Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 682
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2321711121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38713624

RESUMEN

During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Corteza Cerebral , Receptores ErbB , Proteínas Hedgehog , Proteínas del Tejido Nervioso , Células-Madre Neurales , Neurogénesis , Factor de Transcripción 2 de los Oligodendrocitos , Factor de Transcripción PAX6 , Animales , Neurogénesis/fisiología , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Ratones , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Factor de Transcripción PAX6/metabolismo , Factor de Transcripción PAX6/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Proteína Gli3 con Dedos de Zinc/metabolismo , Proteína Gli3 con Dedos de Zinc/genética , Proteínas del Ojo/metabolismo , Proteínas del Ojo/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción Paired Box/genética , Neuroglía/metabolismo , Neuroglía/citología , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/citología , Linaje de la Célula , Humanos
2.
J Ethnopharmacol ; 325: 117846, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38301982

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Radix Astragali, a versatile traditional Chinese medicinal herb, has a rich history dating back to "Sheng Nong's herbal classic". It has been employed in clinical practice to address various ailments, including depression. One of its primary active components, total flavonoids from Astragalus (TFA), remains unexplored in terms of its potential antidepressant properties. This study delves into the antidepressant effects of TFA using a mouse model subjected to chronic unpredictable mild stress (CUMS). AIMS OF THE STUDY: The study aimed to scrutinize how TFA influenced depressive behaviors, corticosterone and glutamate levels in the hippocampus, as well as myelin-related protein expression in CUMS mice. Additionally, it sought to explore the involvement of the Wnt/ß-catenin/Olig2/Sox10 signaling axis as a potential antidepressant mechanism of TFA. MATERIALS AND METHODS: Male C57BL/6 mice were subjected to CUMS to induce depressive behaviors. TFA were orally administered at two different doses (50 mg/kg and 100 mg/kg). A battery of behavioral tests, biochemical analyses, immunohistochemistry, UPLC-MS/MS, real-time PCR, and Western blotting were employed to evaluate the antidepressant potential of TFA. The role of the Wnt/ß-catenin/Olig2/Sox10 signaling axis in the antidepressant mechanism of TFA was validated through MO3.13 cells. RESULTS: TFA administration significantly alleviated depressive behaviors in CUMS mice, as evidenced by improved sucrose preference, reduced immobility in tail suspension and forced swimming tests, and increased locomotor activity in the open field test. Moreover, TFA effectively reduced hippocampal corticosterone and glutamate levels and promoted myelin formation in the hippocampus of CUMS mice. Then, TFA increased Olig2 and Sox10 expression while inhibiting the Wnt/ß-catenin pathway in the hippocampus of CUMS mice. Finally, we further confirmed the role of TFA in promoting myelin regeneration through the Wnt/ß-catenin/Olig2/Sox10 signaling axis in MO3.13 cells. CONCLUSIONS: TFA exhibited promising antidepressant effects in the CUMS mouse model, facilitated by the restoration of myelin sheaths and regulation of corticosterone, glutamate, Olig2, Sox10, and the Wnt/ß-catenin pathway. This research provides valuable insights into the potential therapeutic application of TFA in treating depression, although further investigations are required to fully elucidate the underlying molecular mechanisms and clinical relevance.


Asunto(s)
Corticosterona , Depresión , Factor de Transcripción 2 de los Oligodendrocitos , Masculino , Animales , Ratones , Depresión/tratamiento farmacológico , Depresión/metabolismo , Flavonoides/farmacología , Cromatografía Liquida , beta Catenina/metabolismo , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo , Hipocampo , Glutamatos/metabolismo , Glutamatos/farmacología , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo
3.
Mol Biol Rep ; 51(1): 115, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227267

RESUMEN

BACKGROUND: Recent studies have shown that the expression of bHLH transcription factors Hes1, Ascl1, and Oligo2 has an oscillating balance in neural stem cells (NSCs) to maintain their self-proliferation and multi-directional differentiation potential. This balance can be disrupted by exogenous stimulation. Our previous work has identified that electrical stimulation could induce neuronal differentiation of mouse NSCs. METHODS: To further evaluate if physiological electric fields (EFs)-induced neuronal differentiation is related to the expression patterns of bHLH transcription factors Hes1, Ascl1, and Oligo2, mouse embryonic brain NSCs were used to investigate the expression changes of Ascl1, Hes1 and Oligo2 in mRNA and protein levels during EF-induced neuronal differentiation. RESULTS: Our results showed that NSCs expressed high level of Hes1, while expression of Ascl1 and Oligo2 stayed at very low levels. When NSCs exited proliferation, the expression of Hes1 in differentiated cells began to decrease and oscillated at the low expression level. Oligo2 showed irregular changes in low expression level. EF-stimulation significantly increased the expression of Ascl1 at mRNA and protein levels accompanied by an increased percentage of neuronal differentiation. What's more, over-expression of Hes1 inhibited the neuronal differentiation induced by EFs. CONCLUSION: EF-stimulation directed neuronal differentiation of NSCs by promoting the continuous accumulation of Ascl1 expression and decreasing the expression of Hes1.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Encéfalo , Factor de Transcripción 2 de los Oligodendrocitos , Factor de Transcripción HES-1 , Animales , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Estimulación Eléctrica , ARN Mensajero/genética , Factor de Transcripción HES-1/genética , Factor de Transcripción 2 de los Oligodendrocitos/genética
4.
Histopathology ; 84(5): 893-899, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38253970

RESUMEN

AIMS: The SOX10 transcription factor is important for the maturation of oligodendrocytes involved in central nervous system (CNS) myelination. Currently, very little information exists about its expression and potential use in CNS tumour diagnoses. The aim of our study was to characterize the expression of SOX10 in a large cohort of CNS tumours and to evaluate its potential use as a biomarker. METHODS: We performed immunohistochemistry (IHC) for SOX10 and OLIG2 in a series of 683 cases of adult- and paediatric-type CNS tumours from different subtypes. The nuclear immunostaining results for SOX10 and OLIG2 were scored as positive (≥10% positive tumour cells) or negative. RESULTS: OLIG2 and SOX10 were positive in diffuse midline gliomas (DMG), H3-mutant, and EZHIP-overexpressed. However, in all DMG, EGFR-mutant, SOX10 was constantly negative. In diffuse paediatric-type high-grade gliomas (HGG), all RTK1 cases were positive for both OLIG2 and SOX10. RTK2 cases were all negative for both OLIG2 and SOX10. MYCN cases variably expressed OLIG2 and were all immunonegative for SOX10. In glioblastoma, IDH-wildtype, OLIG2 was mostly positive, but SOX10 was variably expressed, depending on the epigenetic subtype. All circumscribed astrocytic gliomas were positive for both OLIG2 and SOX10 except pleomorphic xanthoastrocytomas, astroblastomas, MN1-altered, and subependymal giant cell astrocytomas. SOX10 was negative in ependymomas, meningiomas, pinealoblastomas, choroid plexus tumours, intracranial Ewing sarcomas, and embryonal tumours except neuroblastoma, FOXR2-activated. CONCLUSION: To conclude, SOX10 can be incorporated into the IHC panel routinely used by neuropathologists in the diagnostic algorithm of embryonal tumours and for the subtyping of paediatric and adult-type HGG.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Glioma , Neoplasias de Células Germinales y Embrionarias , Adulto , Humanos , Niño , Inmunohistoquímica , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas del Tejido Nervioso/metabolismo , Biomarcadores de Tumor/metabolismo , Glioma/diagnóstico , Glioma/genética , Glioma/metabolismo , Astrocitoma/patología , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/genética , Factores de Transcripción SOXE , Factor de Transcripción 2 de los Oligodendrocitos , Factores de Transcripción Forkhead
5.
Neuropathology ; 44(2): 167-172, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37855183

RESUMEN

Ependymomas (EPN) are central nervous system neoplasms that exhibit an ependymal phenotype. In particular, supratentorial EPN (ST-EPN) must be differentiated from more aggressive entities such as glioblastoma, IDH-wildtype. This task is frequently addressed with the use of immunohistochemistry coupled with clinical presentation and morphological features. Here we describe the case of a young adult presenting with migraine-like symptoms and a temporoinsular-based expansile mass that was first diagnosed as a GBM, mostly based on strong and diffuse oligodendrocyte transcription factor 2 (OLIG2) expression. Molecular characterization revealed a ZFTA::RELA fusion, supporting the diagnosis of ST-EPN, ZFTA fusion-positive. OLIG2 expression is rarely reported in tumors other than GBM and oligodendrocyte-lineage committed neoplasms. The patient was treated with radiotherapy and temozolomide after surgery and was alive and well at follow-up. This report illustrates the need to assess immunostains within a broader clinical, morphological and molecular context to avoid premature exclusion of important differential diagnoses.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Ependimoma , Neoplasias Supratentoriales , Adulto Joven , Humanos , Factor de Transcripción ReIA/genética , Factor de Transcripción 2 de los Oligodendrocitos , Neoplasias Supratentoriales/diagnóstico , Neoplasias Supratentoriales/genética , Neoplasias Supratentoriales/patología , Ependimoma/diagnóstico , Ependimoma/genética , Ependimoma/patología
6.
Acta Biomater ; 174: 297-313, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38096960

RESUMEN

The transcription factor Olig2 is highly expressed throughout oligodendroglial development and is needed for the differentiation of oligodendrocyte progenitor cells (OPCs) into oligodendrocytes and remyelination. Although Olig2 overexpression in OPCs is a possible therapeutic target for enhancing myelin repair in ischemic stroke, achieving Olig2 overexpression in vivo remains a formidable technological challenge. To address this challenge, we employed lipid nanoparticle (LNP)-mediated delivery of Olig2 synthetically modified messenger RNA (mRNA) as a viable method for in vivo Olih2 protein overexpression. Specifically, we developed CD140a-targeted LNPs loaded with Olig2 mRNA (C-Olig2) to achieve targeted Olig2 protein expression within PDGFRα+ OPCs, with the goal of promoting remyelination for ischemic stroke therapy. We show that C-Olig2 promotes the differentiation of PDGFRα+ OPCs derived from mouse neural stem cells into mature oligodendrocytes in vitro, suggesting that mRNA-mediated Olig2 overexpression is a rational approach to promote oligodendrocyte differentiation and remyelination. Furthermore, when C-Olig2 was administered to a murine model of ischemic stroke, it led to improvements in blood‒brain barrier (BBB) integrity, enhanced remyelination, and rescued learning and cognitive deficits. Our comprehensive analysis, which included bulk RNA sequencing (RNA-seq) and single-nucleus RNA-seq (snRNA-seq), revealed upregulated biological processes related to learning and memory in the brains of mice treated with C-Olig2 compared to those receiving empty LNPs (Mock). Collectively, our findings highlight the therapeutic potential of multifunctional nanomedicine targeting mRNA expression for ischemic stroke and suggest that this approach holds promise for addressing various brain diseases. STATEMENT OF SIGNIFICANCE: While Olig2 overexpression in OPCs represents a promising therapeutic avenue for enhancing remyelination in ischemic stroke, in vivo strategies for achieving Olig2 expression pose considerable technological challenges. The delivery of mRNA via lipid nanoparticles is considered aa viable approach for in vivo protein expression. In this study, we engineered CD140a-targeted LNPs loaded with Olig2 mRNA (C-Olig2) with the aim of achieving specific Olig2 overexpression in mouse OPCs. Our findings demonstrate that C-Olig2 promotes the differentiation of OPCs into oligodendrocytes in vitro, providing evidence that mRNA-mediated Olig2 overexpression is a rational strategy to foster remyelination. Furthermore, the intravenous administration of C-Olig2 into a murine model of ischemic stroke not only improved blood-brain barrier integrity but also enhanced remyelination and mitigated learning and cognitive deficits. These results underscore the promising therapeutic potential of multifunctional nanomedicine targeting mRNA expression in the context of ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Células Precursoras de Oligodendrocitos , Ratones , Animales , Factor de Transcripción 2 de los Oligodendrocitos , Accidente Cerebrovascular Isquémico/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Modelos Animales de Enfermedad , Vaina de Mielina , Diferenciación Celular/genética , Oligodendroglía , Isquemia , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
J Comput Assist Tomogr ; 47(4): 650-658, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37380154

RESUMEN

OBJECTIVE: Oligodendrocyte transcription factor 2 (OLIG2) is universally expressed in human glioblastoma (GB). Our study explores whether OLIG2 expression impacts GB patients' overall survival and establishes a machine learning model for OLIG2 level prediction in patients with GB based on clinical, semantic, and magnetic resonance imaging radiomic features. METHODS: Kaplan-Meier analysis was used to determine the optimal cutoff value of the OLIG2 in 168 GB patients. Three hundred thirteen patients enrolled in the OLIG2 prediction model were randomly divided into training and testing sets in a ratio of 7:3. The radiomic, semantic, and clinical features were collected for each patient. Recursive feature elimination (RFE) was used for feature selection. The random forest (RF) model was built and fine-tuned, and the area under the curve was calculated to evaluate the performance. Finally, a new testing set excluding IDH-mutant patients was built and tested in a predictive model using the fifth edition of the central nervous system tumor classification criteria. RESULTS: One hundred nineteen patients were included in the survival analysis. Oligodendrocyte transcription factor 2 was positively associated with GB survival, with an optimal cutoff of 10% ( P = 0.00093). One hundred thirty-four patients were eligible for the OLIG2 prediction model. An RFE-RF model based on 2 semantic and 21 radiomic signatures achieved areas under the curve of 0.854 in the training set, 0.819 in the testing set, and 0.825 in the new testing set. CONCLUSIONS: Glioblastoma patients with ≤10% OLIG2 expression tended to have worse overall survival. An RFE-RF model integrating 23 features can predict the OLIG2 level of GB patients preoperatively, irrespective of the central nervous system classification criteria, further guiding individualized treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Estimación de Kaplan-Meier , Pronóstico , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Factor de Transcripción 2 de los Oligodendrocitos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Biomarcadores
8.
Neuropharmacology ; 236: 109567, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37209812

RESUMEN

Depression is a mood disorder coursing with several behavioral, cellular, and neurochemical alterations. The negative impact of chronic stress may precipitate this neuropsychiatric disorder. Interestingly, downregulation of oligodendrocyte-related genes, abnormal myelin structure, and reduced numbers and density of oligodendrocytes in the limbic system have been identified in patients diagnosed with depression, but also in rodents exposed to chronic mild stress (CMS). Several reports have emphasized the importance of pharmacological or stimulation-related strategies in influencing oligodendrocytes in the hippocampal neurogenic niche. Repetitive transcranial magnetic stimulation (rTMS) has gained attention as an intervention to revert depression. Here, we hypothesized that 5 Hz (Hz) of rTMS or Fluoxetine (Flx) would revert depressive-like behaviors by influencing oligodendrocytes and revert neurogenic alterations caused by CMS in female Swiss Webster mice. Our results showed that 5 Hz rTMS or Flx revert depressive-like behavior. Only rTMS influenced oligodendrocytes by increasing the number of Olig2-positive cells in the hilus of the dentate gyrus and the prefrontal cortex. However, both strategies exerted effects on some events of the hippocampal neurogenic processes, such as cell proliferation (Ki67-positive cells), survival (CldU-positive cells), and intermediate stages (doublecortin-positive cells) along the dorsal-ventral axis of this region. Interestingly, the combination of rTMS-Flx exerted antidepressant-like effects, but the increased number of Olig2-positive cells observed in mice treated only with rTMS was canceled. However, rTMS-Flx exerted a synergistic effect by increasing the number of Ki67-positive cells. It also increased the number of CldU- and doublecortin-positive cells in the dentate gyrus. Our results demonstrate that 5 Hz rTMS has beneficial effects, as it reverted depressive-like behavior by increasing the number of Olig2-positive cells and reverting the decrement in hippocampal neurogenesis in CMS-exposed mice. Nevertheless, the effects of rTMS on other glial cells require further investigation.


Asunto(s)
Fluoxetina , Estimulación Magnética Transcraneal , Ratones , Animales , Femenino , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Estimulación Magnética Transcraneal/métodos , Antígeno Ki-67 , Antidepresivos/uso terapéutico , Proteínas de Dominio Doblecortina , Factor de Transcripción 2 de los Oligodendrocitos
9.
Clinics (Sao Paulo) ; 78: 100120, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37001387

RESUMEN

OBJECTIVES: The incidence of cerebellar Glioblastoma Multiforme (cGBM) is rare. Database like TCGA have not distinguish cGBM from GBM, our knowledge on cGBM gene expression characteristics is limited. The expression status of Oligodendrocyte Lineage Transcription factor 2 (OLIG2) and its clinical significance in cGBM is still unclear. METHODS: The clinical data and tissue specimens of 73 cGBM patients were retrospectively studied. The association between OLIG2 expression level and the demographic characteristics of cGBM patients was identified by the Chi-Square test. The survival curves were drawn by Kaplan-Meier analysis. The independent prognostic factors was calculated according to Cox regression analysis. RESULTS: The OLIG2 high expression was observed in about 57.5% (42/73) of the cGBM patients. Patients with high OLIG2 expression levels had a higher alive ratio at the end of follow-up (alive ratio: 70.6% vs. 29.4%, p = 0.04). The median survival time was 21 months and 13 months for high and low expression of OLIG2 (p < 0 .05). Univariate analysis and Multivariate analysis indicated that EOR (HR = 3.89, 95% CI 1.23‒12.26, p = 0.02), low OLIG2 expression (HR = 5.26, 95% CI 1.13‒24.59, p = 0.04), and without adjuvant therapy (HR = 4.95, 95% CI 1.22‒20.00, p = 0.03) were independent risk factors for the OS of cGBM patients. CONCLUSION: High expression level of OLIG2 could be used as an independent favorable prognosis indicator in cGBM patients and be recognized as a characteristic biomarker of cGBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Pronóstico , Estudios Retrospectivos , Estimación de Kaplan-Meier , Terapia Combinada , Factor de Transcripción 2 de los Oligodendrocitos/genética
10.
Eur J Neurosci ; 57(1): 5-16, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370145

RESUMEN

In the present study, we examined neural circuit formation in the forebrain of the Olig2 knockout (Olig2-KO) mouse model and found disruption of the anterior commissure at the late foetal stage. Axon bundles of the anterior commissure encountered the wall of the third ventricle and ceased axonal extension. L1-CAM immunohistochemistry showed that Olig2-KO mice lose decussation formation in the basal forebrain. DiI tracing revealed that the thin bundles of the anterior commissure axons crossed the midline but ceased further extension into the deep part of the contralateral side. Furthermore, some fractions of DiI-labelled axons were oriented dorsolaterally, which was not observed in the control mouse forebrain. The rostral part of the third ventricle was much wider in the Olig2-KO mice than in wild-type mice, which likely resulted in the delay of midline fusion and subsequent delay and malformation of the anterior commissure. We analysed gene expression alterations in the Olig2-KO mice using a public database and found multiple genes, which are related to axon guidance and epithelial-mesenchymal transition, showing subtle expression changes. These results suggest that Olig2 is essential for anterior commissure formation, likely by regulating multiple biological processes.


Asunto(s)
Axones , Prosencéfalo , Animales , Ratones , Prosencéfalo/metabolismo , Axones/fisiología , Ratones Noqueados , Factor de Transcripción 2 de los Oligodendrocitos/genética , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo
11.
J Neurochem ; 165(3): 303-317, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36547371

RESUMEN

Cells possess intrinsic features that are inheritable via epigenetic regulation, such as DNA methylation and histone modification. These inheritable features maintain a unique gene expression pattern, underlying cellular memory. Because of the degradation or displacement of mitotic chromosomes, most transcription factors do not contribute to cellular memory. However, accumulating in vitro evidence indicates that some transcription factors can be retained in mitotic chromosomes called as bookmarking. Such transcription factors may contribute to a novel third mechanism of cellular memory. Since most findings of transcription factor bookmarking have been reported in vitro, little is currently known in vivo. In the neural tube of mouse embryos, we discovered that OLIG2, a basic helix loop helix (bHLH) transcription factor that regulates proliferation of neural progenitors and the cell fate of motoneurons and oligodendrocytes, binds to chromatin through every cell cycle including M-phase. OLIG2 chromosomal localization coincides with mitotic cell features such as the phosphorylation of histone H3, KI67, and nuclear membrane breakdown. Chromosomal localization of OLIG2 is regulated by an N-terminus triple serine motif. Photobleaching analysis revealed slow OLIG2 mobility, suggesting a high affinity of OLIG2 to DNA. In Olig2 N-terminal deletion mutant mice, motoneurons and oligodendrocyte progenitor numbers are reduced in the neural tube, suggesting that the bookmarking regulatory domain is important for OLIG2 function. We conclude that OLIG2 is a de novo in vivo bookmarking transcription factor. Our results demonstrate the presence of in vivo bookmarking in a living organism and illustrate a novel function of transcription factors.


Asunto(s)
Epigénesis Genética , Factores de Transcripción , Ratones , Animales , Factores de Transcripción/genética , Tubo Neural/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/genética , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Oligodendroglía/metabolismo
12.
Glia ; 71(2): 415-430, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36308278

RESUMEN

Oligodendrocyte precursor cells (OPCs) are uniformly distributed in the mammalian brain; however, their function is rather heterogeneous in respect to their origin, location, receptor/channel expression and age. The basic helix-loop-helix transcription factor Olig2 is expressed in all OPCs as a pivotal determinant of their differentiation. Here, we identified a subset (2%-26%) of OPCs lacking Olig2 in various brain regions including cortex, corpus callosum, CA1 and dentate gyrus. These Olig2 negative (Olig2neg ) OPCs were enriched in the juvenile brain and decreased subsequently with age, being rarely detectable in the adult brain. However, the loss of this population was not due to apoptosis or microglia-dependent phagocytosis. Unlike Olig2pos OPCs, these subset cells were rarely labeled for the mitotic marker Ki67. And, accordingly, BrdU was incorporated only by a three-day long-term labeling but not by a 2-hour short pulse, suggesting these cells do not proliferate any more but were derived from proliferating OPCs. The Olig2neg OPCs exhibited a less complex morphology than Olig2pos ones. Olig2neg OPCs preferentially remain in a precursor stage rather than differentiating into highly branched oligodendrocytes. Changing the adjacent brain environment, for example, by acute injuries or by complex motor learning tasks, stimulated the transition of Olig2pos OPCs to Olig2neg cells in the adult. Taken together, our results demonstrate that OPCs transiently suppress Olig2 upon changes of the brain activity.


Asunto(s)
Lesiones Encefálicas , Células Precursoras de Oligodendrocitos , Animales , Células Precursoras de Oligodendrocitos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Lesiones Encefálicas/metabolismo , Mamíferos/metabolismo
13.
J Comp Neurol ; 531(4): 515-527, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36477827

RESUMEN

Oligodendrocytes are the myelinating cells in the central nervous system. In birds and mammals, the oligodendrocyte progenitor cells (OPCs) originate in the preoptic area (POA) of the hypothalamus. However, it remains unclear in other vertebrates such as fish. Thus, we have studied the early progression of OPCs during zebrafish visual morphogenesis from 2 days post fertilization (dpf) until 11 dpf using the olig2:EGFP transgenic line; and we have analyzed the differential expression of transcription factors involved in oligodendrocyte differentiation: Sox2 (using immunohistochemistry) and Sox10 (using the transgenic line sox10:tagRFP). The first OPCs (olig2:EGFP/Sox2) were found at 2 dpf in the POA. From 3 dpf onwards, these olig2:EGFP/Sox2 cells migrate to the optic chiasm, where they invade the optic nerve (ON), extending toward the retina. At 5 dpf, olig2:EGFP/Sox2 cells in the ON also colocalize with sox10:tagRFP. When olig2:EGFP cells differentiate and present more projections, they become positive only for sox10:tagRFP. olig2:EGFP/sox10: tagRFP cells ensheath the ON by 5 dpf when they also become positive for a myelin marker, based on the mbpa:tagRFPt transgenic line. We also found olig2:EGFP cells in other regions of the visual system. In the central retina at 2 dpf, they are positive for Sox2 but later become restricted to the proliferative germinal zone without this marker. In the ventricular areas of the optic tectum, olig2:EGFP cells present Sox2 but arborized ones sox10:tagRFP instead. Our data matches with other models, where OPCs are specified in the POA and migrate to the ON through the optic chiasm.


Asunto(s)
Oligodendroglía , Pez Cebra , Animales , Pez Cebra/metabolismo , Diferenciación Celular/fisiología , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Animales Modificados Genéticamente , Vaina de Mielina/fisiología , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Mamíferos
14.
Hum Mol Genet ; 32(5): 835-846, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36193754

RESUMEN

Olig2 is a basic helix-loop-helix transcription factor that plays a critical role in the central nervous system. It directs the specification of motor neurons and oligodendrocyte precursor cells (OPCs) from neural progenitors and the subsequent maturation of OPCs into myelin-forming oligodendrocytes (OLs). It is also required for the development of astrocytes. Despite a decade-long search, enhancers that regulate the expression of Olig2 remain elusive. We have recently developed an innovative method that maps promoter-distal enhancers to genes in a principled manner. Here, we applied it to Olig2 in the context of OL lineage cells, uncovering an OL enhancer for it (termed Olig2-E1). Silencing Olig2-E1 by CRISPRi epigenome editing significantly downregulated Olig2 expression. Luciferase assay and ATAC-seq and ChIP-seq data show that Olig2-E1 is an OL-specific enhancer that is conserved across human, mouse and rat. Hi-C data reveal that Olig2-E1 physically interacts with OLIG2 and suggest that this interaction is specific to OL lineage cells. In sum, Olig2-E1 is an evolutionarily conserved OL-specific enhancer that drives the expression of Olig2.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas del Tejido Nervioso , Ratones , Ratas , Animales , Humanos , Proteínas del Tejido Nervioso/genética , Diferenciación Celular/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Oligodendroglía/metabolismo , Vaina de Mielina/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo
15.
Commun Biol ; 5(1): 1095, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36241911

RESUMEN

Transcription factors (TFs) have been introduced to drive the highly efficient differentiation of human-induced pluripotent stem cells (hiPSCs) into lineage-specific oligodendrocytes (OLs). However, effective strategies currently rely mainly on genome-integrating viruses. Here we show that a synthetic modified messenger RNA (smRNA)-based reprogramming method that leads to the generation of transgene-free OLs has been developed. An smRNA encoding a modified form of OLIG2, in which the serine 147 phosphorylation site is replaced with alanine, OLIG2S147A, is designed to reprogram hiPSCs into OLs. We demonstrate that repeated administration of the smRNA encoding OLIG2 S147A lead to higher and more stable protein expression. Using the single-mutant OLIG2 smRNA morphogen, we establish a 6-day smRNA transfection protocol, and glial induction lead to rapid NG2+ OL progenitor cell (OPC) generation (>70% purity) from hiPSC. The smRNA-induced NG2+ OPCs can mature into functional OLs in vitro and promote remyelination in vivo. Taken together, we present a safe and efficient smRNA-driven strategy for hiPSC differentiation into OLs, which may be utilized for therapeutic OPC/OL transplantation in patients with neurodegenerative disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Alanina , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/genética , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/farmacología , Oligodendroglía , ARN Mensajero/genética , ARN Mensajero/metabolismo , Serina/metabolismo , Factores de Transcripción/metabolismo
16.
J Neurosci ; 42(45): 8542-8555, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36198499

RESUMEN

The oligodendrocyte (OL) lineage transcription factor Olig2 is expressed throughout oligodendroglial development and is essential for oligodendroglial progenitor specification and differentiation. It was previously reported that deletion of Olig2 enhanced the maturation and myelination of immature OLs and accelerated the remyelination process. However, by analyzing multiple Olig2 conditional KO mouse lines (male and female), we conclude that Olig2 has the opposite effect and is required for OL maturation and remyelination. We found that deletion of Olig2 in immature OLs driven by an immature OL-expressing Plp1 promoter resulted in defects in OL maturation and myelination, and did not enhance remyelination after demyelination. Similarly, Olig2 deletion during premyelinating stages in immature OLs using Mobp or Mog promoter-driven Cre lines also did not enhance OL maturation in the CNS. Further, we found that Olig2 was not required for myelin maintenance in mature OLs but was critical for remyelination after lysolecithin-induced demyelinating injury. Analysis of genomic occupancy in immature and mature OLs revealed that Olig2 targets the enhancers of key myelination-related genes for OL maturation from immature OLs. Together, by leveraging multiple immature OL-expressing Cre lines, these studies indicate that Olig2 is essential for differentiation and myelination of immature OLs and myelin repair. Our findings raise fundamental questions about the previously proposed role of Olig2 in opposing OL myelination and highlight the importance of using Cre-dependent reporter(s) for lineage tracing in studying cell state progression.SIGNIFICANCE STATEMENT Identification of the regulators that promote oligodendrocyte (OL) myelination and remyelination is important for promoting myelin repair in devastating demyelinating diseases. Olig2 is expressed throughout OL lineage development. Ablation of Olig2 was reported to induce maturation, myelination, and remyelination from immature OLs. However, lineage-mapping analysis of Olig2-ablated cells was not conducted. Here, by leveraging multiple immature OL-expressing Cre lines, we observed no evidence that Olig2 ablation promotes maturation or remyelination of immature OLs. Instead, we find that Olig2 is required for immature OL maturation, myelination, and myelin repair. These data raise fundamental questions about the proposed inhibitory role of Olig2 against OL maturation and remyelination. Our findings highlight the importance of validating genetic manipulation with cell lineage tracing in studying myelination.


Asunto(s)
Enfermedades Desmielinizantes , Remielinización , Animales , Femenino , Masculino , Ratones , Diferenciación Celular , Enfermedades Desmielinizantes/metabolismo , Vaina de Mielina/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/genética , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Ratones Noqueados
17.
J Biol Chem ; 298(11): 102602, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36265584

RESUMEN

In the developing central nervous system, neurogenesis precedes gliogenesis; however, when and how progenitors are specified for a neuronal versus glial fate and the temporal regulation of this process is unclear. Progenitors within the motor neuron progenitor domain in the developing spinal cord give rise to cholinergic motor neurons and cells of the oligodendroglial lineage sequentially. In a recent study, Xing et al. used single cell RNA-seq to identify previously unknown heterogeneity of these progenitors in zebrafish and to delineate the trajectories that distinct pools of these progenitors take. These data help integrate existing evidence and inform new hypotheses regarding how populations of neural progenitors in the same spatial domain commit to distinct fates.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Pez Cebra , Animales , Factor de Transcripción 2 de los Oligodendrocitos , Médula Espinal , Oligodendroglía , Neuronas Motoras , Diferenciación Celular
18.
J Biol Chem ; 298(10): 102452, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36063998

RESUMEN

The pMN domain is a restricted domain in the ventral spinal cord, defined by the expression of the olig2 gene. Though it is known that the pMN progenitor cells can sequentially generate motor neurons and oligodendrocytes, the lineages of these progenitors are controversial and how their progeny are generated is not well understood. Using single-cell RNA sequencing, here, we identified a previously unknown heterogeneity among pMN progenitors with distinct fates and molecular signatures in zebrafish. Notably, we characterized two distinct motor neuron lineages using bioinformatic analysis. We then went on to investigate specific molecular programs that regulate neural progenitor fate transition. We validated experimentally that expression of the transcription factor myt1 (myelin transcription factor 1) and inner nuclear membrane integral proteins lbr (lamin B receptor) were critical for the development of motor neurons and neural progenitor maintenance, respectively. We anticipate that the transcriptome features and molecular programs identified in zebrafish pMN progenitors will not only provide an in-depth understanding of previous findings regarding the lineage analysis of oligodendrocyte progenitor cells and motor neurons but will also help in further understanding of the molecular programming involved in neural progenitor fate transition.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Factores de Transcripción , Pez Cebra , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Médula Espinal/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Receptor de Lamina B
19.
Life Sci ; 308: 120951, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36103958

RESUMEN

AIMS: The aim of this study was to investigate the role of depolarizing activation of Na+-Ca2+ exchanger (NCX) by oligodendrocyte progenitor cells (OPC) in the effect of sevoflurane on myelination. MAIN METHODS: On postnatal days 7, 8, and 9, mice were exposed to 3 % sevoflurane for 2 h per day. The proliferation, differentiation, and myelin sheath of OPC were observed with immunofluorescence, quantitative real-time polymerase chain reaction (QRT-PCR), and transmission electron microscopy (TEM) at various time points. The open field, Y maze, and new object recognition tests were used to measure spatial learning and memory. siRNA was used for the knockdown NCX1 in human OPC (HOPC) before sevoflurane exposure; the Transwell migration assay was used to measure cell migration ability and Fluo 4-AM was used to measure intracellular Ca2+ concentration. KEY FINDINGS: Pretreatment with an NCX inhibitor attenuated the proliferation and differentiation of OPC induced by sevoflurane and induced a remarkable increase in platelet-derived growth factor receptor-alpha (PDGFRα), 2, 3-cyclic nucleotide 3-phosphodiesterase (CNPase), oligodendrocyte transcription factor 2 (Olig2), and homeodomain protein NK2 homeobox 2 (NKX2.2) levels. Pretreatment with an NCX inhibitor alleviated the sevoflurane-induced myelination disorder and cognitive impairment. The decreased cell migration and increased intracellular Ca2+ concentration observed in the siRNA-negative control group was reversed in the sevoflurane plus siRNA-NCX1 group. SIGNIFICANCE: This study suggests that repeated sevoflurane exposure in newborn mice leads to depolarization of OPC, which leads to Ca2+ influx through NCX and affects OPC proliferation, migration, differentiation, and myelination, ultimately leading to cognitive impairment.


Asunto(s)
Células Precursoras de Oligodendrocitos , Intercambiador de Sodio-Calcio , 2',3'-Nucleótido Cíclico Fosfodiesterasas/metabolismo , Animales , Calcio/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Vaina de Mielina/metabolismo , Nucleótidos Cíclicos/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , ARN Interferente Pequeño/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Sevoflurano/metabolismo , Sevoflurano/farmacología , Intercambiador de Sodio-Calcio/metabolismo
20.
Nagoya J Med Sci ; 84(2): 260-268, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35967956

RESUMEN

A number of genomic mutations that are thought to be strongly involved in the development of schizophrenia (SCZ) and autism spectrum disorder (ASD) have been identified. Abnormalities involving oligodendrocytes have been reported in SCZ, and as a related gene, oligodendrocyte lineage transcription factor 2 (OLIG2) has been reported to be strongly associated with SCZ. In this study, based on the common disease-rare variant hypothesis, target sequencing of candidate genes was performed to identify rare mutations with a high effect size and the possibility that the identified mutations may increase the risks of SCZ and ASD in the Japanese population. In this study, the exon region of OLIG2 was targeted; 370 patients with SCZ and 192 with ASD were subjected to next-generation sequencing. As a result, one rare missense mutation (A33T) was detected. We used the Sanger method to validate this missense mutation with a low frequency (<1%), and then carried out a genetic association analysis involving 3299 unrelated individuals (1447 with SCZ, 380 with ASD, and 1472 healthy controls) to clarify whether A33T was associated with SCZ or ASD. A33T was not found in either case group, and in only one control. We did not find evidence that p.A33T is involved in the onset of ASD or SCZ; however, associations with this variant need to be evaluated in larger samples to confirm our results.


Asunto(s)
Trastorno del Espectro Autista , Factor de Transcripción 2 de los Oligodendrocitos , Esquizofrenia , Trastorno del Espectro Autista/genética , Humanos , Mutación , Mutación Missense/genética , Factor de Transcripción 2 de los Oligodendrocitos/genética , Esquizofrenia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA