnings that guide Xase complex assembly. Here, we aimed to characterize the Xase complex bound to a lipid nanodisc with biolayer interferometry (BLI), Michaelis-Menten kinetics, and small-angle X-ray scattering (SAXS). Using immobilized lipid nanodiscs, we measured binding rates and nanomolar affinities for fVIIIa, fIXa, and the Xase complex. Enzyme kinetic measurements demonstrated the assembly of an active enzyme complex in the presence of lipid nanodiscs. An ab initio molecular envelope of the nanodisc-bound Xase complex allowed us to computationally model fVIIIa and fIXa docked onto a flexible lipid membrane and identify protein-protein interactions. Our results highlight multiple points of contact between fVIIIa and fIXa, including a novel interaction with fIXa at the fVIIIa A1-A3 domain interface. Lastly, we identified hemophilia A/B-related mutations with varying severities at the fVIIIa/fIXa interface that may regulate Xase complex assembly. Together, our results support the use of SAXS as an emergent tool to investigate the membrane-bound Xase complex and illustrate how mutations at the fVIIIa/fIXa dimer interface may disrupt or stabilize the activated enzyme complex.


Asunto(s)
Factor IXa , Factor VIIIa/metabolismo , Lípidos , Cisteína Endopeptidasas , Factor IXa/química , Factor IXa/genética , Factor IXa/metabolismo , Proteínas de Neoplasias , Dispersión del Ángulo Pequeño , Difracción de Rayos X
3.
Thromb Haemost ; 121(10): 1274-1288, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33592631

RESUMEN

Factor VIII (FVIII) is activated by thrombin-catalyzed cleavage at Arg372, Arg740, and Arg1689. Our previous studies suggested that thrombin interacted with the FVIII C2 domain specific for cleavage at Arg1689. An alternative report demonstrated, however, that a recombinant (r)FVIII mutant lacking the C2 domain retained >50% cofactor activity, indicating the presence of other thrombin-interactive site(s) associated with cleavage at Arg1689. We have focused, therefore, on the A3 acidic region of FVIII, similar to the hirugen sequence specific for thrombin interaction (54-65 residues). Two synthetic peptides, spanning residues 1659-1669 with sulfated Tyr1664 and residues 1675-1685 with sulfated Try1680, inhibited thrombin-catalyzed FVIII activation and cleavage at Arg1689. Treatment with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide to cross-link thrombin with either peptide showed possible contributions of both 1664-1666 and 1683-1684 residues for thrombin interaction. Thrombin-catalyzed activation and cleavage at Arg1689 in the alanine-substituted rFVIII mutants within 1663-1666 residues were similar to those of wild type (WT). Similar studies of 1680-1684 residues, however, demonstrated that activation and cleavage by thrombin of the FVIII mutant with Y1680A or D1683A/E1684A, in particular, were severely or moderately reduced to 20 to 30% or 60 to 70% of WT, respectively. Surface plasmon resonance-based analysis revealed that thrombin interacted with both Y1680A and D1683A/E1684A mutants with approximately sixfold weaker affinities of WT. Cleavage at Arg1689 in the isolated light-chain fragments from both mutants was similarly depressed, independently of the heavy-chain subunit. In conclusion, the 1680-1684 residues containing sulfated Tyr1680 in the A3 acidic region also contribute to a thrombin-interactive site responsible for FVIII activation through cleavage at Arg1689.


Asunto(s)
Factor VIII/metabolismo , Trombina/metabolismo , Arginina , Línea Celular , Factor VIII/química , Factor VIII/genética , Factor VIIIa/metabolismo , Humanos , Cinética , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Proteínas Recombinantes/metabolismo , Trombina/química
4.
J Biol Chem ; 295(45): 15198-15207, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32859749

RESUMEN

Factor X activation by the intrinsic Xase complex, composed of factor IXa bound to factor VIIIa on membranes, is essential for the amplified blood coagulation response. The biological significance of this step is evident from bleeding arising from deficiencies in factors VIIIa or IXa in hemophilia. Here, we assess the mechanism(s) that enforce the distinctive specificity of intrinsic Xase for its biological substrate. Active-site function of IXa was assessed with a tripeptidyl substrate (PF-3688). The reversible S1 site binder, 4-aminobenzamidine (pAB), acted as a classical competitive inhibitor of PF-3688 cleavage by Xase. In contrast, pAB acted as a noncompetitive inhibitor of factor X activation. This disconnect between peptidyl substrate and protein substrate cleavage indicates a major role for interactions between factor X and extended sites on Xase in determining substrate affinity. Accordingly, an uncleavable factor X variant, not predicted to engage the active site of IXa within Xase, acted as a classical competitive inhibitor of factor X activation. Fluorescence studies confirmed the binding of factor X to Xase assembled with IXa with a covalently blocked active site. Our findings suggest that the recognition of factor X by the intrinsic Xase complex occurs through a multistep "dock-and-lock" pathway in which the initial interaction between factor X and intrinsic Xase occurs at exosites distant from the active site, followed by active-site docking and bond cleavage.


Asunto(s)
Factor IXa/metabolismo , Factor VIIIa/metabolismo , Factor X/metabolismo , Sitios de Unión , Humanos , Cinética , Proteínas Recombinantes/metabolismo
5.
Thromb Haemost ; 120(11): 1512-1523, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32820486

RESUMEN

The venom of the Australian snake Pseudonaja textilis comprises powerful prothrombin activators consisting of factor X (v-ptFX)- and factor V-like proteins. While all vertebrate liver-expressed factor X (FX) homologs, including that of P. textilis, comprise an activation peptide of approximately 45 to 65 residues, the activation peptide of v-ptFX is significantly shortened to 27 residues. In this study, we demonstrate that exchanging the human FX activation peptide for the snake venom ortholog impedes proteolytic cleavage by the intrinsic factor VIIIa-factor IXa tenase complex. Furthermore, our findings indicate that the human FX activation peptide comprises an essential binding site for the intrinsic tenase complex. Conversely, incorporation of FX into the extrinsic tissue factor-factor VIIa tenase complex is completely dependent on exosite-mediated interactions. Remarkably, the shortened activation peptide allows for factor V-dependent prothrombin conversion while in the zymogen state. This indicates that the active site of FX molecules comprising the v-ptFX activation peptide partially matures upon assembly into a premature prothrombinase complex. Taken together, the shortened activation peptide is one of the remarkable characteristics of v-ptFX that has been modified from its original form, thereby transforming FX into a powerful procoagulant protein. Moreover, these results shed new light on the structural requirements for serine protease activation and indicate that catalytic activity can be obtained without formation of the characteristic Ile16-Asp194 salt bridge via modification of the activation peptide.


Asunto(s)
Venenos Elapídicos/metabolismo , Elapidae/metabolismo , Factor X/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Sitios de Unión , Unión Competitiva , Catálisis , Dominio Catalítico , Cisteína Endopeptidasas , Venenos Elapídicos/genética , Activación Enzimática , Evolución Molecular , Factor VIIIa/metabolismo , Factor VIIa/metabolismo , Factor X/antagonistas & inhibidores , Factor X/genética , Humanos , Complejos Multiproteicos , Fragmentos de Péptidos/farmacología , Pirazoles/farmacología , Piridonas/farmacología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Tromboplastina/metabolismo
6.
Int J Hematol ; 111(1): 20-30, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30350119

RESUMEN

Hemophilia A is a congenital disorder caused by deficiency or malfunction of coagulation factor (F) VIII. While exogenously provided FVIII effectively reduces bleeding complications in many hemophilia A patients, multiple efforts are underway to develop new drugs to meet the needs that conventional FVIII agents do not. We have been long engaged in creating and clinically developing a humanized anti-FIXa/FX asymmetric bispecific IgG antibody with a FVIIIa-cofactor activity. Since this project was born from a creative and unique idea, our group recognized from the first that it would face many difficulties in the course of research including establishment of industrial manufacturability of an asymmetric bispecific IgG antibody. The group actually faced various challenges, but addressed all of them during about 10 years of research, and successfully created the potent humanized bispecific antibody, emicizumab. Emicizumab has showed clinical benefits in the human trials among which the first one was started in 2012, and has been currently approved in US, EU, Japan, and some other countries. It is now expected to improve the quality of life of patients and their families. In this article, we review the course of the research and clinical development of emicizumab, and describe its molecular characteristics.


Asunto(s)
Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Factor IXa/inmunología , Factor VIIIa/metabolismo , Factor X/inmunología , Hemofilia A/tratamiento farmacológico , Animales , Anticuerpos Biespecíficos/farmacología , Anticuerpos Monoclonales Humanizados/farmacología , Coagulación Sanguínea/efectos de los fármacos , Factor VIII/inmunología , Factor VIII/metabolismo , Hemofilia A/inmunología , Humanos , Ingeniería de Proteínas
7.
JCI Insight ; 52019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31219805

RESUMEN

Adeno-associated-viral (AAV) vector liver-directed gene therapy (GT) for hemophilia B (HB) is limited by a vector-dose-dependent hepatotoxicity. Recently, this obstacle has been partially circumvented by the use of a hyperactive factor IX (FIX) variant, R338L (Padua), which has an eightfold increased specific activity compared to FIX-WT. FIX-R338L has emerged as the standard for HB GT. However, the underlying mechanism of its hyperactivity is undefined; as such, safety concerns of unregulated coagulation and the potential for thrombotic complications have not been fully addressed. To this end, we evaluated the enzymatic and clotting activity as well as the activation, inactivation, and cofactor-dependence of FIX-R338L relative to FIX-WT. We observed that the high-specific-activity of FIX-R338L requires factor VIIIa (FVIIIa) cofactor. In a novel system utilizing emicizumab, a FVIII-mimicking bispecific antibody, the hyperactivity of both recombinant FIX-R338L and AAV-mediated-transgene-expressed FIX-R338L from HB GT subjects is ablated without FVIIIa activity. We conclude that the molecular regulation of activation, inactivation, and cofactor-dependence of FIX-R338L is similar to FIX-WT, but that the FVIIIa-dependent hyperactivity of FIX-R338L is the result of a faster rate of factor X activation. This mechanism helps mitigate safety concerns of unregulated coagulation and supports the expanded use of FIX-R338L in HB therapy.


Asunto(s)
Factor IX/metabolismo , Factor VIIIa/metabolismo , Hemofilia B/terapia , Coagulación Sanguínea , Dependovirus/genética , Dependovirus/metabolismo , Terapia Genética/métodos , Vectores Genéticos , Células HEK293 , Hemofilia B/genética , Humanos , Cinética
8.
Thromb Haemost ; 119(7): 1084-1093, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31064025

RESUMEN

Emicizumab bridges activated factor IX (FIX) and FX to restore the tenase function mediated by activated FVIII (FVIIIa), which is deficient in people with haemophilia A (PwHA). Unlike FVIII, emicizumab does not require activation to function; thus, in coagulation assays, the behavior of emicizumab may differ from that of FVIII. The objective of this study was to assess the effect of emicizumab on coagulation assays, including potential interference behavior that may produce inaccurate or misleading results. A variety of clotting-based, amidolytic/chromogenic, latex particle-enhanced turbidometric, and enzyme-linked immunosorbent methods were investigated. As expected based on its pharmacologic mechanism of action, emicizumab exhibited strong activity on the activated partial thromboplastin time (aPTT), which resulted in interference with several aPTT-based assays, most importantly the one-stage FVIII activity assay; these assays are not recommended for PwHA receiving emicizumab therapy. Pharmacodynamic activity of emicizumab, as measured by FVIII chromogenic assays, was species-dependent due to the binding specificity of the drug antibody. Outside of FVIII assays, emicizumab did not interfere with assays based on immunologic or chromogenic principles, nor with clotting assays based on nonintrinsic pathway activators, thus offering alternative choices where aPTT-based assays might otherwise be used. The observed interferences are in line with the unique mechanism of action of emicizumab. Potential interferences should be taken into account in the selection of coagulation assays and interpretation of coagulation assay test results for PwHA receiving emicizumab therapy.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Anticuerpos Monoclonales Humanizados/farmacología , Pruebas de Coagulación Sanguínea/métodos , Factor VIIIa/metabolismo , Hemofilia A/diagnóstico , Plasma/metabolismo , Biomimética , Coagulación Sanguínea , Factor IXa/metabolismo , Factor X/metabolismo , Hemofilia A/tratamiento farmacológico , Humanos , Tiempo de Tromboplastina Parcial , Unión Proteica
9.
FEBS Open Bio ; 9(8): 1370-1378, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31077577

RESUMEN

Blood coagulation involves extrinsic and intrinsic pathways, which merge at the activation step of blood coagulation factor X to factor Xa. This step is catalysed by the extrinsic or intrinsic Xase, which consists of a complex of factor VIIa and its cofactor tissue factor or factor IXa (FIXa) and its cofactor coagulation factor VIIIa (FVIIIa). Upon complex formation with FVIIIa, FIXa is conformationally activated to the Xase complex. However, the mechanistic understanding of this molecular recognition is limited. Here, we examined FVIIIa-FIXa binding in the context of FIXa's activation status. Given the complexity and the labile nature of FVIIIa, we decided to employ two FVIII-derived peptides (558-loop, a2 peptide) to model the cofactor binding of FIX(a) using biosensor chip technology. These two FVIII peptides are known to mediate the key interactions between FVIIIa and FIXa. We found both of these cofactor mimetics as well as full-length FVIIIa bind more tightly to zymogenic FIX than to proteolytically activated FIXa. Consequently and surprisingly, we observed that the catalytically inactive FIX zymogen can outcompete the activated FIXa from the complex with FVIIIa, resulting in an inactive, zymogenic Xase complex. By contrast, the thrombophilic Padua mutant FIXa-R170 in complex with the protein-substrate analogue BPTI bound tighter to FVIIIa than to the zymogen form FIX-R170L, suggesting that the active Xase complex preferentially forms in the Padua variant. Together, these results provide a mechanistic basis for the thrombophilic nature of the FIX-R170L mutant and suggest the existence of a newly discovered safety measure within the coagulation cascade.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Factor IXa/metabolismo , Factor VIIIa/metabolismo , Proteínas de Neoplasias/metabolismo , Secuencia de Aminoácidos , Coagulación Sanguínea/fisiología , Factores de Coagulación Sanguínea/química , Factores de Coagulación Sanguínea/metabolismo , Cisteína Endopeptidasas/fisiología , Factor IXa/química , Factor VIII/química , Factor VIII/metabolismo , Factor VIIIa/química , Hemostáticos , Humanos , Cinética , Proteínas de Neoplasias/fisiología , Péptidos/metabolismo , Conformación Proteica
10.
Int J Hematol ; 109(4): 390-401, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30756344

RESUMEN

Factor VIIa/tissue factor (FVIIa/TF) initiates blood coagulation by promoting FXa generation (extrinsic-Xa). Subsequent generation of intrinsic FXa (intrinsic-Xa) amplifies thrombin formation. Previous studies suggested that FVIIa/TF activates FVIII rapidly in immediate coagulation reactions, and FVIIa/TF/FXa activates FVIII prior to thrombin-dependent feedback. We investigated FVIII/FVIIa/TF/FXa relationships in early coagulation mechanisms. Total FXa generated by FVIIa/TF and FVIIa/TF-activated FVIII (FVIIIaVIIa/TF) was 22.6 ± 1.7 nM (1 min); total FXa with FVIIa-inhibitor was 3.4 ± 0.7 nM, whereas FXa generated by FVIIa/TF or FVIII/TF was 10.4 ± 1.1 or 0.74 ± 0.14 nM, respectively. Little Xa was generated by FVIII alone, suggesting that intrinsic-Xa mechanisms were mediated by FVIIIaVIIa/TF and FVIII/TF in the initiation phase. Intrinsic-Xa was delayed somewhat by von Willebrand factor (VWF). FVIII activation by FXa with FVIIa/TF was comparable to activation with Glu-Gly-Arg-inactivated-FVIIa/TF. TF counteracted the inhibitory effects of VWF on FXa-induced FVIII activation mediated by Arg372 cleavage. The FVIII-C2 domain bound to cytoplasmic domain-deleted TF (TF1-243), and VWF blocked this binding by > 80%, indicating an overlap between VWF- and TF1-243-binding site(s) on C2. Overall, these data suggest that FVIII-associated intrinsic-Xa, governed by both FVIIa/TF-induced and FXa-induced FVIII activation mediated by FVIII-TF interactions, together with FVIIa-dependent extrinsic-Xa mechanisms, may be central to the initiation phase of coagulation.


Asunto(s)
Coagulación Sanguínea , Factor VIIIa/metabolismo , Factor VIIa/metabolismo , Factor Xa/metabolismo , Tromboplastina/metabolismo , Humanos
11.
Thromb Haemost ; 118(10): 1713-1728, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30235482

RESUMEN

Components of the intrinsic blood coagulation pathway, among them factor VIIIa (FVIIIa), have been recognized as suitable therapeutic targets to treat venous thromboembolism, pathological process behind two very serious cardiovascular diseases, deep vein thrombosis and pulmonary embolism. Here, we describe a unique glycoprotein from the nose-horned viper (Vipera ammodytes ammodytes [Vaa]) venom, Vaa serine proteinase homolog 1 (VaaSPH-1), structurally a serine protease but without an enzymatic activity and expressing potent anticoagulant action in human blood. We demonstrated that one of its targets in the blood coagulation system is FVIIIa of the intrinsic tenase complex, where it antagonizes the binding of FIXa. Anticoagulants with such characteristics are intensively sought, as they would be much safer for medical application as the contemporary drugs, which frequently induce excessive bleeding and other complications. VaaSPH-1 is unlikely to be orally available for chronic usage as it has molecular mass of 35 kDa. However, it represents a very promising template to design low molecular mass FVIIIa-directed anticoagulant substances, based on structural features of the interaction surface between VaaSPH-1 and FVIIIa. To this end, we constructed a three-dimensional model of VaaSPH-1 bound to FVIIIa. The model exposes the 157-loop and the preceding α-helix as the most appropriate structural elements of VaaSPH-1 to be considered as a guideline to synthesize small FVIIIa-binding molecules, potential new generation of anticoagulants.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Reptiles/metabolismo , Serina Proteasas/metabolismo , Tromboembolia Venosa/tratamiento farmacológico , Venenos de Víboras/metabolismo , Animales , Coagulación Sanguínea , Diseño de Fármacos , Factor VIIIa/metabolismo , Humanos , Modelos Químicos , Agregación Plaquetaria , Unión Proteica , Relación Estructura-Actividad , Viperidae/inmunología
12.
Carbohydr Res ; 467: 45-51, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30114596

RESUMEN

Fucosylated chondroitin sulfate (FuCS) is a structurally complex glycosaminoglycan found in sea cucumbers with a wide spectrum of biological activities, among which anticoagulant activity is particularly attractive for the development of alternative anticoagulant drugs with decreased adverse effects and risks of bleeding. Previous studies show that FuCS glycomimetics bearing several trisaccharide epitopes displayed promising anticoagulant activity and did not change the mode of action of FuCS. To simplify synthetic difficulty of high valent glycoclusters and obtain candidate compounds with relatively low molecular weights, here we report the synthesis of two FuCS glycoclusters with low valence and more compact structures. Anticoagulation studies showed that these simplified "short-armed" glycoclusters demonstrated comparable potency with "long-armed" high valent glycoclusters, offering a concise approach for the development of novel anticoagulant agents.


Asunto(s)
Anticoagulantes/farmacología , Coagulación Sanguínea/efectos de los fármacos , Sulfatos de Condroitina/farmacología , Inhibidores Enzimáticos/farmacología , Glicósidos/farmacología , Anticoagulantes/síntesis química , Anticoagulantes/química , Conformación de Carbohidratos , Sulfatos de Condroitina/síntesis química , Sulfatos de Condroitina/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Factor IXa/antagonistas & inhibidores , Factor IXa/metabolismo , Factor VIIIa/antagonistas & inhibidores , Factor VIIIa/metabolismo , Glicósidos/síntesis química , Glicósidos/química , Humanos
13.
Br J Haematol ; 183(2): 257-266, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30125997

RESUMEN

Activated protein C (APC) inactivates activated factor V (FVa) and moderates FVIIIa by restricting FV cofactor function. Emicizumab is a humanized anti-FIXa/FX bispecific monoclonal antibody that mimicks FVIIIa cofactor function. In recent clinical trials in haemophilia A patients, once-weekly subcutaneous administration of emicizumab was remarkably effective in preventing bleeding events, but the mechanisms controlling the regulation of emicizumab-mediated haemostasis remain to be explored. We investigated the role of APC-mediated reactions in these circumstances. APC dose-dependently depressed thrombin generation (TG) initiated by emicizumab in FVIII-deficient plasmas, and in normal plasmas preincubated with an anti-FVIII antibody (FVIII-depleted). FVIIIa-independent FXa generation with emicizumab was not affected by the presence of APC, protein S and FV. The results suggested that APC-induced down-regulation of emicizumab-dependent TG was accomplished by direct inactivation of FVa. The addition of APC to emicizumab mixed with FVIII-depleted FV-deficient plasma in the presence of various concentrations of exogenous FV demonstrated similar attenuation of TG, irrespective of specific FV concentrations. Emicizumab-related TG in FVIII-depleted FVLeiden plasma was decreased by APC more than that observed with native FVLeiden plasma. The findings indicated that emicizumab-driven haemostasis was down regulated by APC-mediated FVa inactivation in plasma from haemophilia A patients without or with FV defects.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Anticuerpos Monoclonales Humanizados/farmacología , Hemofilia A/sangre , Hemostasis/efectos de los fármacos , Hemostáticos/farmacología , Proteína C/farmacología , Coagulación Sanguínea/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Factor VIIIa/metabolismo , Factor Va/metabolismo , Humanos , Proteína C/administración & dosificación , Trombina/biosíntesis
14.
J Mol Graph Model ; 76: 441-447, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28780303

RESUMEN

The A2-domain of blood coagulation factor VIIIa is non-covalently bound to the A1 and A3 domains via weak intermolecular interactions. Functional instability due to rapid dissociation of A2-domain from the active FVIII in blood presents a major hurdle for the therapeutic applications of FVIIIa to treat Hemophilia-A. To identify the ideal hot-spot residues at the interface of A2 and A1/A3 domains that could enhance the structural stability of FVIIIa, we performed a comprehensive computational mutagenesis study of two A2-domain residues, Asp519 and Glu665, that interface the A1 and A3-domains. Each residue was mutated to 15 uncharged amino-acids and the mutant structures were refined by MD simulations. Based on the estimated relative binding affinities of mutant structures, we predict that the mutation of Asp519 to Leu, Gln, Thr, Val and the mutation of Glu665 to Val, Ile, Met, Asn and Trp enhance the A2-domain binding affinity by more than 20kcal/mol, compared to the WT structure. We anticipate that these predictions will be valuable for enzymatic studies towards the rational design of FVIIIa synthetic constructs with improved A2-domain binding affinity.


Asunto(s)
Asparagina/química , Factor VIIIa/química , Glutamina/química , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad Cuantitativa , Asparagina/genética , Factor VIIIa/genética , Factor VIIIa/metabolismo , Glutamina/genética , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Conformación Proteica
15.
Blood ; 130(14): 1661-1670, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28729433

RESUMEN

Safe and effective antithrombotic therapy requires understanding of mechanisms that contribute to pathological thrombosis but have a lesser impact on hemostasis. We found that the extrinsic tissue factor (TF) coagulation initiation complex can selectively activate the antihemophilic cofactor, FVIII, triggering the hemostatic intrinsic coagulation pathway independently of thrombin feedback loops. In a mouse model with a relatively mild thrombogenic lesion, TF-dependent FVIII activation sets the threshold for thrombus formation through contact phase-generated FIXa. In vitro, FXa stably associated with TF-FVIIa activates FVIII, but not FV. Moreover, nascent FXa product of TF-FVIIa can transiently escape the slow kinetics of Kunitz-type inhibition by TF pathway inhibitor and preferentially activates FVIII over FV. Thus, TF synergistically primes FIXa-dependent thrombin generation independently of cofactor activation by thrombin. Accordingly, FVIIa mutants deficient in direct TF-dependent thrombin generation, but preserving FVIIIa generation by nascent FXa, can support intrinsic pathway coagulation. In ex vivo flowing blood, a TF-FVIIa mutant complex with impaired free FXa generation but activating both FVIII and FIX supports efficient FVIII-dependent thrombus formation. Thus, a previously unrecognized TF-initiated pathway directly yielding FVIIIa-FIXa intrinsic tenase complex may be prohemostatic before further coagulation amplification by thrombin-dependent feedback loops enhances the risk of thrombosis.


Asunto(s)
Coagulación Sanguínea , Factor VIII/metabolismo , Factor VIIa/metabolismo , Factor Xa/metabolismo , Tromboplastina/metabolismo , Factor VIIIa/metabolismo , Humanos , Trombina/metabolismo
16.
J Biol Chem ; 292(33): 13688-13701, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28522609

RESUMEN

Cell migration and invasion are very characteristic features of cancer cells that promote metastasis, which is one of the most common causes of mortality among cancer patients. Emerging evidence has shown that coagulation factors can directly mediate cancer-associated complications either by enhancing thrombus formation or by initiating various signaling events leading to metastatic cancer progression. It is well established that, apart from its distinct role in blood coagulation, coagulation factor FVIIa enhances aggressive behaviors of breast cancer cells, but the underlying signaling mechanisms still remain elusive. To this end, we investigated FVIIa's role in the migration and invasiveness of the breast cancer cell line MDA-MB-231. Consistent with previous observations, we observed that FVIIa increased the migratory and invasive potential of these cells. We also provide molecular evidence that protease-activated receptor 2 activation followed by PI3K-AKT activation and GSK3ß inactivation is involved in these processes and that ß-catenin, a well known tumor-regulatory protein, contributes to this signaling pathway. The pivotal role of ß-catenin was further indicated by the up-regulation of its downstream targets cyclin D1, c-Myc, COX-2, MMP-7, MMP-14, and Claudin-1. ß-Catenin knockdown almost completely attenuated the FVIIa-induced enhancement of breast cancer migration and invasion. These findings provide a new perspective to counteract the invasive behavior of breast cancer, indicating that blocking PI3K-AKT pathway-dependent ß-catenin accumulation may represent a potential therapeutic approach to control breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Factor VIIIa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/agonistas , Receptor PAR-2/agonistas , Transducción de Señal , beta Catenina/agonistas , Mama/citología , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Factor VIIIa/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes Reporteros/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/química , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Invasividad Neoplásica/patología , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Oligopéptidos/farmacología , Fosfatidilinositol 3-Quinasa/química , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Receptor PAR-2/antagonistas & inhibidores , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos , Tromboplastina/agonistas , Tromboplastina/genética , Tromboplastina/metabolismo , beta Catenina/antagonistas & inhibidores , beta Catenina/genética , beta Catenina/metabolismo
17.
Arterioscler Thromb Vasc Biol ; 36(12): 2334-2345, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27789475

RESUMEN

OBJECTIVE: Recent evidence suggests involvement of coagulation factor XIa (FXIa) in thrombotic event development. This study was conducted to explore possible synergies between tissue factor (TF) and exogenous FXIa (E-FXIa) in thrombin generation. APPROACH AND RESULTS: In thrombin generation assays, for increasing concentrations of E-FXIa with low, but not with high TF concentrations, peak thrombin significantly increased whereas lag time and time to peak significantly decreased. Similar dependencies of lag times and rates of thrombin generation were found in mathematical model simulations. In both in vitro and in silico experiments that included E-FXIa, thrombin bursts were seen for TF levels much lower than those required without E-FXIa. For in silico thrombin bursts initiated by the synergistic action of TF and E-FXIa, the mechanisms leading to the burst differed substantially from those for bursts initiated by high TF alone. For the synergistic case, sustained activation of platelet-bound FIX by E-FXIa, along with the feedback-enhanced activation of platelet-bound FVIIIa and FXa, was needed to elicit a thrombin burst. Furthermore, the initiation of thrombin bursts by high TF levels relied on different platelet FIX/FIXa binding sites than those involved in bursts initiated by low TF levels with E-FXIa. CONCLUSIONS: Low concentrations of TF and exogenous FXIa, each too low to elicit a burst in thrombin production alone, act synergistically when in combination to cause substantial thrombin production. The observation about FIX/FIXa binding sites may have therapeutic implications.


Asunto(s)
Coagulación Sanguínea , Plaquetas/metabolismo , Factor Xa/metabolismo , Activación Plaquetaria , Trombina/metabolismo , Tromboplastina/metabolismo , Sitios de Unión , Pruebas de Coagulación Sanguínea , Simulación por Computador , Cisteína Endopeptidasas/metabolismo , Factor VIIIa/metabolismo , Humanos , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Unión Proteica , Transducción de Señal , Trombosis/sangre , Factores de Tiempo
18.
Biochim Biophys Acta ; 1854(10 Pt A): 1351-6, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26012870

RESUMEN

Alterations in coagulation factor X (FX) activation, mediated by the extrinsic VIIa/tissue factor (FVIIa/TF) or the intrinsic factor IXa/factor VIIIa (FIXa/FVIIIa) complexes, can result in hemorrhagic/prothrombotic tendencies. However, the molecular determinants involved in substrate recognition by these enzymes are poorly defined. Here, we investigated the role of arginine 386 (chymotrypsin numbering c202), a surface-exposed residue on the FX catalytic domain. The naturally occurring FX386Cys mutant and FX386Ala variant were characterized. Despite the unpaired cysteine, recombinant (r)FX386Cys was efficiently secreted (88.6±21.3% of rFXwt) and possessed normal clearance in mice. rFX386Cys was also normally activated by FVIIa/TF and displayed intact amidolytic activity. In contrast, rFX386Cys activation by the FIXa/FVIIIa complex was 4.5-fold reduced, which was driven by a decrease in the kcat (1.6∗10(-4) s(-1) vs 5.8∗10(-4) s(-1), rFXwt). The virtually unaltered Km (70.6 nM vs 55.6nM, rFXwt) suggested no major alterations in the FX substrate exosite. Functional assays in plasma supplemented with rFX386Cys indicated a remarkable reduction in the thrombin generation rate and thus in coagulation efficiency. Consistently, the rFX386Ala variant displayed similar biochemical features suggesting that global changes at position 386 impact the intrinsic pathway activation. These data indicate that the FXArg386 is involved in FIXa/FVIIIa-mediated FX activation and help in elucidating the bleeding tendency associated with the FX386Cys in a rare FX deficiency case. Taking advantage of the unpaired cysteine, the rFX386Cys mutant may be efficiently targeted by thiol-specific ligands and represent a valuable tool to study FX structure-function relationships both in vitro and in vivo.


Asunto(s)
Coagulación Sanguínea/genética , Factor X/metabolismo , Factor Xa/metabolismo , Mutación , Animales , Pruebas de Coagulación Sanguínea , Dominio Catalítico , Factor IXa/genética , Factor IXa/metabolismo , Factor VIIIa/genética , Factor VIIIa/metabolismo , Factor X/química , Factor X/genética , Factor Xa/química , Factor Xa/genética , Células HEK293 , Humanos , Cinética , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trombina/genética , Trombina/metabolismo
19.
Biochemistry ; 54(24): 3814-21, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26023895

RESUMEN

We recently identified two hemophilia B patients who carried Gly-317 to Arg (FIX-G317R) or Gly-317 to Glu (FIX-G317E) substitutions in their FIX gene. The former mutation caused severe and the latter moderate bleeding in afflicted patients. To understand the molecular basis for the variable clinical manifestation of Gly-317 mutations, we prepared recombinant G317R and G317E derivatives of FIX and compared their kinetic properties to those of recombinant wild-type FIX in appropriate assay systems. Both physiological activators, factor XIa and extrinsic Tenase (factor VIIa-tissue factor), activated both zymogen variants with an ∼1.5-fold elevated K(m); however, extrinsic Tenase activated FIX-G317E with an ∼2-fold improved k(cat). By contrast to zymogen activation, the catalytic activities of both FIXa-G317R and FIXa-G317E enzymes toward the natural substrate, factor X, were dramatically (>4 orders of magnitude) impaired, but their apparent affinity for interaction with factor VIIIa was only slightly (<2-fold) decreased. Further studies revealed that the reactivity of FIXa-G317R and FIXa-G317E with antithrombin has been impaired 10- and 13-fold, respectively, in the absence and 166- and 500-fold, respectively, in the presence of pentasaccharide. As expected, the clotting activities of FIX variants could not be measured by the aPTT assay. These results implicate a critical role for Gly-317 in maintaining normal catalytic function for FIX/FIXa in the clotting cascade. The results further suggest that improved k(cat) of FIX-G317E activation in the extrinsic pathway together with dramatically impaired reactivity of FIXa-G317E with antithrombin may account for the less severe bleeding phenotype of a hemophilia B patient carrying the FIX-G317E mutation.


Asunto(s)
Precursores Enzimáticos/metabolismo , Factor IX/metabolismo , Glicina/química , Hemofilia B/genética , Hemorragia/etiología , Proteínas Mutantes/metabolismo , Mutación , Sustitución de Aminoácidos , Cisteína Endopeptidasas/metabolismo , Activación Enzimática , Precursores Enzimáticos/genética , Factor IX/genética , Factor VIIIa/metabolismo , Factor X/metabolismo , Factor XIa/metabolismo , Células HEK293 , Hemofilia B/metabolismo , Hemofilia B/fisiopatología , Humanos , Cinética , Masculino , Mutagénesis Sitio-Dirigida , Proteínas de Neoplasias/metabolismo , Proteínas Recombinantes/metabolismo , Índice de Severidad de la Enfermedad
20.
Thromb Res ; 135(5): 1017-24, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25795563

RESUMEN

INTRODUCTION: Hemophilia B is an inherited X-linked recessive bleeding disorder, due to a defect in human factor IX (FIX). The main treatment for hemophilia B is replacement therapy using FIX concentrates. Prophylactic treatment in severe hemophilia B is very effective but is limited by cost issues. Production of a recombinant FIX (rFIX) with enhanced clotting activity, offering the possibility of fewer infusions and fewer costs with similar efficacy, is one of the current challenges for hemophilia B treatment. The present study focused on an important amino acid sequence known to be involved in the interaction of activated FIX (FIXa) with its cofactor, activated factor VIII (FVIIIa). MATERIALS AND METHODS: Using site-directed mutagenesis of glutamate E410 (c240, chymotrypsin numbering), four recombinant FIX-E410 (E410H, A, L and N) mutants were developed and produced by the human hepatoma cell line Huh-7. RESULTS: The in-vitro clotting activity of mutant FIX molecules was 3 to 5-fold higher than wild-type recombinant FIX (FIX-WT). FIX-E410H compound showed the highest in-vitro procoagulant activity. Enhanced specific activity was confirmed using thrombin generation assay. FIX-E410H induced 5.2-fold higher thrombin generation than FIX-WT. In hemophilia B mice, we observed significantly higher in-vivo clotting activity and thrombin generating capacity with FIX-E410H compared to FIX-WT. We demonstrated that increased procoagulant activity of FIX-E410H was mainly explained by 2.5- fold enhanced affinity of the mutant for human FVIIIa. CONCLUSION: We have engineered and characterized four improved FIX proteins with enhanced in-vitro and in-vivo activity. Future studies are required to evaluate the immunogenicity of FIX-E410.


Asunto(s)
Factor IX/genética , Factor IX/uso terapéutico , Sustitución de Aminoácidos , Animales , Coagulación Sanguínea/efectos de los fármacos , Pruebas de Coagulación Sanguínea , Plaquetas/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Factor IX/metabolismo , Factor VIIIa/metabolismo , Factor VIIa/metabolismo , Factor XIa/metabolismo , Expresión Génica , Hemofilia B/sangre , Hemofilia B/tratamiento farmacológico , Hemofilia B/genética , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones Mutantes , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapéutico , Tromboplastina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA