Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 888
Filtrar
1.
Reprod Biol Endocrinol ; 20(1): 22, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35101033

RESUMEN

BACKGROUND: Tightly regulation of extravillous cytotrophoblast (EVT) cell invasion is critical for the placentation and establishment of a successful pregnancy. Insufficient EVT cell invasion leads to the development of preeclampsia (PE) which is a leading cause of maternal and perinatal mortality and morbidity. Transforming growth factor-beta1 (TGF-ß1) and kisspeptin are expressed in the human placenta and have been shown to inhibit EVT cell invasion. Kisspeptin is a downstream target of TGF-ß1 in human breast cancer cells. However, whether kisspeptin is regulated by TGF-ß1 and mediates TGF-ß1-suppressed human EVT cell invasion remains unclear. METHODS: The effect of TGF-ß1 on kisspeptin expression and the underlying mechanisms were explored by a series of in vitro experiments in a human EVT cell line, HTR-8/SVneo, and primary cultures of human EVT cells. Serum levels of TGF-ß1 and kisspeptin in patients with or without PE were measured by ELISA. RESULTS: TGF-ß1 upregulates kisspeptin expression in HTR-8/SVneo cells and primary cultures of human EVT cells. Using pharmacological inhibitor and siRNA, we demonstrate that the stimulatory effect of TGF-ß1 on kisspeptin expression is mediated via the ALK5 receptor. Treatment with TGF-ß1 activates SMAD2/3 canonical pathways as well as ERK1/2 and PI3K/AKT non-canonical pathways. However, only inhibition of ERK1/2 activation attenuates the stimulatory effect of TGF-ß1 on kisspeptin expression. In addition, siRNA-mediated knockdown of kisspeptin attenuated TGF-ß1-suppressed EVT cell invasion. Moreover, we report that serum levels of TGF-ß1 and kisspeptin are significantly upregulated in patients with PE. CONCLUSIONS: By illustrating the potential physiological role of TGF-ß1 in the regulation of kisspeptin expression, our results may serve to improve current strategies used to treat placental diseases.


Asunto(s)
Kisspeptinas/genética , Factor de Crecimiento Transformador beta1/fisiología , Trofoblastos/fisiología , Movimiento Celular/genética , Células Cultivadas , Femenino , Humanos , Kisspeptinas/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Embarazo , Transducción de Señal/genética , Proteínas Smad/fisiología
2.
Sci Rep ; 12(1): 3026, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35194136

RESUMEN

To better understand the molecular mechanisms of tendon healing, we investigated the Murphy Roth's Large (MRL) mouse, which is considered a model of mammalian tissue regeneration. We show that compared to C57Bl/6J (C57) mice, injured MRL tendons have reduced fibrotic adhesions and cellular proliferation, with accelerated improvements in biomechanical properties. RNA-seq analysis revealed that differentially expressed genes in the C57 healing tendon at 7 days post injury were functionally linked to fibrosis, immune system signaling and extracellular matrix (ECM) organization, while the differentially expressed genes in the MRL injured tendon were dominated by cell cycle pathways. These gene expression changes were associated with increased α-SMA+ myofibroblast and F4/80+ macrophage activation and abundant BCL-2 expression in the C57 injured tendons. Transcriptional analysis of upstream regulators using Ingenuity Pathway Analysis showed positive enrichment of TGFB1 in both C57 and MRL healing tendons, but with different downstream transcriptional effects. MRL tendons exhibited of cell cycle regulatory genes, with negative enrichment of the cell senescence-related regulators, compared to the positively-enriched inflammatory and fibrotic (ECM organization) pathways in the C57 tendons. Serum cytokine analysis revealed decreased levels of circulating senescence-associated circulatory proteins in response to injury in the MRL mice compared to the C57 mice. These data collectively demonstrate altered TGFB1 regulated inflammatory, fibrosis, and cell cycle pathways in flexor tendon repair in MRL mice, and could give cues to improved tendon healing.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regeneración/genética , Regeneración/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Traumatismos de los Tendones/fisiopatología , Tendones/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/fisiología , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología , Animales , Adhesión Celular/genética , Adhesión Celular/fisiología , Ciclo Celular/genética , Ciclo Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Fibrosis/genética , Inflamación/genética , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr , Modelos Animales , Tendones/citología
3.
Angiogenesis ; 25(1): 113-128, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34478025

RESUMEN

Embryonic stem cells (ES) are a valuable source of endothelial cells. By co-culturing ES cells with the stromal PA6 cells, the endothelial commitment can be achieved by adding exogenous FGF2 or BMP4. In this work, the molecular pathways that direct the differentiation of ES cells toward endothelium in response to FGF2 are evaluated and compared to those activated by BMP4. To this purpose the genes expression profiles of both ES/PA6 co-cultures and of pure cultures of PA6 cells were obtained by microarray technique at different time points. The bioinformatics processing of the data indicated TGFß1 as the most represented upstream regulator in FGF2-induced endothelial commitment while WNT pathway as the most represented in BMP4-activated endothelial differentiation. Loss of function experiments were performed to validate the importance of TGFß1 and WNT6 respectively in FGF2 and BMP4-induced endothelial differentiation. The loss of TGFß1 expression significantly impaired the accomplishment of the endothelial commitment unless exogenous recombinant TGFß1 was added to the culture medium. Similarly, silencing WNT6 expression partially affected the endothelial differentiation of the ES cells upon BMP4 stimulation. Such dysfunction was recovered by the addition of recombinant WNT6 to the culture medium. The ES/PA6 co-culture system recreates an in vitro complete microenvironment in which endothelial commitment is accomplished in response to alternative signals through different mechanisms. Given the importance of WNT and TGFß1 in mediating the crosstalk between tumor and stromal cells this work adds new insights in the mechanism of tumor angiogenesis and of its possible inhibition.


Asunto(s)
Células Endoteliales , Factor 2 de Crecimiento de Fibroblastos , Factor de Crecimiento Transformador beta1/fisiología , Animales , Proteína Morfogenética Ósea 4 , Diferenciación Celular , Células Madre Embrionarias , Factor 2 de Crecimiento de Fibroblastos/farmacología , Ratones , Proteínas Proto-Oncogénicas , Células del Estroma , Factor de Crecimiento Transformador beta1/genética , Proteínas Wnt
4.
Clin Immunol ; 234: 108895, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826606

RESUMEN

PURPOSE: Serum/glucocorticoid-regulated kinase 1 (SGK1) has been identified as a crucial regulator in fibrotic disorders. Herein, we explored SGK1 role in tissue remodeling of chronic rhinosinusitis (CRS). METHODS: Lentivirus was employed to generate an SGK1-overexpressing human bronchial epithelial cell (16HBE) line. To screen SGK1 downstream genes, RNA sequencing was performed on SGK1-overexpressing and control cell lines. To determine protein and gene expression levels, immunohistochemistry, western blotting, and quantitative real-time polymerase chain reaction were employed. Correlation analysis was performed using mRNA expression levels of SGK1, transforming growth factor ß1 (TGF-ß1), and connective tissue growth factor (CTGF) derived from CRS mucosal tissue and GEO database. Gene set enrichment analysis was conducted using gene sets from Molecular Signatures Database. The severity of symptoms in CRS patients was assessed using the 22-Item Sinonasal Outcome Test. RESULTS: SGK1 overexpression significantly increased the expression of connective tissue growth factor (CTGF) in 16HBE cells (P < 0.01). Consistently, CTGF protein level was considerably greater in mucosal tissue of CRS without nasal polyps (CRSsNP) than in CRS with nasal polyps (CRSwNP) (P < 0.05) or in control subjects (P < 0.01). TGF-ß1 protein level was higher in mucosal tissue of CRSsNP patients than in CRSwNP patients (P < 0.001) or in the control group (P < 0.01). mRNA levels of SGK1 and CTGF (P < 0.05, r = 0.668; P = 0.001, r = 0.630), TGF-ß1 and CTGF (P < 0.05, r = 0.560; P < 0.05, r = 0.420), as well as SGK1 and TGF-ß1(P < 0.05, r = 0.612; P < 0.05, r = 0.524) were significantly correlated in CRS mucosal tissue and GSE36830 dataset, respectively. TGF-ß1-induced upregulated genes were significantly enriched in SGK1 overexpression group. In vitro assays, TGF-ß1 promoted SGK1 and CTGF expression in a concentration- and time-dependent manner. Administrating an SGK1 inhibitor, GSK650394, significantly inhibited TGF-ß1-induced CTGF expression in 16HBE and dispersed primary nasal polyp cells. CONCLUSIONS: TGF-ß1 stimulation significantly increases SGK1 and CTGF expression. By regulating TGF-ß1-CTGF pathway, SGK1 may participate in tissue remodeling in the pathological mechanism of CRS.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/fisiología , Proteínas Inmediatas-Precoces/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Rinitis/etiología , Sinusitis/etiología , Factor de Crecimiento Transformador beta1/fisiología , Adulto , Células Cultivadas , Enfermedad Crónica , Factor de Crecimiento del Tejido Conjuntivo/análisis , Factor de Crecimiento del Tejido Conjuntivo/genética , Femenino , Humanos , Proteínas Inmediatas-Precoces/genética , Masculino , Persona de Mediana Edad , Proteínas Serina-Treonina Quinasas/genética , Rinitis/metabolismo , Índice de Severidad de la Enfermedad , Transducción de Señal/fisiología , Sinusitis/metabolismo , Factor de Crecimiento Transformador beta1/análisis , Factor de Crecimiento Transformador beta1/genética
5.
Front Endocrinol (Lausanne) ; 12: 732338, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707569

RESUMEN

Women with polycystic ovary syndrome (PCOS), commonly have profound skeletal muscle insulin resistance which can worsen other clinical features. The heterogeneity of the condition has made it challenging to identify the precise mechanisms that cause this insulin resistance. A possible explanation for the underlying insulin resistance may be the dysregulation of Transforming Growth Factor-beta (TGFß) signalling. TGFß signalling contributes to the remodelling of reproductive and hepatic tissues in women with PCOS. Given the systemic nature of TGFß signalling and its role in skeletal muscle homeostasis, it may be possible that these adverse effects extend to other peripheral tissues. We aimed to determine if TGFß1 could negatively regulate glucose uptake and insulin signalling in skeletal muscle of women with PCOS. We show that both myotubes from women with PCOS and healthy women displayed an increase in glucose uptake, independent of changes in insulin signalling, following short term (16 hr) TGFß1 treatment. This increase occurred despite pro-fibrotic signalling increasing via SMAD3 and connective tissue growth factor in both groups following treatment with TGFß1. Collectively, our findings show that short-term treatment with TGFß1 does not appear to influence insulin signalling or promote insulin resistance in myotubes. These findings suggest that aberrant TGFß signalling is unlikely to directly contribute to skeletal muscle insulin resistance in women with PCOS in the short term but does not rule out indirect or longer-term effects.


Asunto(s)
Glucosa/farmacocinética , Insulina/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Síndrome del Ovario Poliquístico/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Adolescente , Adulto , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Estudios de Casos y Controles , Células Cultivadas , Femenino , Glucosa/metabolismo , Técnica de Clampeo de la Glucosa , Humanos , Resistencia a la Insulina/fisiología , Persona de Mediana Edad , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Síndrome del Ovario Poliquístico/patología , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/fisiología , Adulto Joven
6.
Am J Nephrol ; 52(8): 653-665, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34496361

RESUMEN

INTRODUCTION: Transforming growth factor-ß1 (TGF-ß1) is a multifunctional cytokine, with diverse roles in fibrosis and inflammation, which acts through Smad signaling in renal pathology. We intended to investigate the expression of TGF-ß/Smad signaling in glomerulonephritis (GN) and to assess its role as risk factor for progression to chronic kidney disease (CKD). METHODS: We evaluated the immunohistochemical expression of TGF-ß1, phosphorylated Smad3 (pSmad3), and Smad7 semiquantitatively and quantitatively using computerized image analysis program in different compartments of 50 renal biopsies with GN, and the results were statistically analyzed with clinicopathological parameters. We also examined the associations among their expressions, the impact of their co-expression, and their role in progression to CKD. RESULTS: TGF-ß1 expression correlated positively with segmental glomerulosclerosis (p= 0.025) and creatinine level at diagnosis (p = 0.002), while pSmad3 expression with interstitial inflammation (p = 0.024). In glomerulus, concomitant expressions of high Smad7 and medium pSmad3 were observed to be correlated with renal inflammation, such as cellular crescent (p = 0.011), intense interstitial inflammation (p = 0.029), and lower serum complement (C) 3 (p = 0.028) and C4 (p = 0.029). We also reported a significant association between pSmad3 expression in glomerular endothelial cells of proliferative GN (p = 0.045) and in podocytes of nonproliferative GN (p = 0.005). Finally, on multivariate Cox-regression analysis, TGF-ß1 expression (hazard ratio = 6.078; 95% confidence interval: 1.168-31.627; p = 0.032) was emerged as independent predictor for CKD. DISCUSSION/CONCLUSION: TGF-ß1/Smad signaling is upregulated with specific characteristics in different forms of GN. TGF-ß1 expression is indicated as independent risk factor for progression to CKD, while specific co-expression pattern of pSmad3 and Smad7 in glomerulus is correlated with renal inflammation.


Asunto(s)
Insuficiencia Renal Crónica/etiología , Proteína smad3/fisiología , Proteína smad7/fisiología , Factor de Crecimiento Transformador beta1/fisiología , Adulto , Anciano , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Transducción de Señal
7.
J Biol Chem ; 297(3): 100987, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34364871

RESUMEN

Progressive fibrosis leads to loss of organ function and affects many organs as a result of excessive extracellular matrix production. The ubiquitous matrix polysaccharide hyaluronan (HA) is central to this through association with its primary receptor, CD44, which exists as standard CD44 (CD44s) or multiple splice variants. Mediators such as profibrotic transforming growth factor (TGF)-ß1 and proinflammatory interleukin (IL)-1ß are widely associated with fibrotic progression. TGF-ß1 induces myofibroblast differentiation, while IL-1ß induces a proinflammatory fibroblast phenotype that promotes fibroblast binding to monocyte/macrophages. CD44 expression is essential for both responses. Potential CD44 splice variants involved, however, are unidentified. The TGF-ß1-activated CD44/epidermal growth factor receptor complex induces differentiation of metastatic cells through interactions with the matrix metalloproteinase inducer, CD147. This study aimed to determine the CD44 variants involved in TGF-ß1- and IL-1ß-mediated responses and to investigate the potential profibrotic role of CD147. Using immunocytochemistry and quantitative PCR, standard CD44s were shown to be essential for both TGF-ß1-induced fibroblast/myofibroblast differentiation and IL-1ß-induced monocyte binding. Co-immunoprecipitation identified that CD147 associated with CD44s. Using CD147-siRNA and confocal microscopy, we also determined that incorporation of the myofibroblast marker, αSMA, into F-actin stress fibers was prevented in the absence of CD147 and myofibroblast-dependent collagen gel contraction was inhibited. CD147 did not associate with HA, but removal of HA prevented the association of CD44s with CD147 at points of cell-cell contact. Taken together, our data suggest that CD44s/CD147 colocalization is essential in regulating the mechanical tension required for the αSMA incorporation into F-actin stress fibers that regulates myofibroblast phenotype.


Asunto(s)
Basigina/fisiología , Diferenciación Celular/fisiología , Receptores de Hialuranos/fisiología , Miofibroblastos/citología , Factor de Crecimiento Transformador beta1/fisiología , Basigina/metabolismo , Humanos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/metabolismo , Interleucina-1beta/fisiología , Miofibroblastos/metabolismo
8.
Front Immunol ; 12: 675731, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234778

RESUMEN

High mobility group box 1 (HMGB1) is a non-histone protein which is predominantly localised in the cell nucleus. However, stressed, dying, injured or dead cells can release this protein into the extracellular matrix passively. In addition, HMGB1 release was observed in cancer and immune cells where this process can be triggered by various endogenous as well as exogenous stimuli. Importantly, released HMGB1 acts as a so-called "danger signal" and could impact on the ability of cancer cells to escape host immune surveillance. However, the molecular mechanisms underlying the functional role of HMGB1 in determining the capability of human cancer cells to evade immune attack remain unclear. Here we report that the involvement of HMGB1 in anti-cancer immune evasion is determined by Toll-like receptor (TLR) 4, which recognises HMGB1 as a ligand. We found that HGMB1 induces TLR4-mediated production of transforming growth factor beta type 1 (TGF-ß), displaying autocrine/paracrine activities. TGF-ß induces production of the immunosuppressive protein galectin-9 in cancer cells. In TLR4-positive cancer cells, HMGB1 triggers the formation of an autocrine loop which induces galectin-9 expression. In malignant cells lacking TLR4, the same effect could be triggered by HMGB1 indirectly through TLR4-expressing myeloid cells present in the tumour microenvironment (e. g. tumour-associated macrophages).


Asunto(s)
Galectinas/biosíntesis , Proteína HMGB1/fisiología , Neoplasias/inmunología , Receptor Toll-Like 4/fisiología , Humanos , Tolerancia Inmunológica , Células THP-1 , Factor de Crecimiento Transformador beta1/fisiología
9.
Hum Exp Toxicol ; 40(12_suppl): S87-S95, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34219514

RESUMEN

Taraxasterol (TAR) is a kind of active compound extracted from dandelion and its molecular structure resembles steroid hormones. Recently, TAR has been reported to show an anti-tumor activity. However, the specific role of TAR in papillary thyroid cancer (PTC) has not been clarified. In this study, we investigated the effect of TAR on PTC cell migration, invasion and epithelial-to-mesenchymal transition (EMT) induced by TGF-ß1. PTC cells were exposed to TGF-ß1 (5 ng/mL) and then treated with different concentrations of TAR. We found that TAR showed no obvious cytotoxicity below 10 µg/mL but notably reduced migration and invasion of TGF-ß1-treated PTC cells. Moreover, TAR treatment decreased MMP-2 and MMP-9 levels, and obviously affected the expression of EMT markers. We also observed that Wnt3a and ß-catenin levels were significantly increased in TGF-ß1-treated PTC cells while TAR inhibited these effects in a concentration-dependent manner. Additionally, activation of the Wnt pathway by LiCl attenuated the suppressive effect of TAR on TGF-ß1-induced migration, invasion and EMT in PTC cells. Taken together, we highlighted that TAR could significantly suppress TGF-ß1-regulated migration and invasion by reversing the EMT process via the Wnt/ß-catenin pathway, suggesting that TAR may be a potential anti-cancer agent for PTC treatment.


Asunto(s)
Transición Epitelial-Mesenquimal/efectos de los fármacos , Esteroles/farmacología , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/patología , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Triterpenos/farmacología , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/fisiología , Humanos , Metaloproteinasa 2 de la Matriz/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/efectos de los fármacos , Invasividad Neoplásica/prevención & control , Inhibidores de Proteasas/farmacología , Cáncer Papilar Tiroideo/metabolismo , Neoplasias de la Tiroides/metabolismo , Factor de Crecimiento Transformador beta1/fisiología
10.
Can J Physiol Pharmacol ; 99(12): 1272-1279, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34283938

RESUMEN

The excessive healing response during wound repair can result in hypertrophic scars (HS). Lysyl oxidase like 1 (LOXL1) has been reported to be associated with fibrosis via targeting transforming growth factor ß1 (TGF-ß1) signaling. This study aimed to investigate the effect of LOXL1 on HS formation. The expression of LOXL1 in HS tissues and TGF-ß1-induced HS-derived fibroblasts (HSFs) was detected via reverse transcription quantitative PCR and Western blot. LOXL1 was silenced in HSFs using transfection with short hairpin RNA (shRNA), then wound healing process including cell proliferation, cell cycle distribution, migration, and extracellular matrix (ECM) deposition along with Smad expression were measured by cell counting kit-8, EdU staining, flow cytometry, transwell, immunofluorescence, and Western blot assays. LOXL1 was upregulated in HS tissues and TGF-ß1-induced HSFs. Knockdown of LOXL1 inhibited proliferation and migration but promoted cell cycle G0/G1 phase arrest in TGF-ß1-induced HSFs; it increased expression of cyclin D1, CDK4, MMP2, MMP9, COL1A1, COL1A2, fibronectin, COL3A1, α-SMA, but decreased expression of p27, and the phosphorylation of Smad2 and Smad3 caused by TGF-ß1 were also blocked by LOXL1 silencing. Silence of LOXL1 could effectively inhibit TGF-ß1-induced proliferation, migration, and ECM deposition in HSFs via inactivating Smad pathway. Targeting LOXL1 may have future therapeutic implications for HS treatment.


Asunto(s)
Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/fisiología , Proliferación Celular/genética , Fibroblastos/patología , Fibrosis/genética , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Transducción de Señal/genética , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta1/fisiología , Adulto , Movimiento Celular/genética , Matriz Extracelular/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fosforilación , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología
11.
Exp Eye Res ; 207: 108594, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33894227

RESUMEN

The TGF beta-1, -2 and -3 isoforms are transcribed from different genes but bind to the same receptors and signal through the same canonical and non-canonical signal transduction pathways. There are numerous regulatory mechanisms controlling the action of each isoform that include the organ-specific cells producing latent TGF beta growth factors, multiple effectors that activate the isoforms, ECM-associated SLRPs and basement membrane components that modulate the activity and localization of the isoforms, other interactive cytokine-growth factor receptor systems, such as PDGF and CTGF, TGF beta receptor expression on target cells, including myofibroblast precursors, receptor binding competition, positive and negative signal transduction effectors, and transcription and translational regulatory mechanisms. While there has long been the view that TGF beta-1and TGF beta-2 are pro-fibrotic, while TGF beta-3 is anti-fibrotic, this review suggests that view is too simplistic, at least in adult tissues, since TGF beta-3 shares far more similarities in its modulation of fibrotic gene expression with TGF beta-1 and TGF beta-2, than it does differences, and often the differences are subtle. Rather, TGF beta-3 should be seen as a fibro-modulatory partner to the other two isoforms that modulates a nuanced and better controlled response to injury. The complex interplay between the three isoforms and numerous interactive proteins, in the context of the cellular milieu, controls regenerative non-fibrotic vs. fibrotic healing in a response to injury in a particular organ, as well as the resolution of fibrosis, when that occurs.


Asunto(s)
Córnea/patología , Factor de Crecimiento Transformador beta1/fisiología , Factor de Crecimiento Transformador beta2/fisiología , Factor de Crecimiento Transformador beta3/fisiología , Animales , Córnea/metabolismo , Fibrosis/metabolismo , Humanos , Isoformas de Proteínas
12.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800912

RESUMEN

Arrhythmogenic Cardiomyopathy (ACM) is characterized by the replacement of the myocardium with fibrotic or fibro-fatty tissue and inflammatory infiltrates in the heart. To date, while ACM adipogenesis is a well-investigated differentiation program, ACM-related fibrosis remains a scientific gap of knowledge. In this study, we analyze the fibrotic process occurring during ACM pathogenesis focusing on the role of cardiac mesenchymal stromal cells (C-MSC) as a source of myofibroblasts. We performed the ex vivo studies on plasma and right ventricular endomyocardial bioptic samples collected from ACM patients and healthy control donors (HC). In vitro studies were performed on C-MSC isolated from endomyocardial biopsies of both groups. Our results revealed that circulating TGF-ß1 levels are significantly higher in the ACM cohort than in HC. Accordingly, fibrotic markers are increased in ACM patient-derived cardiac biopsies compared to HC ones. This difference is not evident in isolated C-MSC. Nevertheless, ACM C-MSC are more responsive than HC ones to TGF-ß1 treatment, in terms of pro-fibrotic differentiation and higher activation of the SMAD2/3 signaling pathway. These results provide the novel evidence that C-MSC are a source of myofibroblasts and participate in ACM fibrotic remodeling, being highly responsive to ACM-characteristic excess TGF-ß1.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/fisiopatología , Endocardio/patología , Células Madre Mesenquimatosas/patología , Miofibroblastos/patología , Factor de Crecimiento Transformador beta1/fisiología , Adulto , Displasia Ventricular Derecha Arritmogénica/sangre , Displasia Ventricular Derecha Arritmogénica/patología , Diferenciación Celular , Endocardio/metabolismo , Femenino , Fibrosis , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , ARN Mensajero/biosíntesis , Transducción de Señal/fisiología , Proteína Smad2/fisiología , Proteína smad3/fisiología , Factor de Crecimiento Transformador beta1/sangre
13.
Biol Res ; 54(1): 9, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712084

RESUMEN

BACKGROUND: PGF2α is essential for the induction of the corpus luteum regression which in turn reduces progesterone production. Early growth response (EGR) proteins are Cys2-His2-type zinc-finger transcription factor that are strongly linked to cellular proliferation, survival and apoptosis. Rapid elevation of EGR1 was observed after luteolytic dose of PGF2α. EGR1 is involved in the transactivation of many genes, including TGFß1, which plays an important role during luteal regression. METHODS: The current study was conducted in buffalo luteal cells with the aim to better understand the role of EGR1 in transactivation of TGFß1 during PGF2α induced luteal regression. Luteal cells from mid stage corpus luteum of buffalo were cultured and treated with different doses of PGF2α for different time durations. Relative expression of mRNAs encoding for enzymes within the progesterone biosynthetic pathway (3ßHSD, CYP11A1 and StAR); Caspase 3; AKT were analyzed to confirm the occurrence of luteolytic event. To determine if EGR1 is involved in the PGF2α induced luteal regression via induction of TGFß1 expression, we knocked out the EGR1 gene by using CRISPR/Cas9. RESULT: The present experiment determined whether EGR1 protein expression in luteal cells was responsive to PGF2α treatment. Quantification of EGR1 and TGFß1 mRNA showed significant up regulation in luteal cells of buffalo at 12 h post PGF2α induction. In order to validate the role of PGF2α on stimulating the expression of TGFß1 by an EGR1 dependent mechanism we knocked out EGR1. The EGR1 ablated luteal cells were stimulated with PGF2α and it was observed that EGR1 KO did not modulate the PGF2α induced expression of TGFß1. In PGF2α treated EGR1 KO luteal cell, the mRNA expression of Caspase 3 was significantly increased compared to PGF2α treated wild type luteal cells maintained for 12 h. We also studied the influence of EGR1 on steroidogenesis. The EGR1 KO luteal cells with PGF2α treatment showed no substantial difference either in the progesterone concentration or in StAR mRNA expression with PGF2α-treated wild type luteal cells. CONCLUSION: These results suggest that EGR1 signaling is not the only factor which plays a role in the regulation of PGF2α induced TGFß1 signaling for luteolysis.


Asunto(s)
Búfalos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Cuerpo Lúteo/fisiología , Dinoprost , Proteína 1 de la Respuesta de Crecimiento Precoz/fisiología , Luteólisis , Animales , Células Cultivadas , Cuerpo Lúteo/citología , Dinoprost/farmacología , Femenino , Regulación de la Expresión Génica , Transducción de Señal , Factor de Crecimiento Transformador beta1/fisiología
14.
Blood ; 137(19): 2662-2675, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33569577

RESUMEN

Patients with familial platelet disorder with a predisposition to myeloid malignancy (FPDMM) harbor germline monoallelic mutations in a key hematopoietic transcription factor, RUNX-1. Previous studies of FPDMM have focused on megakaryocyte (Mk) differentiation and platelet production and signaling. However, the effects of RUNX-1 haploinsufficiency on hematopoietic progenitor cells (HPCs) and subsequent megakaryopoiesis remains incomplete. We studied induced pluripotent stem cell (iPSC)-derived HPCs (iHPCs) and Mks (iMks) from both patient-derived lines and a wild-type (WT) line modified to be RUNX-1 haploinsufficient (RUNX-1+/-), each compared with their isogenic WT control. All RUNX-1+/- lines showed decreased iMk yield and depletion of an Mk-biased iHPC subpopulation. To investigate global and local gene expression changes underlying this iHPC shift, single-cell RNA sequencing was performed on sorted FPDMM and control iHPCs. We defined several cell subpopulations in the Mk-biased iHPCs. Analyses of gene sets upregulated in FPDMM iHPCs indicated enrichment for response to stress, regulation of signal transduction, and immune signaling-related gene sets. Immunoblot analyses in FPDMM iMks were consistent with these findings, but also identified augmented baseline c-Jun N-terminal kinase (JNK) phosphorylation, known to be activated by transforming growth factor-ß1 (TGF-ß1) and cellular stressors. These findings were confirmed in adult human CD34+-derived stem and progenitor cells (HSPCs) transduced with lentiviral RUNX1 short hairpin RNA to mimic RUNX-1+/-. In both iHPCs and CD34+-derived HSPCs, targeted inhibitors of JNK and TGF-ß1 pathways corrected the megakaryopoietic defect. We propose that such intervention may correct the thrombocytopenia in patients with FPDMM.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/deficiencia , Células Madre Hematopoyéticas/patología , Megacariocitos/patología , Síndromes Neoplásicos Hereditarios/patología , Adulto , Secuencia de Bases , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Citometría de Flujo , Haploinsuficiencia , Humanos , Inmunofenotipificación , Células Madre Pluripotentes Inducidas/citología , Sistema de Señalización de MAP Quinasas , Síndromes Neoplásicos Hereditarios/genética , Complejo GPIb-IX de Glicoproteína Plaquetaria/análisis , ARN Interferente Pequeño/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Análisis de la Célula Individual , Trombopoyesis , Factor de Crecimiento Transformador beta1/fisiología
15.
Cancer Lett ; 505: 75-86, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33609609

RESUMEN

In many tumors, CD73 (NT5E), a rate-limiting enzyme in adenosine biosynthesis, is upregulated by TGF-ß and drives tumor progression. Conversely, CD73 is downregulated in endometrial carcinomas (EC) despite a TGF-ß-rich environment. Through gene expression analyses of normal endometrium samples of the uterine cancer TCGA data set and genetic and pharmacological studies, we discovered CD73 loss shifts TGF-ß1 from tumor suppressor to promoter in EC. TGF-ß1 upregulated CD73 and epithelial integrity in vivo in the normal endometrium and in vitro in early stage EC cells. With loss of CD73, TGF-ß1-mediated epithelial integrity was abrogated. EC cells developed TGF-ß1-mediated stress fibers and macromolecule permeability, migration, and invasion increased. In human tumors, CD73 is downregulated in deeply invasive stage I EC. Consistent with shifting TGF-ß1 activity, CD73 loss increased TGF-ß1-mediated canonical signaling and upregulated cyclin D1 (CCND1) and downregulated p21 expression. This shift was clinically relevant, as CD73Low/CCND1High expression associated with poor tumor differentiation, increased myometrial and lymphatic/vascular space invasion, and patient death. Further loss of CD73 in CD73Low expressing advanced stage EC cells increased TGF-ß-mediated stress fibers, signaling, and invasiveness, whereby adenosine A1 receptor agonist, CPA, dampened TGF-ß-mediated invasion. These data identify CD73 loss as essential for shifting TGF-ß activity in EC.


Asunto(s)
5'-Nucleotidasa/fisiología , Neoplasias Endometriales/patología , Factor de Crecimiento Transformador beta1/fisiología , Proteínas Supresoras de Tumor/fisiología , Adenosina/fisiología , Adulto , Anciano , Animales , Diferenciación Celular , Línea Celular Tumoral , Femenino , Proteínas Ligadas a GPI/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Estadificación de Neoplasias
16.
FASEB J ; 35(3): e21403, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33559185

RESUMEN

The retinal pigment epithelium (RPE) undergoes characteristic structural changes and epithelial-mesenchymal transition (EMT) during normal aging, which are exacerbated in age-related macular degeneration (AMD). Although the pathogenic mechanisms of aging and AMD remain unclear, transforming growth factor-ß1 (TGF-ß1) is known to induce oxidative stress, morphometric changes, and EMT as a senescence-promoting factor. In this study, we examined whether intravitreal injection of TGF-ß1 into the mouse eye elicits senescence-like morphological alterations in the RPE and if this can be prevented by suppressing mammalian target of rapamycin complex 1 (mTORC1) or NADPH oxidase (NOX) signaling. We verified that intravitreal TGF-ß1-induced stress fiber formation and EMT in RPE cells, along with age-associated morphometric changes, including increased variation in cell size and reduced cell density. In RPE cells, exogenous TGF-ß1 increased endogenous expression of TGF-ß1 and upregulated Smad3-ERK1/2-mTORC1 signaling, increasing reactive oxygen species (ROS) production and EMT. We demonstrated that inhibition of the mTORC1-NOX4 pathway by pretreatment with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMP-dependent protein kinase, or GKT137831, a NOX1/4 inhibitor, decreased ROS generation, prevented stress fiber formation, attenuated EMT, and improved the regularity of the RPE structure in vitro and in vivo. These results suggest that intravitreal TGF-ß1 injection could be used as a screening model to investigate the aging-related structural and functional changes to the RPE. Furthermore, the regulation of TGF-ß-mTORC1-NOX signaling could be a potential therapeutic target for reducing pathogenic alterations in aged RPE and AMD.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , NADPH Oxidasas/fisiología , Epitelio Pigmentado de la Retina/patología , Factor de Crecimiento Transformador beta1/fisiología , Animales , Células Cultivadas , Senescencia Celular , Transición Epitelial-Mesenquimal , Inyecciones Intravítreas , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasas/antagonistas & inhibidores , Pirazolonas/farmacología , Piridonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/fisiología , Transducción de Señal/fisiología
17.
Sci Rep ; 11(1): 584, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436723

RESUMEN

Many of the characteristics ascribed to cancer-associated fibroblasts (CAFs) are shared by activated, autophagic and senescent fibroblasts. Whilst most oral squamous cell carcinomas (OSCCs) are genetically unstable (GU-OSCC), genetically stable variants (GS-OSCC) have been described and, notably, CAF activation (myofibroblast differentiation) and senescence are characteristics particularly associated with GU-OSCCs. However, it is not known whether autophagy is disrupted in these cells or whether autophagy regulates the development of the myofibroblast and senescent phenotypes. In this study, we show that senescent CAFs from GU-OSCCs contained more autophagosomes than normal human oral fibroblasts (NHOFs) and CAFs from GS-OSCCs possibly due to autophagic impairment. Further, we show that deregulation of autophagy in normal fibroblasts, either by inhibition with autophagy inhibitor, SAR405, or activation with TGF-ß1, induced fibroblast activation and senescence: In response to TGF-ß1, autophagy was induced prior to the development of the activated and senescent phenotypes. Lastly, we show that both SAR405- and TGF-ß1-treated NHOFs enhance OSCC cell migration but only TGF-ß1-treated cells increase OSCC invasion through Matrigel, indicating that TGF-ß1 has additional effects that are independent of fibroblast activation/senescence. These results suggest a functional role for autophagy in the development of myofibroblast and CAF phenotypes.


Asunto(s)
Autofagia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Senescencia Celular/genética , Fibroblastos/patología , Fibroblastos/fisiología , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Factor de Crecimiento Transformador beta1/fisiología , Autofagia/efectos de los fármacos , Autofagia/genética , Autofagia/fisiología , Diferenciación Celular/genética , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Senescencia Celular/efectos de los fármacos , Humanos , Miofibroblastos/patología , Invasividad Neoplásica/genética , Piridinas/farmacología , Pirimidinonas/farmacología
18.
Commun Biol ; 4(1): 29, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33398032

RESUMEN

Virtually all bone marrow-derived stromal cell (BMSC) chondrogenic induction cultures include greater than 2 weeks exposure to transforming growth factor-ß (TGF-ß), but fail to generate cartilage-like tissue suitable for joint repair. Herein we used a micro-pellet model (5 × 103 BMSC each) to determine the duration of TGF-ß1 exposure required to initiate differentiation machinery, and to characterize the role of intrinsic programming. We found that a single day of TGF-ß1 exposure was sufficient to trigger BMSC chondrogenic differentiation and tissue formation, similar to 21 days of TGF-ß1 exposure. Despite cessation of TGF-ß1 exposure following 24 hours, intrinsic programming mediated further chondrogenic and hypertrophic BMSC differentiation. These important behaviors are obfuscated by diffusion gradients and heterogeneity in commonly used macro-pellet models (2 × 105 BMSC each). Use of more homogenous micro-pellet models will enable identification of the critical differentiation cues required, likely in the first 24-hours, to generate high quality cartilage-like tissue from BMSC.


Asunto(s)
Células de la Médula Ósea/fisiología , Condrocitos/fisiología , Condrogénesis , Ingeniería de Tejidos/métodos , Factor de Crecimiento Transformador beta1/fisiología , Cartílago Articular/citología , Humanos , Hipertrofia , Análisis de Secuencia de ARN
19.
J Vasc Surg Venous Lymphat Disord ; 9(6): 1535-1544, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33482378

RESUMEN

OBJECTIVE: The vital pathogenesis of varicose veins includes remodeling of the extracellular matrix and decreased vascular tone. Prostaglandin E2 (PGE2), a small molecule substance and inflammatory medium that belongs to the arachidonic acid derivatives, has the capacity to influence the expression of metalloproteinase and the vascular tone of the venous wall. The purpose of the present study was to investigate the role of PGE2 in the development of varicose veins in lower limbs. METHODS: The collected venous specimens were analyzed using hematoxylin and eosin, Masson's trichrome, and immunohistochemical staining. Transforming growth factor (TGF)-ß1, PGE2, CD31, and α-smooth muscle actin antibody were used to detect the expression and distribution of these proteins. The effect of PGE2 on the proliferation, migration, and tube formation capacity of human umbilical vein endothelial cells (HUVECs) was detected in vitro. The effect of TGF-ß1 on the expression of PGE2 and matrix metalloproteinases (MMPs) was assessed using Western blotting. Quantitative reverse transcription polymerase chain reaction was used to evaluate the effect of PGE2 on the expression of nitric oxide synthase (NOS) and other genes. RESULTS: The expression of PGE2 and TGF-ß1 in varicose veins was upregulated in the media tunica and intima tunica, and a strong positive correlation was found between PGE2 and TGF-ß1 expression in both varicose veins (95% confidence interval, 0.5207-0.9582; R = 0.848; P = .0005) and normal veins (95% confidence interval, 0.2530-0.8532; R = 0.643; P = .003). PGE2 promoted the migration and tube formation ability of HUVECs. Moreover, PGE2 also upregulated the expression of MMP-1 and TGF-ß1 in HUVECs and increased the mRNA level of inducible NOS. CONCLUSIONS: PGE2 can affect the remodeling of the extracellular matrix and reduce the elasticity of the vascular walls by promoting the synthesis of TGF-ß1 and MMP-1. PGE2 can also reduce the tension of the great saphenous vein by promoting the expression of inducible NOS, thus aggravating the blood stasis.


Asunto(s)
Dinoprostona/fisiología , Extremidad Inferior/irrigación sanguínea , Óxido Nítrico Sintasa de Tipo II/fisiología , Factor de Crecimiento Transformador beta1/fisiología , Várices/etiología , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Transducción de Señal
20.
Biol. Res ; 54: 9-9, 2021. ilus, tab, graf
Artículo en Inglés | LILACS | ID: biblio-1505802

RESUMEN

BACKGROUND: PGF2α is essential for the induction of the corpus luteum regression which in turn reduces progesterone production. Early growth response (EGR) proteins are Cys2-His2-type zinc-finger transcription factor that are strongly linked to cellular proliferation, survival and apoptosis. Rapid elevation of EGR1 was observed after luteolytic dose of PGF2α. EGR1 is involved in the transactivation of many genes, including TGFß1, which plays an important role during luteal regression. METHODS: The current study was conducted in buffalo luteal cells with the aim to better understand the role of EGR1 in transactivation of TGFß1 during PGF2α induced luteal regression. Luteal cells from mid stage corpus luteum of buffalo were cultured and treated with different doses of PGF2α for different time durations. Relative expression of mRNAs encoding for enzymes within the progesterone biosynthetic pathway (3ßHSD, CYP11A1 and StAR); Caspase 3; AKT were analyzed to confirm the occurrence of luteolytic event. To determine if EGR1 is involved in the PGF2α induced luteal regression via induction of TGFß1 expression, we knocked out the EGR1 gene by using CRISPR/Cas9. RESULT: The present experiment determined whether EGR1 protein expression in luteal cells was responsive to PGF2α treatment. Quantification of EGR1 and TGFß1 mRNA showed significant up regulation in luteal cells of buffalo at 12 h post PGF2α induction. In order to validate the role of PGF2α on stimulating the expression of TGFß1 by an EGR1 dependent mechanism we knocked out EGR1. The EGR1 ablated luteal cells were stimulated with PGF2α and it was observed that EGR1 KO did not modulate the PGF2α induced expression of TGFß1. In PGF2α treated EGR1 KO luteal cell, the mRNA expression of Caspase 3 was significantly increased compared to PGF2α treated wild type luteal cells maintained for 12 h. We also studied the influence of EGR1 on steroidogenesis. The EGR1 KO luteal cells with PGF2α treatment showed no substantial difference either in the progesterone concentration or in StAR mRNA expression with PGF2α-treated wild type luteal cells. CONCLUSION: These results suggest that EGR1 signaling is not the only factor which plays a role in the regulation of PGF2α induced TGFß1 signaling for luteolysis.


Asunto(s)
Animales , Femenino , Búfalos , Dinoprost/farmacología , Cuerpo Lúteo/fisiología , Luteólisis , Proteína 1 de la Respuesta de Crecimiento Precoz/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Transducción de Señal , Células Cultivadas , Regulación de la Expresión Génica , Cuerpo Lúteo/citología , Factor de Crecimiento Transformador beta1/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA