Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 602
Filtrar
1.
Genome Biol ; 25(1): 210, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107855

RESUMEN

BACKGROUND: Microsatellite instability (MSI) due to mismatch repair deficiency (dMMR) is common in colorectal cancer (CRC). These cancers are associated with somatic coding events, but the noncoding pathophysiological impact of this genomic instability is yet poorly understood. Here, we perform an analysis of coding and noncoding MSI events at the different steps of colorectal tumorigenesis using whole exome sequencing and search for associated splicing events via RNA sequencing at the bulk-tumor and single-cell levels. RESULTS: Our results demonstrate that MSI leads to hundreds of noncoding DNA mutations, notably at polypyrimidine U2AF RNA-binding sites which are endowed with cis-activity in splicing, while higher frequency of exon skipping events are observed in the mRNAs of MSI compared to non-MSI CRC. At the DNA level, these noncoding MSI mutations occur very early prior to cell transformation in the dMMR colonic crypt, accounting for only a fraction of the exon skipping in MSI CRC. At the RNA level, the aberrant exon skipping signature is likely to impair colonic cell differentiation in MSI CRC affecting the expression of alternative exons encoding protein isoforms governing cell fate, while also targeting constitutive exons, making dMMR cells immunogenic in early stage before the onset of coding mutations. This signature is characterized by its similarity to the oncogenic U2AF1-S34F splicing mutation observed in several other non-MSI cancer. CONCLUSIONS: Overall, these findings provide evidence that a very early RNA splicing signature partly driven by MSI impairs cell differentiation and promotes MSI CRC initiation, far before coding mutations which accumulate later during MSI tumorigenesis.


Asunto(s)
Empalme Alternativo , Neoplasias Colorrectales , Inestabilidad de Microsatélites , Factor de Empalme U2AF , Neoplasias Colorrectales/genética , Humanos , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo , Mutación , Sitios de Unión , Exones
2.
Sci Adv ; 10(34): eadn3010, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39178251

RESUMEN

The eukaryotic mRNA surveillance pathway, a pivotal guardian of mRNA fidelity, stands at the nexus of diverse biological processes, including antiviral immunity. Despite the recognized function of splicing factors on mRNA fate, the intricate interplay shaping the mRNA surveillance pathway remains elusive. We illustrate that the conserved splicing factor U2 snRNP auxiliary factor large subunit B (U2AF65B) modulates splicing of mRNA surveillance complex, contributing to transcriptomic homeostasis in maize. The functionality of the mRNA surveillance pathway requires ZmU2AF65B-mediated normal splicing of upstream frameshift 3 (ZmUPF3) pre-mRNA, encoding a core factor in this pathway. Intriguingly, sugarcane mosaic virus (SCMV)-coded nuclear inclusion protein a protease (NIa-Pro) hinders the splicing function of ZmU2AF65B. Furthermore, NIa-Pro disrupts ZmU2AF65B binding to ZmUPF3 pre-mRNA, leading to dysregulated splicing of ZmUPF3 transcripts and, consequently, impairing mRNA surveillance, thus facilitating viral infection. Together, this study establishes that splicing governs the mRNA surveillance pathway and identifies a pathogenic protein capable of disrupting this regulation to compromise RNA immunity.


Asunto(s)
Potyvirus , Empalme del ARN , ARN Mensajero , Zea mays , Zea mays/virología , Zea mays/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Potyvirus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Factor de Empalme U2AF/metabolismo , Factor de Empalme U2AF/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Mol Cell ; 84(14): 2618-2633.e10, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39025073

RESUMEN

The twenty-three Fanconi anemia (FA) proteins cooperate in the FA/BRCA pathway to repair DNA interstrand cross-links (ICLs). The cell division cycle and apoptosis regulator 1 (CCAR1) protein is also a regulator of ICL repair, though its possible function in the FA/BRCA pathway remains unknown. Here, we demonstrate that CCAR1 plays a unique upstream role in the FA/BRCA pathway and is required for FANCA protein expression in human cells. Interestingly, CCAR1 co-immunoprecipitates with FANCA pre-mRNA and is required for FANCA mRNA processing. Loss of CCAR1 results in retention of a poison exon in the FANCA transcript, thereby leading to reduced FANCA protein expression. A unique domain of CCAR1, the EF hand domain, is required for interaction with the U2AF heterodimer of the spliceosome and for excision of the poison exon. Taken together, CCAR1 is a splicing modulator required for normal splicing of the FANCA mRNA and other mRNAs involved in various cellular pathways.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Proteínas de Ciclo Celular , Proteína del Grupo de Complementación A de la Anemia de Fanconi , Anemia de Fanconi , Empalme del ARN , Factor de Empalme U2AF , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Reparación del ADN , Endodesoxirribonucleasas , Exones , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Células HEK293 , Células HeLa , Unión Proteica , Precursores del ARN/metabolismo , Precursores del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Empalmosomas/metabolismo , Empalmosomas/genética , Factor de Empalme U2AF/metabolismo , Factor de Empalme U2AF/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo
4.
Eur J Pharmacol ; 980: 176855, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39059570

RESUMEN

Phenotypic transformation of pulmonary artery smooth muscle cells (PASMCs) contributes to vascular remodeling in hypoxic pulmonary hypertension (PH). Recent studies have suggested that circular RNAs (circRNAs) may play important roles in the vascular remodeling of hypoxia-induced PH. However, whether circRNAs cause pulmonary vascular remodeling by regulating the phenotypic transformation in PH has not been investigated. Microarray and RT-qPCR analysis identified that circLMBR1, a novel circRNA, decreased in mouse lung tissues of the hypoxia-SU5416 PH model, as well as in human PASMCs and mouse PASMCs exposed to hypoxia. Overexpression of circLMBR1 in the Semaxinib (SU5416) mouse model ameliorated hypoxia-induced PH and vascular remodeling in the lungs. Notably, circLMBR1 was mainly distributed in the nucleus and bound to the splicing factor PUF60. CircLMBR1 suppressed the phenotypic transformation of human PASMCs and vascular remodeling by inhibiting PUF60 expression. Furthermore, we identified U2AF65 as the downstream regulatory factor of PUF60. U2AF65 directly interacted with the pre-mRNA of the contractile phenotype marker smooth muscle protein 22-α (SM22α) and inhibited its splicing. Meanwhile, hypoxia exposure increased the formation of the PUF60-U2AF65 complex, thereby inhibiting SM22α production and inducing the transition of human PASMCs from a contractile phenotype to a synthetic phenotype. Overall, our results verified the important role of circLMBR1 in the pathological process of PH. We also proposed a new circLMBR1/PUF60-U2AF65/pre-SM22α pathway that could regulate the phenotypic transformation and proliferation of human PASMCs. This study may provide new perspectives for the diagnosis and treatment of PH.


Asunto(s)
Miocitos del Músculo Liso , Fenotipo , Arteria Pulmonar , Remodelación Vascular , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/efectos de los fármacos , Animales , Humanos , Ratones , Remodelación Vascular/efectos de los fármacos , Remodelación Vascular/genética , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , ARN Circular/genética , ARN Circular/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/efectos de los fármacos , Masculino , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/genética , Hipoxia/metabolismo , Hipoxia/genética , Ratones Endogámicos C57BL , Hipoxia de la Célula , Indoles/farmacología , Pirroles
5.
PLoS Genet ; 20(6): e1011316, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833506

RESUMEN

Splicing is an important step of gene expression regulation in eukaryotes, as there are many mRNA precursors that can be alternatively spliced in different tissues, at different cell cycle phases or under different external stimuli. We have developed several integrated fluorescence-based in vivo splicing reporter constructs that allow the quantification of fission yeast splicing in vivo on intact cells, and we have compared their splicing efficiency in a wild type strain and in a prp2-1 (U2AF65) genetic background, showing a clear dependency between Prp2 and a consensus signal at 5' splicing site (5'SS). To isolate novel genes involved in regulated splicing, we have crossed the reporter showing more intron retention with the Schizosaccharomyces pombe knock out collection. Among the candidate genes involved in the regulation of splicing, we have detected strong splicing defects in two of the mutants -Δcwf12, a member of the NineTeen Complex (NTC) and Δsaf5, a methylosome subunit that acts together with the survival motor neuron (SMN) complex in small nuclear ribonucleoproteins (snRNP) biogenesis. We have identified that strains with mutations in cwf12 have inefficient splicing, mainly when the 5'SS differs from the consensus. However, although Δsaf5 cells also have some dependency on 5'SS sequence, we noticed that when one intron of a given pre-mRNA was affected, the rest of the introns of the same pre-mRNA had high probabilities of being also affected. This observation points Saf5 as a link between transcription rate and splicing.


Asunto(s)
Empalme del ARN , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Transcripción Genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Regulación Fúngica de la Expresión Génica , Intrones/genética , Mutación , Empalme Alternativo/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Sitios de Empalme de ARN/genética , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo
7.
Nat Commun ; 15(1): 3016, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589367

RESUMEN

Myelodysplastic syndromes (MDS) with mutated SF3B1 gene present features including a favourable outcome distinct from MDS with mutations in other splicing factor genes SRSF2 or U2AF1. Molecular bases of these divergences are poorly understood. Here we find that SF3B1-mutated MDS show reduced R-loop formation predominating in gene bodies associated with intron retention reduction, not found in U2AF1- or SRSF2-mutated MDS. Compared to erythroblasts from SRSF2- or U2AF1-mutated patients, SF3B1-mutated erythroblasts exhibit augmented DNA synthesis, accelerated replication forks, and single-stranded DNA exposure upon differentiation. Importantly, histone deacetylase inhibition using vorinostat restores R-loop formation, slows down DNA replication forks and improves SF3B1-mutated erythroblast differentiation. In conclusion, loss of R-loops with associated DNA replication stress represents a hallmark of SF3B1-mutated MDS ineffective erythropoiesis, which could be used as a therapeutic target.


Asunto(s)
Síndromes Mielodisplásicos , Estructuras R-Loop , Humanos , Factor de Empalme U2AF/genética , Factores de Empalme Serina-Arginina/genética , Factores de Empalme de ARN/genética , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Mutación , Factores de Transcripción/genética , Fosfoproteínas/genética
8.
Breast Cancer Res ; 26(1): 60, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594783

RESUMEN

BACKGROUND: Small nucleolar RNAs (snoRNAs) play key roles in ribosome biosynthesis. However, the mechanism by which snoRNAs regulate cancer stemness remains to be fully elucidated. METHODS: SNORA68 expression was evaluated in breast cancer tissues by in situ hybridization and qRT‒PCR. Proliferation, migration, apoptosis and stemness analyses were used to determine the role of SNORA68 in carcinogenesis and stemness maintenance. Mechanistically, RNA pull-down, RNA immunoprecipitation (RIP), cell fractionation and coimmunoprecipitation assays were conducted. RESULTS: SNORA68 exhibited high expression in triple-negative breast cancer (TNBC) and was significantly correlated with tumor size (P = 0.048), ki-67 level (P = 0.037), and TNM stage (P = 0.015). The plasma SNORA68 concentration was significantly lower in patients who achieved clinical benefit. The SNORA68-high patients had significantly shorter disease-free survival (DFS) (P = 0.036). Functionally, SNORA68 was found to promote the cell stemness and carcinogenesis of TNBC in vitro and in vivo. Furthermore, elevated SNORA68 expression led to increased nucleolar RPL23 expression and retained RPL23 in the nucleolus by binding U2AF2. RPL23 in the nucleolus subsequently upregulated c-Myc expression. This pathway was validated using a xenograft model. CONCLUSION: U2AF2-SNORA68 promotes TNBC stemness by retaining RPL23 in the nucleolus and increasing c-Myc expression, which provides new insight into the regulatory mechanism of stemness.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , ARN , Núcleo Celular , Regulación Neoplásica de la Expresión Génica , Carcinogénesis/genética , Proliferación Celular/genética , Factor de Empalme U2AF/genética
9.
Proc Natl Acad Sci U S A ; 121(13): e2306814121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38513102

RESUMEN

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with aggressive behavior and poor prognosis. Current therapeutic options available for TNBC patients are primarily chemotherapy. With our evolving understanding of this disease, novel targeted therapies, including poly ADP-ribose polymerase (PARP) inhibitors, antibody-drug conjugates, and immune-checkpoint inhibitors, have been developed for clinical use. Previous reports have demonstrated the essential role of estrogen receptor ß (ERß) in TNBC, but the detailed molecular mechanisms downstream ERß activation in TNBC are still far from elucidated. In this study, we demonstrated that a specific ERß agonist, LY500307, potently induces R-loop formation and DNA damage in TNBC cells. Subsequent interactome experiments indicated that the residues 151 to 165 of U2 small nuclear RNA auxiliary factor 1 (U2AF1) and the Trp439 and Lys443 of ERß were critical for the binding between U2AF1 and ERß. Combined RNA sequencing and ribosome sequencing analysis demonstrated that U2AF1-regulated downstream RNA splicing of 5-oxoprolinase (OPLAH) could affect its enzymatic activity and is essential for ERß-induced R-loop formation and DNA damage. In clinical samples including 115 patients from The Cancer Genome Atlas (TCGA) and 32 patients from an in-house cohort, we found a close correlation in the expression of ESR2 and U2AF1 in TNBC patients. Collectively, our study has unraveled the molecular mechanisms that explain the therapeutic effects of ERß activation in TNBC, which provides rationale for ERß activation-based single or combined therapy for patients with TNBC.


Asunto(s)
Empalme Alternativo , Benzopiranos , Receptor beta de Estrógeno , Estructuras R-Loop , Factor de Empalme U2AF , Neoplasias de la Mama Triple Negativas , Humanos , Receptor beta de Estrógeno/agonistas , Receptor beta de Estrógeno/metabolismo , Factor de Empalme U2AF/química , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Terapia Combinada , Células MDA-MB-231 , Empalme Alternativo/efectos de los fármacos , Benzopiranos/farmacología , Benzopiranos/uso terapéutico , Unión Proteica , Sitios de Unión
10.
Cancer Res ; 84(10): 1583-1596, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38417135

RESUMEN

Patients with primary refractory acute myeloid leukemia (AML) have a dismal long-term prognosis. Elucidating the resistance mechanisms to induction chemotherapy could help identify strategies to improve AML patient outcomes. Herein, we retrospectively analyzed the multiomics data of more than 1,500 AML cases and found that patients with spliceosome mutations had a higher risk of developing refractory disease. RNA splicing analysis revealed that the mis-spliced genes in refractory patients converged on translation-associated pathways, promoted mainly by U2AF1 mutations. Integrative analyses of binding and splicing in AML cell lines substantiated that the splicing perturbations of mRNA translation genes originated from both the loss and gain of mutant U2AF1 binding. In particular, the U2AF1S34F and U2AF1Q157R mutants orchestrated the inclusion of exon 11 (encoding a premature termination codon) in the eukaryotic translation initiation factor 4A2 (EIF4A2). This aberrant inclusion led to reduced eIF4A2 protein expression via nonsense-mediated mRNA decay. Consequently, U2AF1 mutations caused a net decrease in global mRNA translation that induced the integrated stress response (ISR) in AML cells, which was confirmed by single-cell RNA sequencing. The induction of ISR enhanced the ability of AML cells to respond and adapt to stress, contributing to chemoresistance. A pharmacologic inhibitor of ISR, ISRIB, sensitized U2AF1 mutant cells to chemotherapy. These findings highlight a resistance mechanism by which U2AF1 mutations drive chemoresistance and provide a therapeutic approach for AML through targeting the ISR pathway. SIGNIFICANCE: U2AF1 mutations induce the integrated stress response by disrupting splicing of mRNA translation genes that improves AML cell fitness to enable resistance to chemotherapy, which can be targeted to improve AML treatment.


Asunto(s)
Resistencia a Antineoplásicos , Leucemia Mieloide Aguda , Mutación , Factor de Empalme U2AF , Humanos , Factor de Empalme U2AF/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Resistencia a Antineoplásicos/genética , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/genética , Empalme del ARN/genética , Animales , Estudios Retrospectivos , Ratones , Línea Celular Tumoral , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo
11.
Rinsho Ketsueki ; 65(1): 30-34, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38311386

RESUMEN

A 47-year-old woman presented with subcutaneous hemorrhage. Blood tests revealed leukoerythroblastosis, anemia, and thrombocytopenia. Bone marrow biopsy led to a diagnosis of primary myelofibrosis (aaDIPSS, DIPSS-plus: intermediate-II risk). JAK2, CALR, and MPL mutations were not detected in peripheral blood, but targeted sequencing of bone marrow specimens revealed a double mutation (Q157R, S34F) in U2AF1. Allo-PBSCT was performed using an HLA-matched related donor, and post-transplantation bone marrow examination showed complete donor chimerism on day 55. Two years after allogeneic transplantation, the patient remains relapse-free. Although U2AF1 gene abnormality is known as a poor prognostic factor in primary myelofibrosis, this patient had a favorable long-term prognosis due to prompt transplantation therapy. This case highlights the importance of detailed gene mutation analysis in patients with triple-negative MF.


Asunto(s)
Mielofibrosis Primaria , Femenino , Humanos , Persona de Mediana Edad , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/terapia , Mielofibrosis Primaria/diagnóstico , Factor de Empalme U2AF/genética , Mutación , Médula Ósea/patología , Trasplante Homólogo , Janus Quinasa 2/genética , Calreticulina/genética
12.
Clin Chim Acta ; 554: 117789, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38246208

RESUMEN

Gene mutations are a pivotal component of the pathogenesis of MDS, and they hold profound prognostic significance for predicting treatment responses and survival outcomes. However, reports about mutation patterns in Chinese MDS patients are limited. In this study, we analyzed the genetic mutation of 23 genes in 231 patients with MDS using next-generation sequencing (NGS) technology, and explored the characteristics of gene mutations in MDS patients and their associations with clinical outcomes, survival, and transformation outcomes. Our results showed that 68.83% patients had at least one gene mutation, and the most common mutations were ASXL1 (21.65%), SF3B1 (17.32%), U2AF1 (16.02%), TET2 (14.72%) and TP53 (8.66%). We also showed that the genetic mutations of TP53, U2AF1 and DNMT3A are independent risk factors for death in patients with MDS, and the ETV6 gene mutation was an independent risk factor for the transformation of MDS patients to AML through the univariate and multivariate Cox regression analysis model. Additionally, the study developed a risk score based on gene mutation data that demonstrated robust predictive capability and stability for the overall survival of MDS patients. Our research provided a strong theoretical basis for the establishment of personalized treatment and prognostic risk assessment models for Chinese MDS patients.


Asunto(s)
Síndromes Mielodisplásicos , Humanos , Factor de Empalme U2AF/genética , Mutación , Pronóstico , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Factores de Transcripción/genética
13.
Vet Microbiol ; 290: 109977, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185072

RESUMEN

Japanese encephalitis virus (JEV) is a zoonotic pathogen belonging to the Flavivirus genus, causing viral encephalitis in humans and reproductive failure in swine. The 3' untranslated region (3'UTR) of JEV contains highly conservative secondary structures required for viral translation, RNA synthesis, and pathogenicity. Identification of host factors interacting with JEV 3'UTR is crucial for elucidating the underlying mechanism of flavivirus replication and pathogenesis. In this study, U2 snRNP auxiliary factor 2 (U2AF2) was identified as a novel cellular protein that interacts with the JEV genomic 3'UTR (the SL-I, SL-II, SL-III, and DB region) via its 1 to 148 amino acids. JEV infection or JEV 3' UTR on its own triggered the nuclear-localized U2AF2 redistributed to the cytoplasm and colocalized with viral replication complex. U2AF2 also interacts with JEV NS3 and NS5 protein, the downregulation of U2AF2 nearly abolished the formation of flavivirus replication vesicles. The production of JEV protein, RNA, and viral titers were all increased by U2AF2 overexpression and decreased by knockdown. U2AF2 also functioned as a pro-viral factor for Zika virus (ZIKV) and West Nile virus (WNV), but not for vesicular stomatitis virus (VSV). Mechanically, U2AF2 facilitated the synthesis of both positive- and negative-strand flavivirus RNA without affecting viral attachment, internalization or release process. Collectively, our work paves the way for developing U2AF2 as a potential flavivirus therapeutic target.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Flavivirus , Enfermedades de los Porcinos , Infección por el Virus Zika , Virus Zika , Humanos , Animales , Porcinos , Flavivirus/genética , Regiones no Traducidas 3' , Ribonucleoproteína Nuclear Pequeña U2/genética , Infección por el Virus Zika/genética , Infección por el Virus Zika/veterinaria , Replicación Viral/genética , Línea Celular , Virus Zika/genética , Virus Zika/metabolismo , Virus de la Encefalitis Japonesa (Especie)/genética , ARN Viral/genética , ARN Viral/metabolismo , Factor de Empalme U2AF/genética , Enfermedades de los Porcinos/genética
14.
Nucleic Acids Res ; 52(3): 1420-1434, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38088204

RESUMEN

Recurring mutations in genes encoding 3' splice-site recognition proteins, U2AF1 and ZRSR2 are associated with human cancers. Here, we determined binding sites of the proteins to reveal that U2-type and U12-type splice sites are recognized by U2AF1 and ZRSR2, respectively. However, some sites are spliced by both the U2-type and U12-type spliceosomes, indicating that well-conserved consensus motifs in some U12-type introns could be recognized by the U2-type spliceosome. Nucleotides flanking splice sites of U12-type introns are different from those flanking U2-type introns. Remarkably, the AG dinucleotide at the positions -1 and -2 of 5' splice sites of U12-type introns with GT-AG termini is not present. AG next to 5' splice site introduced by a single nucleotide substitution at the -2 position could convert a U12-type splice site to a U2-type site. The class switch of introns by a single mutation and the bias against G at the -1 position of U12-type 5' splice site support the notion that the identities of nucleotides in exonic regions adjacent to splice sites are fine-tuned to avoid recognition by the U2-type spliceosome. These findings may shed light on the mechanism of selectivity in U12-type intron splicing and the mutations that affect splicing.


Asunto(s)
Sitios de Empalme de ARN , Ribonucleoproteínas , Empalmosomas , Factor de Empalme U2AF , Humanos , Sitios de Unión , Intrones , Nucleótidos/metabolismo , Ribonucleoproteínas/metabolismo , Empalme del ARN , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo
15.
RNA Biol ; 21(1): 1-11, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38126797

RESUMEN

The Cell Division Cycle and Apoptosis Regulator (CCAR) protein family members have recently emerged as regulators of alternative splicing and transcription, as well as having other key physiological functions. For example, mammalian CCAR2/DBC1 forms a complex with the zinc factor protein ZNF326 to integrate alternative splicing with RNA polymerase II transcriptional elongation in AT-rich regions of the DNA. Additionally, Caenorhabditis elegans CCAR-1, a homolog to mammalian CCAR2, facilitates the alternative splicing of the perlecan unc-52 gene. However, much about the CCAR family's role in alternative splicing is unknown. Here, we have examined the role of CCAR-1 in genome-wide alternative splicing in Caenorhabditis elegans and have identified new alternative splicing targets of CCAR-1 using RNA sequencing. Also, we found that CCAR-1 interacts with the spliceosome factors UAF-1 and UAF-2 using mass spectrometry, and that knockdown of ccar-1 affects alternative splicing patterns, motility, and proteostasis of UAF-1 mutant worms. Collectively, we demonstrate the role of CCAR-1 in regulating global alternative splicing in C. elegans and in conjunction with UAF-1.


Asunto(s)
Empalme Alternativo , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas de la Membrana , Ribonucleoproteínas , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Empalme del ARN , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
16.
Cell Rep ; 42(12): 113534, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38065098

RESUMEN

Human pre-mRNA splicing requires the removal of introns with highly variable lengths, from tens to over a million nucleotides. Therefore, mechanisms of intron recognition and splicing are likely not universal. Recently, we reported that splicing in a subset of human short introns with truncated polypyrimidine tracts depends on RBM17 (SPF45), instead of the canonical splicing factor U2 auxiliary factor (U2AF) heterodimer. Here, we demonstrate that SAP30BP, a factor previously implicated in transcriptional control, is an essential splicing cofactor for RBM17. In vitro binding and nuclear magnetic resonance analyses demonstrate that a U2AF-homology motif (UHM) in RBM17 binds directly to a newly identified UHM-ligand motif in SAP30BP. We show that this RBM17-SAP30BP interaction is required to specifically recruit RBM17 to phosphorylated SF3B1 (SF3b155), a U2 small nuclear ribonucleoprotein (U2 snRNP) component in active spliceosomes. We propose a mechanism for splicing in a subset of short introns, in which SAP30BP guides RBM17 in the assembly of active spliceosomes.


Asunto(s)
Empalme del ARN , Empalmosomas , Humanos , Intrones/genética , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo , Empalme del ARN/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Empalmosomas/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/genética , Factores de Transcripción/metabolismo , Precursores del ARN/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
17.
Cell Rep ; 42(10): 113223, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37805921

RESUMEN

Pre-mRNA splicing is surveilled at different stages by quality control (QC) mechanisms. The leukemia-associated DExH-box family helicase hDHX15/scPrp43 is known to disassemble spliceosomes after splicing. Here, using rapid protein depletion and analysis of nascent and mature RNA to enrich for direct effects, we identify a widespread splicing QC function for DHX15 in human cells, consistent with recent in vitro studies. We find that suboptimal introns with weak splice sites, multiple branch points, and cryptic introns are repressed by DHX15, suggesting a general role in promoting splicing fidelity. We identify SUGP1 as a G-patch factor that activates DHX15's splicing QC function. This interaction is dependent on both DHX15's ATPase activity and on SUGP1's U2AF ligand motif (ULM) domain. Together, our results support a model in which DHX15 plays a major role in splicing QC when recruited and activated by SUGP1.


Asunto(s)
Empalme del ARN , Empalmosomas , Humanos , ARN/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Empalmosomas/metabolismo , Factor de Empalme U2AF/metabolismo
18.
Am J Hematol ; 98(12): E357-E359, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37665761

RESUMEN

Somatic mosaic states in telomere biology disorders are characterized by somatic variants in the spliceosome and DNA damage response and repair pathways. A likely maladaptive response to short telomeres that may lead to increased hematological cancer.


Asunto(s)
Telomerasa , Telómero , Humanos , Factor de Empalme U2AF/genética , Telómero/genética , Telómero/metabolismo , Biología , Telomerasa/genética , Telomerasa/metabolismo
19.
J Clin Exp Hematop ; 63(3): 173-176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37766563

RESUMEN

Myelodysplastic syndromes (MDS) are myeloid neoplasms that are driven by genetic mutations. Generally, it is thought that a higher number of mutations is associated with worse prognosis. However, the impact of genetic mutations when they occur in the same functional class has not been well studied. Here we investigated the impact of multiple spliceosome mutations on prognosis in MDS patients, hypothesizing that multiple mutations in the same class are biologically redundant and would not affect prognosis. Departmental Next Generation Sequencing (NGS) database (>6000 cases) was queried and the data was analyzed to identify cases with spliceosome mutations (SF3B1, SRSF2, U2AF1, ZRSR2, U2AF1). Overall, 71 patients met criteria for the study. Cases with single spliceosome mutations (i.e., no other co-mutations whatsoever) were as follows: SF3B1 (38), SRSF2 (5), U2AF2 (11), and ZRSR2 (1). Cases with concurrent spliceosome mutations were as follows: SF3B1 + SRSF2 (5), SF3B1 + U2AF1 (1), SF3B1 + ZRSR2 (3), SRSF2 + U2AF1 (2), SRSF2 + ZRSR2 (1), U2AF1 + ZRSR2 (4). Four of 55 (7.3%) of patients in the single mutation group vs. 4 of 16 (25%) of patients in the concurrent mutation group progressed to acute myeloid leukemia (AML). Mean OS in the single mutation group was 103.5 months vs. 71.6 months in the multiple concurrent mutation group (χ2= 2.404; p= 0.12). Our results challenge the current dogma that increased mutation in MDS portend worse survival. We demonstrate that multiple mutations bear no impact on clinical prognosis when the additional mutations occur in same spliceosome class.


Asunto(s)
Síndromes Mielodisplásicos , Empalmosomas , Humanos , Factor de Empalme U2AF/genética , Empalmosomas/genética , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Mutación , Bases de Datos Factuales
20.
Blood Cancer J ; 13(1): 149, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735430

RESUMEN

We have previously recognized the genotypic and prognostic heterogeneity of U2AF1 mutations (MT) in myelofibrosis (MF) and myelodysplastic syndromes (MDS). In the current study, we considered 179 U2AF1-mutated patients with clonal cytopenia of undetermined significance (CCUS; n = 22), MDS (n = 108), MDS/acute myeloid leukemia (AML; n = 18) and AML (n = 31). U2AF1 variants included S34 (60%), Q157 (35%), and others (5%): corresponding mutational frequencies were 45%, 55%, and 0% in CCUS; 57%, 39%, and 4% in MDS; 61%, 33%, and 6% in MDS/AML; and 55%, 35% and 10% in AML (P = 0.17, 0.36 and 0.09), respectively. Concurrent mutations included ASXL1 (37%), BCOR (19%), RUNX1 (14%), TET2 (15%), DNMT3A (10%), NRAS/KRAS (8%), TP53 (8%), JAK2 (5.5%) and SETBP1 (5%). The two most frequent U2AF1 MT were S34F (n = 97) and Q157P (n = 46); concurrent MT were more likely to be seen with the latter (91% vs 74%; P = 0.01) and abnormal karyotype with the former (70% vs 62%; P = 0.05). U2AF1 S34F MT clustered with BCOR (P = 0.04) and Q157P MT with ASXL1 (P = 0.01) and TP53 (P = 0.03). The median overall survival (OS) in months was significantly worse in AML (14.2) vs MDS/AML (27.3) vs MDS (33.7; P = 0.001); the latter had similar OS with CCUS (30.0). In morphologically high-risk disease (n = 49), defined by ≥10% blood or bone marrow blasts (i.e., AML or MDS/AML), median OS was 14.2 with Q157P vs 37.1 months in the presence of S34F (P = 0.008); transplant-adjusted multivariable analysis confirmed the detrimental impact of Q157P (P = 0.01) on survival and also identified JAK2 MT as an additional risk factor (P = 0.02). OS was favorably affected by allogeneic hematopoietic stem cell transplantation (HR: 0.16, 95% CI; 0.04-0.61, P = 0.007). The current study defines the prevalence and co-mutational profiles of U2AF1 pathogenic variants in AML, MDS/AML, MDS, and CCUS, and suggests prognostic heterogeneity in patients with ≥10% blasts.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Trastornos Mieloproliferativos , Humanos , Factor de Empalme U2AF/genética , Pronóstico , Síndromes Mielodisplásicos/genética , Mutación , Proteínas de Unión al ARN , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...