Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
J Virol ; 98(10): e0149924, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39324790

RESUMEN

Human rhinovirus (HRV) infections are the leading cause of disease exacerbations in individuals with chronic pulmonary diseases, primarily due to impaired macrophage functions, resulting in defective bacterial elimination. We previously demonstrated that HRV16 impairs macrophages' functions in an ARL5b-dependent manner. In permissive cells, ARL5b acted as an HRV16 restriction factor and was repressed. Here, we delve into the dual regulation of ARL5b by HRV16 in both cell types. We analyzed the effect of HRV16 on primary human macrophages using neutralizing antibodies, specific inhibitors, siRNA, and chromatin immune precipitation. Our study reveals that, while the virus does not replicate in macrophages, it induces interferon and pro-inflammatory responses. We identify the ICAM-1-PKR-ATF2 signaling axis as crucial for ARL5b induction in macrophages, whereas only ICAM-1 plays a role in ARL5b repression in permissive cells. Furthermore, HRV16 triggers epigenetic reprogramming in both cell types at the ARL5b promoter. In macrophages, epigenetic changes are ATF2 dependent. In conclusion, our findings highlight previously unknown signaling pathways activated by HRV16 in macrophages. Targeting these pathways could offer novel strategies to improve outcomes for individuals with respiratory conditions. IMPORTANCE: Human rhinovirus (HRV) infections are the leading cause of disease exacerbations in individuals with chronic pulmonary conditions and are frequently associated with bacterial superinfections due to defective bacterial elimination by macrophages. We previously identified ARL5b-induction by HRV16 to be responsible for the impairment of bacteria elimination. In contrast, in permissive cells, ARL5b is repressed and acts as a restriction factor for HRV16. Here, we investigated the dual regulation of ARL5b by HRV16 in these cells. Our study reveals that the ICAM-1-PKR-ATF2 signaling axis is crucial for ARL5b induction in macrophages. In permissive cells, only ICAM-1 plays a role in ARL5b repression. Moreover, HRV16 triggered epigenetic reprogramming in macrophages. ARL5b promoter was repressed in an ATF2-dependent manner. Collectively, our findings reveal previously unknown signaling pathways activated by HRV16 in macrophages. Targeting these pathways provides novel strategies to target ARL5b expression specifically in macrophages and improve outcomes for individuals with respiratory pathologies.


Asunto(s)
Factor de Transcripción Activador 2 , Molécula 1 de Adhesión Intercelular , Macrófagos , Rhinovirus , Transducción de Señal , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Macrófagos/virología , Macrófagos/metabolismo , Rhinovirus/fisiología , Factor de Transcripción Activador 2/metabolismo , Factor de Transcripción Activador 2/genética , Infecciones por Picornaviridae/metabolismo , Infecciones por Picornaviridae/virología , Infecciones por Picornaviridae/genética , Regiones Promotoras Genéticas , Epigénesis Genética
2.
Biochem Biophys Res Commun ; 731: 150400, 2024 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-39024975

RESUMEN

Neuromuscular signal transmission is affected in various diseases including myasthenia gravis, congenital myasthenic syndromes, and sarcopenia. We used an ATF2-luciferase system to monitor the phosphorylation of MuSK in HEK293 cells introduced with MUSK and LRP4 cDNAs to find novel chemical compounds that enhanced agrin-mediated acetylcholine receptor (AChR) clustering. Four compounds with similar chemical structures carrying benzene rings and heterocyclic rings increased the luciferase activities 8- to 30-folds, and two of them showed continuously graded dose dependence. The effects were higher than that of disulfiram, a clinically available aldehyde dehydrogenase inhibitor, which we identified to be the most competent preapproved drug to enhance ATF2-luciferase activity in the same assay system. In C2C12 myotubes, all the compounds increased the area, intensity, length, and number of AChR clusters. Three of the four compounds increased the phosphorylation of MuSK, but not of Dok7, JNK. ERK, or p38. Monitoring cell toxicity using the neurite elongation of NSC34 neuronal cells as a surrogate marker showed that all the compounds had no effects on the neurite elongation up to 1 µM. Extensive docking simulation and binding structure prediction of the four compounds with all available human proteins using AutoDock Vina and DiffDock showed that the four compounds were unlikely to directly bind to MuSK or Dok7, and the exact target remained unknown. The identified compounds are expected to serve as a seed to develop a novel therapeutic agent to treat defective NMJ signal transmission.


Asunto(s)
Fibras Musculares Esqueléticas , Receptores Nicotínicos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Animales , Ratones , Línea Celular , Humanos , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo , Genes Reporteros , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Familia de Multigenes , Transducción de Señal/efectos de los fármacos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Neuritas , Bungarotoxinas/farmacología , Benceno/farmacología , Compuestos Heterocíclicos/farmacología , Simulación del Acoplamiento Molecular
3.
Stroke ; 55(8): 2113-2125, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38965653

RESUMEN

BACKGROUND: Neuronal apoptosis plays an essential role in the pathogenesis of brain injury after subarachnoid hemorrhage (SAH). BAP1 (BRCA1-associated protein 1) is considered to exert pro-apoptotic effects in multiple diseases. However, evidence supporting the effect of BAP1 on the apoptotic response to SAH is lacking. Therefore, we aimed to confirm the role of BAP1 in SAH-induced apoptosis. METHODS: Enzyme-linked immunosorbent assay (ELISA) was used to detect BAP1 expression in the cerebrospinal fluid. Endovascular perforation was performed in mice to induce SAH. Lentiviral short hairpin RNA targeting BAP1 mRNA was transduced into the ipsilateral cortex of mice with SAH to investigate the role of BAP1 in neuronal damage. Luciferase and coimmunoprecipitation assays were performed to investigate the mechanism through which BAP1 participates in hemin-induced SAH. RESULTS: First, BAP1 expression was upregulated in the cerebrospinal fluid of patients with SAH and positively associated with unfavorable outcomes. ATF2 (activating transcription factor-2) then regulated BAP1 expression by binding to the BAP1 promoter. In addition, BAP1 overexpression enhanced P53 activity and stability by reducing P53 proteasome-mediated degradation. Subsequently, elevated P53 promoted neuronal apoptosis via the P53 pathway. Inhibition of the neuronal BAP1/P53 axis significantly reduced neurological deficits and neuronal apoptosis and improved neurological dysfunction in mice after SAH. CONCLUSIONS: Our results suggest that the neuronal ATF2/BAP1 axis exerts a brain-damaging effect by modulating P53 activity and stability and may be a novel therapeutic target for SAH.


Asunto(s)
Apoptosis , Neuronas , Hemorragia Subaracnoidea , Proteína p53 Supresora de Tumor , Proteínas Supresoras de Tumor , Ubiquitina Tiolesterasa , Hemorragia Subaracnoidea/metabolismo , Animales , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Apoptosis/fisiología , Ratones , Neuronas/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Humanos , Masculino , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Factor de Transcripción Activador 2/metabolismo , Factor de Transcripción Activador 2/genética , Transducción de Señal/fisiología , Ratones Endogámicos C57BL , Femenino , Persona de Mediana Edad
4.
Mol Cancer Res ; 22(9): 796-811, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-38757913

RESUMEN

Epigenetic deregulation is strongly associated with tumor progression. The identification of natural tumor suppressors to overcome cancer metastasis is urgent for cancer therapy. We investigate whether myeloid/lymphoid or mixed-lineage leukemia translocated (MLLT) family members contribute to breast cancer progression and found that high MLLT6 expression predicted a better prognosis and that gradually decreased MLLT6 expression was accompanied by breast cancer malignancy. MLLT6 was downregulated by hypoxia-induced enrichment of DNMT1 at the MLLT6 promoter. The results of in vitro functional experiments indicated that MLLT6 depletion promoted colony formation and cell migration, probably by hampering apoptosis. RNA profiling revealed that the apoptotic pathway was downregulated following stable knockdown of MLLT6. DNA damage-inducible transcript 3/4 (DDIT3/4) were among the top 10 downregulated genes and may have expression patterns similar to that of MLLT6. Restoring DDIT3/4 expression in cells with MLLT6 depletion blocked colony formation and cell migration and attenuated the successful colonization of breast cancer cells in vivo. We also determined that the transcription factor activating transcription factor 2 is a binding partner of MLLT6 and participates in the MLLT6/ATF2 axis, which was reinforced by inhibition of AKT signaling, in turn inducing DDIT3/4 expression by establishing an active chromatin structure at the DDIT3/4 gene promoters. As MLLT6 promotes breast cancer cell apoptosis by inducing DDIT3/4 expression during metastasis, it could be a novel tumor suppressor. Implications: Control of MLLT6 expression via inhibition of PI3K/AKT kinase activity is a potential therapeutic approach for the management of metastatic breast cancer.


Asunto(s)
Factor de Transcripción Activador 2 , Neoplasias de la Mama , Progresión de la Enfermedad , Factor de Transcripción CHOP , Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Factor de Transcripción Activador 2/metabolismo , Factor de Transcripción Activador 2/genética , Factor de Transcripción CHOP/metabolismo , Factor de Transcripción CHOP/genética , Ratones , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Apoptosis , Movimiento Celular , Factores de Transcripción
5.
Mol Oncol ; 18(5): 1327-1346, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38383842

RESUMEN

SRY-box transcription factor 6 (SOX6) is a member of the SOX gene family and inhibits the proliferation of cervical cancer cells by inducing cell cycle arrest. However, the final cell fate and significance of these cell-cycle-arrested cervical cancer cells induced by SOX6 remains unclear. Here, we report that SOX6 inhibits the proliferation of cervical cancer cells by inducing cellular senescence, which is mainly mediated by promoting transforming growth factor beta 2 (TGFB2) gene expression and subsequently activating the TGFß2-Smad2/3-p53-p21WAF1/CIP1-Rb pathway. SOX6 promotes TGFB2 gene expression through the MAP4K4-MAPK (JNK/ERK/p38)-ATF2 and WT1-ATF2 pathways, which is dependent on its high-mobility group (HMG) domain. In addition, the SOX6-induced senescent cervical cancer cells are resistant to cisplatin treatment. ABT-263 (navitoclax) and ABT-199 (venetoclax), two classic senolytics, can specifically eliminate the SOX6-induced senescent cervical cancer cells, and thus significantly improve the chemosensitivity of cisplatin-resistant cervical cancer cells. This study uncovers that the MAP4K4/WT1-ATF2-TGFß2 axis mediates SOX6-induced cellular senescence, which is a promising therapeutic target in improving the chemosensitivity of cervical cancer.


Asunto(s)
Factor de Transcripción Activador 2 , Senescencia Celular , Factores de Transcripción SOXD , Transducción de Señal , Proteína Smad2 , Factor de Crecimiento Transformador beta2 , Neoplasias del Cuello Uterino , Animales , Femenino , Humanos , Ratones , Factor de Transcripción Activador 2/metabolismo , Factor de Transcripción Activador 2/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteína Smad2/metabolismo , Proteína smad3 , Factores de Transcripción SOXD/metabolismo , Factores de Transcripción SOXD/genética , Factor de Crecimiento Transformador beta2/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/genética
6.
Int Immunopharmacol ; 127: 111365, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38104370

RESUMEN

OBJECTIVE: Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic joint inflammation, with synovial fibroblasts (SFs) playing a pivotal role in its pathogenesis. Dysregulation of microRNA (miRNA) expression in SFs contributes to RA development. Exosomes (Exos) have emerged as effective carriers for therapeutic molecules, facilitating miRNA transfer between cells. This study explores the therapeutic potential of Exos derived from human umbilical cord mesenchymal stem cells (hUCMSCs), loaded with miR-451a, to modulate ATF2 expression, aiming to address RA in both in vivo and in vitro settings. METHODS: In this study, hUCMSC and RA SFs were isolated and identified, and hUCMSC-Exos were extracted and characterized. The influence of hUCMSC-Exos on RA SFs was detected. And hUCMSC-Exos targeting RA SFs was traced. HUCMSCKD-AGO2 was prepared by knocking down AGO2 in hUCMSC. HUCMSCKD-AGO2-Exos was extracted and characterized,and their influence on RA SFs was detected. The miRNA profiles before and after hUCMSC-Exos intervention in RA SFs were mapped to identify differential miRNAs. RT-qPCR was used to verify the differential miRNAs, with hsa-miR-451a finally selected as the target gene. The effect of miR-451a on SFs was detected. The latent binding of miR-451a to activating transcription factor 2 (ATF2) was analyzed. The effect of hUCMSC-ExosmiR-451a on SFs was detected, and the expression of miR-451a and ATF2 was measured by RT-PCR. In vivo, hUCMSC-ExosmiR-451a was injected into the ankle joint of CIA rats, and arthritis index, joint imaging and synovial pathology were assessed. The expression of miR-451a and ATF2 in synovial tissue was detected. Finally, the safety of hUCMSC-ExosmiR-451a in CIA rats was evaluated. RESULTS: This study revealed that hUCMSC-Exos can inhibit RA SFs proliferation, migration and invasion through miRNAs. High throughput sequencing detected 13 miRNAs that could be transmitted from hUCMSCs to RA SFs via hUCMSC-Exos. miR-451a inhibited RA SFs proliferation, migration and invasion by regulating ATF2. hUCMSC-Exos loaded with miR-451a targeted ATF2 to inhibit RA SFs proliferation, migration and invasion, and improve joint inflammation and imaging findings in CIA rats. CONCLUSIONS: This study demonstrates that miR-451a carried by hUCMSC-Exos can play a role in inhibiting RA SFs biological traits and improving arthritis in CIA rats by inhibiting ATF2. The findings suggest a promising treatment for RA and provide insights into the mechanism of action of hUCMSC-Exos in RA. Future research directions will continue to explore the potential in this field.


Asunto(s)
Artritis Reumatoide , Exosomas , Células Madre Mesenquimatosas , MicroARNs , Animales , Humanos , Ratas , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo , Artritis Reumatoide/genética , Artritis Reumatoide/terapia , Artritis Reumatoide/metabolismo , Exosomas/genética , Exosomas/metabolismo , Inflamación/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Cordón Umbilical
7.
Commun Biol ; 6(1): 1026, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816820

RESUMEN

Various miRNAs have been shown to participate in the tumor progression and development of colorectal cancer (CRC). However, the role of miR-3913-5p in CRC are yet to be clearly defined. In the present study, we determine that miR-3913-5p is downregulated in CRC cell lines and CRC tissues. Exogenous miR-3913-5p expression weakens the CRC cells growth, migration and invasion. Mechanistically, miR-3913-5p directly targets the 3'UTR of CREB5. Overexpression of CREB5 reverses the suppression of CRC cells proliferation, migration and invasion induced by miR-3913-5p. Furthermore, ATF2 negatively regulates the transcription of miR-3913-5p by binding to its promoter. CREB5 can cooperate with ATF2. CREB5 is required for ATF2 in regulating miR-3913-5p. Finally, inverse correlations can be found between the expressions of miR-3913-5p and CREB5 or ATF2 in CRC tissues. Thus, a plausible mechanism of ATF2/miR-3913-5p/CREB5 axis regulating CRC progression is elucidated. Our findings suggest that miR-3913-5p functions as a tumor suppressor in CRC. ATF2/miR-3913-5p/CREB5 axis might be a potential therapeutic target against CRC progression.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , Neoplasias Colorrectales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular , Proliferación Celular/genética , Factor de Transcripción Activador 2/genética , Proteína de Unión al Elemento de Respuesta al AMP Cíclico
8.
Chem Biol Drug Des ; 102(4): 782-792, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37455326

RESUMEN

Amentoflavone (AF) is a natural multifunctional biflavonoid that has been revealed to possess multiple biological activities, including anticancer activity. Here, this work focused on exploring the functions and mechanism of AF in gastric cancer (GC). Levels of genes and proteins were examined by quantitative real-time PCR and western blotting. Cell proliferation and cell death were analyzed using cell counting kit-8, colony formation, and lactate dehydrogenase (LDH) release assay, respectively. Cell ferroptosis was evaluated by detecting the levels of malondialdehyde (MDA), reduced glutathione (GSH), Fe2+ , and intracellular reactive oxygen species (ROS). The binding between miR-496 and activating transcription factor 2 (ATF2) was confirmed by using dual-luciferase reporter assay. Murine xenograft assay was conducted for in vivo experiments. The results showed that AF suppressed the proliferation and induced ferroptotic cell death in GC cells. MiR-496 expression was decreased in GC tissues and cells, and AF treatment increased miR-496 expression level in GC cells. Functionally, miR-496 inhibition reversed the inhibitory effects of AF on GC cell proliferation and promoting effects on ferroptotic cell death. Mechanistically, ATF2 was targeted by miR-496. ATF2 expression was increased in GC tissues and cells, which was decreased by AF treatment and subsequently rescued by miR-496 downregulation in GC cells. Moreover, miR-496 overexpression suppressed the proliferation and induced ferroptotic cell death in GC cells via targeting ATF2. In all, AF suppressed the proliferation and induced ferroptotic cell death in GC cells via miR-496/ATF2 axis, indicating a novel therapeutic approach for GC patients.


Asunto(s)
Biflavonoides , Ferroptosis , MicroARNs , Neoplasias Gástricas , Humanos , Animales , Ratones , Biflavonoides/farmacología , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Factor de Transcripción Activador 2/genética , Línea Celular Tumoral , Proliferación Celular
9.
J Leukoc Biol ; 114(3): 280-298, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37403209

RESUMEN

The differentiation and activation of macrophages are critical regulatory programs that are central to host inflammation and pathogen defense. However, the transcriptional regulatory pathways involved in these programs are not well understood. Herein, we demonstrate that the activity and expression of the transcription factor ATF2 is precisely regulated during primary human monocyte-to-macrophage differentiation and that its activation is linked to M1 polarization and antibacterial responses. Genetic perturbation experiments demonstrated that deletion of ATF2 (THP-ΔATF2) resulted in irregular and abnormal macrophage morphology, whereas macrophages overexpressing ATF2 (THP-ATF2) developed round and pancake-like morphology, resembling classically activated (M1) macrophages. Mechanistically, we show that ATF2 binds to the core promoter of PPM1A, a phosphatase that regulates monocyte-to-macrophage differentiation, to regulate its expression. Functionally, overexpression of ATF2 sensitized macrophages to M1 polarization, resulting in increased production of major histocompatibility complex class II, IL-1ß, and IP-10; improved phagocytic capacity; and enhanced control of the intracellular pathogen Mycobacterium tuberculosis. Gene expression profiling revealed that overexpression of ATF2 reprogramed macrophages to promote antibacterial pathways enriched in chemokine signaling, metabolism, and antigen presentation. Consistent with pathways analysis, metabolic profiling revealed that genetic overexpression or stimuli-induced activation of ATF2 alters the metabolic capacity of macrophages and primes these cells for glycolytic metabolism during M1 polarization or bacterial infection. Our findings reveal that ATF2 plays a central role during macrophage differentiation and M1 polarization to enhance the functional capacities of macrophages.


Asunto(s)
Macrófagos , Monocitos , Humanos , Macrófagos/metabolismo , Monocitos/metabolismo , Fagocitos , Leucocitos , Diferenciación Celular/fisiología , Activación de Macrófagos , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo , Proteína Fosfatasa 2C/metabolismo
10.
Drug Dev Res ; 84(6): 1325-1334, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37421203

RESUMEN

Globally, gastric cancer (GC) is a major cause of cancer death. This study is aimed at investigating the biological functions of activating transcription factor 2 (ATF2) and the underlying mechanism in GC. In the present work, GEPIA, UALCAN, Human Protein Atlas and StarBase databases were adopted to analyze ATF2 expression characteristics in GC tissues and normal gastric tissues, and its relationships with tumor grade and patients' survival time. Quantitative real-time polymerase chain reaction (qRT-PCR) method was employed to examine ATF2 mRNA expression in normal gastric tissues, GC tissues, and GC cell lines. Cell counting kit-8 (CCK-8) and EdU assays were utilized for detecting GC cell proliferation. Cell apoptosis was detected by flow cytometry. PROMO database was applied to predict the binding site of ATF2 with the METTL3 promoter region. The binding relationship between ATF2 and the METTL3 promoter region was verified through dual-luciferase reporter gene assay and chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay. Western blot was performed to evaluate the effect of ATF2 on METTL3 expression. METTL3-related signaling pathways were predicted using Gene Set Enrichment Analysis (GSEA) in the LinkedOmics database. It was found that, ATF2 level was elevated in GC tissues and cell lines in comparison with normal tissues and correlated with short patients' survival time. ATF2 overexpression facilitated GC cell growth and suppressed the apoptosis, whereas ATF2 knockdown suppressed GC cell proliferation and facilitated the apoptosis. ATF2 bound to the METTL3 promoter region, and ATF2 overexpression promoted the transcription of METTL3, and ATF2 knockdown restrained the transcription of METTL3. METTL3 was associated with cell cycle progression, and ATF2 overexpression enhanced cyclin D1 expression, and METTL3 knockdown reduced cyclin D1 expression. In summary, ATF2 facilitates GC cell proliferation and suppresses the apoptosis via activating the METTL3/cyclin D1 signaling pathway, and ATF2 is promising to be an anti-drug target for GC.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Factores de Transcripción/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Metiltransferasas/genética
11.
Int J Biol Sci ; 19(8): 2366-2381, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215991

RESUMEN

Due to drug resistance, the clinical response to cisplatin (CDDP) from patients with liver cancer is unsatisfactory. The alleviation or overcoming of CDDP resistance is an urgent problem to be solved in clinics. Tumor cells rapidly change signal pathways to mediate drug resistance under drug exposure. Here, multiple phosphor-kinase assays were performed and c-Jun N-terminal kinase (JNK) was activated in liver cancer cells treated with CDDP. The high activity of the JNK promotes poor progression and mediates cisplatin resistance in liver cancer, leading to a poor prognosis of liver cancer. Mechanistically, the highly activated JNK phosphorylated c-Jun and ATF2 formed a heterodimer to upregulate the expression of Galectin-1, leading to promoting cisplatin resistance in liver cancer. Importantly, we simulated the clinical evolution of drug resistance in liver cancer by continuous CDDP administration in vivo. In vivo bioluminescence imaging showed the activity of JNK gradually increased during this process. Moreover, the inhibition of JNK activity by small molecular or genetic inhibitors enhanced DNA damage and overcame CDDP resistance in vitro and in vivo. Collectively, our results underline that the high activity of JNK/c-Jun-ATF2/Galectin-1 mediates cisplatin resistance in liver cancer and provides an optional scheme for dynamic monitoring of molecular activity in vivo.


Asunto(s)
Antineoplásicos , Neoplasias Hepáticas , Humanos , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Galectina 1/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética
12.
BMC Cancer ; 23(1): 480, 2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37237279

RESUMEN

BACKGROUND: The role of ATF2 in colon cancer (CC) is controversial. Recently, we reported that low ATF2 expression is characteristic of highly invasive tumors, suggesting that ATF2 might also be involved in therapy resistance. 5-Fluorouracil (5-FU) is the best-known chemotherapeutic drug for CC, but drug resistance affects its curative effect. To date, the role of ATF2 in the 5-FU response remains elusive. METHODS/RESULTS: For our study, we had available HCT116 cells (wild-type p53) and HT29 colon tumor cells (mutant p53) and their corresponding CRISPR‒Cas9-generated ATF2-KO clones. We observed that loss of ATF2 triggered dose- and time-dependent 5-FU resistance in HCT116 cells by activating the DNA damage response (DDR) pathway with high p-ATRThr1989 and p-Chk1Ser317 levels accompanied by an increase in the DNA damage marker γ-H2AX in vitro and in vivo using the chicken chorioallantoic membrane (CAM) model. Chk1 inhibitor studies causally displayed the link between DDR and drug resistance. There were contradictory findings in HT29 ATF2-KO cells upon 5-FU exposure with low p-Chk1Ser317 levels, strong apoptosis induction, but no effects on DNA damage. In ATF2-silenced HCT116 p53-/- cells, 5-FU did not activate the DDR pathway. Co-immunoprecipitation and proximity ligation assays revealed that upon 5-FU treatment, ATF2 binds to ATR to prevent Chk1 phosphorylation. Indeed, in silico modelling showed reduced ATR-Chk1 binding when ATF2 was docked into the complex. CONCLUSIONS: We demonstrated a novel ATF2 scaffold function involved in the DDR pathway. ATF2-negative cells are highly resistant due to effective ATR/Chk1 DNA damage repair. Mutant p53 seems to overwrite the tumor suppressor function of ATF2.


Asunto(s)
Neoplasias del Colon , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Fluorouracilo/farmacología , Daño del ADN , Factor de Transcripción Activador 2/genética
13.
Biochem Genet ; 61(5): 2076-2091, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36939972

RESUMEN

Diabetic retinopathy (DR) is one of the leading causes of blindness in diabetic patients. However, the pathogenesis of DR is complex, and no firm conclusions have been drawn so far. It has become a hot spot in ophthalmology research to deeply study the mechanism of DR pathological changes and find effective treatment options. Human retinal microvascular endothelial cells (HRMECs) were induced by high glucose (HG) to construct DR cell model. CCK-8 assay was used to detect the viability of HRMECs. Transwell assay was used to detect the migration ability of HRMECs. Tube formation assay was used to identify the tube formation ability of HRMECs. The expressions of USP14, ATF2 and PIK3CD were detected by Western blot analysis and qRT-PCR assay. Immunoprecipitation (IP) was used to ascertain the relationship of USP14 and ATF2. To explore the regulatory relationship between ATF2 and PIK3CD by dual-luciferase reporter gene assay and Chromatin immunoprecipitation (ChIP) assay. High glucose treatment promoted the proliferation, migration, and tube formation of HRMEC, and the expressions of USP14, ATF2 and PIK3CD were significantly up-regulated. USP14 or ATF2 knockdown inhibited HG-induced HRMECs proliferation, migration, and tube formation. USP14 regulated the expression of ATF2, and ATF2 promoted PIK3CD expression. PIK3CD overexpression attenuated the inhibitory effectiveness of USP14 knockdown on proliferation, migration and tube formation of DR cell model. Here, we revealed that USP14 regulated the ATF2/PIK3CD axis to promote proliferation, migration, and tube formation in HG-induced HRMECs.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , MicroARNs , Humanos , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo , Proliferación Celular/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Diabetes Mellitus/metabolismo , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Células Endoteliales/metabolismo , Glucosa , MicroARNs/genética , Retina/metabolismo , Retina/patología , Ubiquitina Tiolesterasa/metabolismo
14.
J Cell Sci ; 136(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36621522

RESUMEN

Wnt signalling has been implicated as a driver of tumour cell metastasis, but less is known about which branches of Wnt signalling are involved and when they act in the metastatic cascade. Here, using a unique intravital imaging platform and fluorescent reporters, we visualised ß-catenin/TCF-dependent and ATF2-dependent signalling activities during human cancer cell invasion, intravasation and metastatic lesion formation in the chick embryo host. We found that cancer cells readily shifted between states of low and high canonical Wnt activity. Cancer cells that displayed low Wnt canonical activity showed higher invasion and intravasation potential in primary tumours and in metastatic lesions. In contrast, cancer cells showing low ATF2-dependent activity were significantly less invasive both at the front of primary tumours and in metastatic lesions. Simultaneous visualisation of both these reporters using a double-reporter cell line confirmed their complementary activities in primary tumours and metastatic lesions. These findings might inform the development of therapies that target different branches of Wnt signalling at specific stages of metastasis.


Asunto(s)
Neoplasias , beta Catenina , Animales , Embrión de Pollo , Humanos , beta Catenina/metabolismo , Vía de Señalización Wnt , Neoplasias/genética , Línea Celular Tumoral , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo
15.
Redox Biol ; 59: 102564, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36473315

RESUMEN

Sorafenib, a tyrosine kinase inhibitor, has an important antitumor effect as a ferroptosis inducer in multiple cancers, including gastric cancer (GC). However, the status of sorafenib as a ferroptosis inducer has recently been questioned. There is very limited information about the relationship between ferroptosis and ATF2, and the role of ATF2 in sorafenib-induced ferroptosis has not been studied. In this study, we investigated the role and underlying molecular mechanisms of ATF2 in sorafenib-induced ferroptosis in GC. We found that ATF2 was significantly upregulated in GC tissues and predicted a poor clinical prognosis. Silencing ATF2 significantly inhibited the malignant phenotype of GC cells. In addition, we observed that ATF2 was activated during sorafenib-induced ferroptosis in GC cells. ATF2 knockdown promoted sorafenib-induced ferroptosis, while ATF2 overexpression showed the opposite results in GC cells. Using ChIP-Seq and RNA-Seq, we identified HSPH1 as a target of ATF2 and further validated it by ChIP‒qPCR analysis. HSPH1 can interact with SLC7A11 (cystine/glutamate transporter) and increase its protein stability. Importantly, knockdown of HSPH1 partly reversed the effects caused by ATF2 overexpression on sorafenib-induced ferroptosis in GC cells. In addition, the results from the tumor xenograft model showed that ATF2 knockdown can effectively enhance sorafenib sensitivity in vivo. Collectively, our study reveals a novel mechanism by which sorafenib induces ferroptosis in GC.


Asunto(s)
Ferroptosis , Neoplasias Gástricas , Animales , Humanos , Sorafenib/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Modelos Animales de Enfermedad , Fenotipo , Línea Celular Tumoral , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/farmacología
16.
Artículo en Inglés | MEDLINE | ID: mdl-36330631

RESUMEN

AIMS: To explore the ATF2 expression of preeclampsia patients and investigate whether the level of ATF2 expression impacted the low-dose aspirin treatment of preeclampsia patients. BACKGROUND: Preeclampsia is a severe pregnancy-related hypertension disorder and refers to hypertension. OBJECTIVE: This study was designed to explore the activating transcription factor 2 (ATF2) expression of preeclampsia patients and investigate whether the level of ATF2 expression impacted the low-dose aspirin treatment of preeclampsia patients. METHODS: Firstly, we collected the plasma of normal and preeclampsia pregnancies and quantified the expressions of ATF2 by ELISA. Then we quantified the expression of the three downstream target genes of ATF2 (IL-8, IL-6 and MMP-2). Finally, we collected and quantified the interventional and observational group plasma. All data were compared by t-test (p<0.05). RESULTS: ATF2 and its target genes (IL-6, IL-8 and MMP-2) were upregulated in preeclampsia patients. In addition, ATF2 and its target genes were downregulated in the interventional group (LDA-treated group). CONCLUSION: Our results indicated that LDA could inhibit ATF2 expression in preeclampsia. It suggests that ATF2 may be a potential target of LDA in the prevention of preeclampsia.


Asunto(s)
Aspirina , Hipertensión , Preeclampsia , Femenino , Humanos , Embarazo , Factor de Transcripción Activador 2/genética , Aspirina/uso terapéutico , Hipertensión/tratamiento farmacológico , Interleucina-6/genética , Interleucina-8/genética , Metaloproteinasa 2 de la Matriz , Preeclampsia/tratamiento farmacológico , Preeclampsia/genética , Preeclampsia/prevención & control
17.
Pestic Biochem Physiol ; 186: 105179, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35973768

RESUMEN

Activating transcription factor 2 (ATF2), a basic leucine zipper (bZIP) transcription factor, plays a crucial role in immune and DNA damage response in mammals. However, the function of ATF2 in insects remains unknown. Here, we isolated the ATF2 gene from Apis cerana cerana (AccATF2) and found that AccATF2 was a main regulator of the honeybee response to oxidative stress. Our results showed that AccATF2 was highly expressed in the head, thorax and integument. AccATF2 was expressed throughout the development period of honeybees, and the highest AccATF2 transcript level was noted in brown-eyed pupae, indicating its indispensable roles in honeybee survival. Antioxidant function analysis showed that AccATF2 expression was markedly induced in response to oxidative stress caused by various environmental stresses. AccATF2 overexpression substantially enhanced the tolerance to oxidative stress of Escherichia coli cells compared with control cells. AccATF2 knockdown significantly increased the production of malondialdehyde (MDA), the transcription of antioxidant genes and the activity of antioxidant enzymes in honeybees, suggesting that AccATF2 knockdown resulted in oxidative damage to honeybees. Moreover, AccATF2 knockdown decreased honeybee resistance to oxidative stress caused by high temperature. Overall, AccATF2 plays an important role in maintaining redox homeostasis and protecting honeybees from oxidative stress caused by various environmental stimuli. Our discoveries add to a growing understanding of how honeybees cope with various adverse environmental conditions to ensure their survival.


Asunto(s)
Antioxidantes , Proteínas de Insectos , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo , Animales , Antioxidantes/metabolismo , Abejas/genética , Proteínas de Insectos/metabolismo , Malondialdehído/metabolismo , Mamíferos/metabolismo , Estrés Oxidativo/genética
18.
Mediators Inflamm ; 2022: 2558275, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784175

RESUMEN

Methods: The data sets of GSE56081 and GSE63492 in the Gene Expression Omnibus (GEO) database were used for screening and analysis, and the key gene markers were verified by GSE34095 and GSE126883. Finally, the infiltration of immune cells in the data were analyzed by MCPcounter analysis package. Results: In this study, a ceRNA containing 15 lncRNAs, 9 miRNAs, and 103 mRNAs was constructed. After multimodel screening and verification, key gene marker was found, namely, ATF2. The lncRNA/miRNA/mRNA axis closely related to ATF2 have also been found, namely, SNHG5/miR-299-5p/ATF2. In the analysis of immune infiltration, ATF2 was negatively correlated with T cells but positively correlated with neutrophils and endothelial cells. Conclusion: The SNHG5/miR-299-5p/ATF2 can be used as biomarker of IDD, and infiltration of immune cells plays an important role in the pathological development of IDD. In addition, as a marker of IDD, the involvement of the above-mentioned axis in the pathological development of IDD remains to be further explored.


Asunto(s)
Degeneración del Disco Intervertebral , MicroARNs , ARN Largo no Codificante , Factor de Transcripción Activador 2/genética , Biomarcadores , Células Endoteliales/metabolismo , Humanos , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero
19.
Cell Mol Life Sci ; 79(8): 423, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35838828

RESUMEN

In cancer, the activating transcription factor 2 (ATF2) has pleiotropic functions in cellular responses to growth stimuli, damage, or inflammation. Due to only limited studies, the significance of ATF2 in colorectal cancer (CRC) is not well understood. We report that low ATF2 levels correlated with worse prognosis and tumor aggressiveness in CRC patients. NanoString gene expression and ChIP analysis confirmed trophoblast cell surface antigen 2 (TROP2) as a novel inhibitory ATF2 target gene. This inverse correlation was further observed in primary human tumor tissues. Immunostainings revealed that high intratumoral heterogeneity for ATF2 and TROP2 expression was sustained also in liver metastasis. Mechanistically, our in vitro data of CRISPR/Cas9-generated ATF2 knockout (KO) clones revealed that high TROP2 levels were critical for cell de-adhesion and increased cell migration without triggering EMT. TROP2 was enriched in filopodia and displaced Paxillin from adherens junctions. In vivo imaging, micro-computer tomography, and immunostainings verified that an ATF2KO/TROP2high status triggered tumor invasiveness in in vivo mouse and chicken xenograft models. In silico analysis provided direct support that ATF2low/TROP2high expression status defined high-risk CRC patients. Finally, our data demonstrate that ATF2 acts as a tumor suppressor by inhibiting the cancer driver TROP2. Therapeutic TROP2 targeting might prevent particularly the first steps in metastasis, i.e., the de-adhesion and invasion of colon cancer cells.


Asunto(s)
Factor de Transcripción Activador 2 , Antígenos de Neoplasias , Neoplasias Colorrectales , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral/metabolismo , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Humanos , Ratones , Regulación hacia Arriba
20.
Oxid Med Cell Longev ; 2022: 1296816, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35855866

RESUMEN

Ischemic stroke is a common disease that led to high mortality and high disability. NADPH oxidase 2- (NOX2-) mediated oxidative stress and long noncoding RNA have important roles in cerebral ischemia/reperfusion (CI/R) injury, whereas whether there is interplay between them remains to be clarified. This study was performed to observe the role of lncRNA PINK1-antisense RNA (PINK1-AS) in NOX2 expression regulation. An in vivo rat model (MCAO) and an in vitro cell model (H/R: hypoxia/reoxygenation) were utilized for CI/R oxidative stress injury investigation. The expression levels of lncRNA PINK1-AS, activating transcription factor 2 (ATF2), NOX2, and caspase-3 and the production level of ROS and cell apoptosis were significantly increased in CI/R injury model rats or in H/R-induced SH-SY5Y cells, but miR-203 was significantly downregulated. There was positive correlation between PINK1-AS expression level and ROS production level. PINK1-AS and ATF2 were found to be putative targets of miR-203. Knockdown of lncRNA PINK1-AS or ATF2 or the overexpression of miR-203 significantly reduced oxidative stress injury via inhibition of NOX2. Overexpression of lncRNA PINK1 significantly led to oxidative stress injury in SH-SY5Y cells through downregulating miR-203 and upregulating ATF2 and NOX2. lncRNA PINK1-AS and ATF2 were the targets of miR-203, and the lncRNA PINK1-AS/miR-203/ATF2/NOX2 axis plays pivotal roles in CI/R injury. Therefore, lncRNA PINK1-AS is a possible target for CR/I injury therapy by sponging miR-203.


Asunto(s)
Factor de Transcripción Activador 2 , Isquemia Encefálica , MicroARNs , ARN Largo no Codificante , Daño por Reperfusión , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo , Animales , Apoptosis/fisiología , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Infarto Cerebral/genética , Infarto Cerebral/metabolismo , Infarto Cerebral/patología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Estrés Oxidativo/genética , Proteínas Quinasas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...