Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Cancer ; 24(1): 317, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454344

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer, and chemoresistance poses a significant challenge to the survival and prognosis of GBM. Although numerous regulatory mechanisms that contribute to chemoresistance have been identified, many questions remain unanswered. This study aims to identify the mechanism of temozolomide (TMZ) resistance in GBM. METHODS: Bioinformatics and antibody-based protein detection were used to examine the expression of E2F7 in gliomas and its correlation with prognosis. Additionally, IC50, cell viability, colony formation, apoptosis, doxorubicin (Dox) uptake, and intracranial transplantation were used to confirm the role of E2F7 in TMZ resistance, using our established TMZ-resistance (TMZ-R) model. Western blot and ChIP experiments provided confirmation of p53-driven regulation of E2F7. RESULTS: Elevated levels of E2F7 were detected in GBM tissue and were correlated with a poor prognosis for patients. E2F7 was found to be upregulated in TMZ-R tumors, and its high levels were linked to increased chemotherapy resistance by limiting drug uptake and decreasing DNA damage. The expression of E2F7 was also found to be regulated by the activation of p53. CONCLUSIONS: The high expression of E2F7, regulated by activated p53, confers chemoresistance to GBM cells by inhibiting drug uptake and DNA damage. These findings highlight the significant connection between sustained p53 activation and GBM chemoresistance, offering the potential for new strategies to overcome this resistance.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Factor de Transcripción E2F7/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Pronóstico , Temozolomida/farmacología , Temozolomida/uso terapéutico , Proteína p53 Supresora de Tumor/genética
2.
Rev Invest Clin ; 76(1): 6-17, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38253021

RESUMEN

Background: Adriamycin resistance remains an obstacle to gastric cancer chemotherapy treatment. Objective: The objective of this study was to study the role and mechanism of transcription factor E2F7 in sensitivity to ADM chemotherapeutic agents in gastric cancer. Methods: Cell viability and cell sensitivity were assessed by CCK-8 and IC50 values of ADM were calculated. The impact of ADM on cellular proliferative capacity was assessed through colony formation assay. The binding relationship between E2F7 and PKMYT1 was then verified by dual luciferase assay and chromatin immunoprecipitation assay. ERK1/ERK2 and p-ERK1/p-ERK2 protein expression levels were detected by western blot. Results: In both gastric cancer tissue and ADM-resistant cells, a conspicuous upregulation of E2F7 and PKMYT1 was observed. Upregulated PKMYT1 was notably enriched in the MAPK signaling pathway. Enhanced levels of E2F7 were shown to not only drive gastric cancer cell proliferation but also engender a reduction in the sensitivity of these cells to ADM. Furthermore, PKMYT1 emerged as a downstream target of E2F7. Activation of E2F7 culminated in the transcriptional upregulation of PKMYT1, and silencing E2F7 reversed the inhibitory impact of PKMYT1 overexpression on ADM sensitivity in gastric cancer cells. Conclusion: E2F7/PKMYT1 axis might promote the proliferation and partially inhibit ADM sensitivity of gastric cancer cells by activating the MAPK pathway.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , Doxorrubicina/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Transducción de Señal , MicroARNs/metabolismo , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción E2F7/genética , Factor de Transcripción E2F7/metabolismo , Proteínas de la Membrana/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
3.
J Mol Histol ; 54(5): 489-498, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37615745

RESUMEN

Cervical cancer (CC) is the second most common type of cancer in women, and presents a serious threat to public health. We aimed to investigate the regulatory impacts of CDGSH iron-sulfur domain-containing protein 2 (CISD2) in CC and to discuss its relationship with E2F transcription factor 7 (E2F7). With the employment of real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and western blot, the expression of CISD2 and E2F7 in SiHa cells before or after transfection was estimated. Cell counting kit-8 (CCK-8) assay, Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay, wound healing and transwell were used to detect the proliferation, apoptosis, migration and invasion of SiHa cells. The activity of CISD2 was detected using luciferase report assay and chromatin immunoprecipitation (ChIP) assay was used to confirm the binding of E2F7 and CISD2 promoter. The contents of proliferation- and apoptosis-related proteins were detected using western blot. Results revealed that CISD2 expression was greatly enhanced in CC cell lines. CISD2 depletion inhibited the proliferation, migration and invasion of SiHa cells but promoted the cell apoptosis. It was also found that E2F7 was remarkably elevated in SiHa cells. According to JASPAR database, the binding sites of E2F7 and CISD2 were predicted and ChIP confirmed the binding of E2F7 and CISD2 promoter. Results obtained from luciferase report assay indicated that E2F7 overexpression increased the activity of CISD2 promoter region. Furthermore, further functional experiments demonstrated that the impacts of E2F7 interference on the proliferation, migration, invasion and apoptosis of SiHa cells were reversed by CISD2 overexpression. In summary, CISD2 silence could alleviate the malignant progression of CC and could be transcribed by E2F7.


Asunto(s)
Factores de Transcripción , Neoplasias del Cuello Uterino , Humanos , Femenino , Factores de Transcripción/metabolismo , Neoplasias del Cuello Uterino/patología , Regulación de la Expresión Génica , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Factor de Transcripción E2F7/genética , Factor de Transcripción E2F7/metabolismo
4.
FASEB J ; 37(7): e23058, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37358838

RESUMEN

Dysregulation of the autotaxin (ATX, Enpp2)-lysophosphatidic acid (LPA) signaling in cancerous cells contributes to tumorigenesis and therapy resistance. We previously found that ATX activity was elevated in p53-KO mice compared to wild-type (WT) mice. Here, we report that ATX expression was upregulated in mouse embryonic fibroblasts from p53-KO and p53R172H mutant mice. ATX promoter analysis combined with yeast one-hybrid testing revealed that WT p53 directly inhibits ATX expression via E2F7. Knockdown of E2F7 reduced ATX expression and chromosome immunoprecipitation showed that E2F7 promotes Enpp2 transcription through cooperative binding to two E2F7 sites (promoter region -1393 bp and second intron 996 bp). Using chromosome conformation capture, we found that chromosome looping brings together the two E2F7 binding sites. We discovered a p53 binding site in the first intron of murine Enpp2, but not in human ENPP2. Binding of p53 disrupted the E2F7-mediated chromosomal looping and repressed Enpp2 transcription in murine cells. In contrast, we found no disruption of E2F7-mediated ENPP2 transcription via direct p53 binding in human carcinoma cells. In summary, E2F7 is a common transcription factor that upregulates ATX in human and mouse cells but is subject to steric interference by direct intronic p53 binding only in mice.


Asunto(s)
Fibroblastos , Proteína p53 Supresora de Tumor , Humanos , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Transducción de Señal , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Cromosomas , Lisofosfolípidos/metabolismo , Factor de Transcripción E2F7/genética , Factor de Transcripción E2F7/metabolismo
5.
J Biol Chem ; 299(5): 104677, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37028765

RESUMEN

The N6-methyladenosine (m6A) modification possesses new and essential roles in tumor initiation and progression by regulating mRNA biology. However, the role of aberrant m6A regulation in nasopharyngeal carcinoma (NPC) remains unclear. Here, through comprehensive analyses of NPC cohorts from the GEO database and our internal cohort, we identified that VIRMA, an m6A writer, is significantly upregulated in NPC and plays an essential role in tumorigenesis and metastasis of NPC, both in vitro and in vivo. High VIRMA expression served as a prognostic biomarker and was associated with poor outcomes in patients with NPC. Mechanistically, VIRMA mediated the m6A methylation of E2F7 3'-UTR, then IGF2BP2 bound, and maintained the stability of E2F7 mRNA. An integrative high-throughput sequencing approach revealed that E2F7 drives a unique transcriptome distinct from the classical E2F family in NPC, which functioned as an oncogenic transcriptional activator. E2F7 cooperated with CBFB-recruited RUNX1 in a non-canonical manner to transactivate ITGA2, ITGA5, and NTRK1, strengthening Akt signaling-induced tumor-promoting effect.


Asunto(s)
Carcinogénesis , Factor de Transcripción E2F7 , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteínas de Unión al ARN , Humanos , Carcinogénesis/genética , Transformación Celular Neoplásica , Factor de Transcripción E2F7/genética , Factor de Transcripción E2F7/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Regulación hacia Arriba
6.
Hum Cell ; 36(2): 738-751, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36627545

RESUMEN

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. Uncontrolled angiogenesis plays a critical role in hepatocellular tumor growth and metastasis. In this study, we aimed to investigate the effects of circular RNA hsa_circ_0000519 and the potential involvement of microRNA (miR)-1296 and E2F transcription factor 7 (E2F7) in HCC development. Hsa_circ_0000519 was highly expressed in HCC cells and hepatocellular tumor tissues, and correlated with poor prognosis of HCC patients. Knockdown of hsa_circ_0000519 significantly reduced HCC cell viability, suppressed cell proliferation, and induced cell cycle arrest in G0/G1. Downregulation of hsa_circ_0000519 also inhibited formation of capillary-like endothelial structures in vitro and impeded microvessel formation in mice bearing HCC tumors. The migration and invasive capacities of HCC cells were markedly reduced by hsa_circ_0000519 knockdown. Hsa_circ_0000519 possessed a binding site for microRNA (miR)-1296. Upregulation of hsa_circ_0000519 significantly decreased the miR-1296 expression in both HCC cells and mouse xenografts. Furthermore, E2F7 was a target of miR-1296. Hsa_circ_0000519 positively regulated E2F7 via acting as a miR-1296 sponge. Upregulation of E2F7 abolished the inhibitory effects of hsa_circ_0000519 knockdown on HCC cell proliferation and angiogenesis. In conclusion, hsa_circ_0000519 promoted tumor progression and angiogenesis in HCC through the miR-1296/E2F7 axis. These data suggest the potential clinical application of hsa_circ_0000519 in HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Neovascularización Patológica , ARN Circular , Animales , Humanos , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Factor de Transcripción E2F7/genética , Factor de Transcripción E2F7/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , MicroARNs/genética , Neovascularización Patológica/genética , ARN Circular/genética
7.
Appl Biochem Biotechnol ; 195(5): 3096-3108, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36525235

RESUMEN

Endometrial cancer (EC) ranks fourth among the most common gynecologic malignancies. Despite advances in medical technology, the pathogenesis is still unclear. Numerous reports have identified the involvement of lncRNA in the malignant progression of endometrial cancer. The aim of the study was to investigate the expression level of lncRNA ENST00000585827 (lncRNA E27) in endometrial cancer and the molecular mechanism that regulates the development of endometrial cancer. Combined with the results of the previous study, PCR analysis confirmed that lncRNA E27 was significantly upregulated in endometrial cancer cell lines. The results of CCK-8, wound healing assay, and transwell experiments showed that lncRNA E27 could significantly inhibit cell proliferation, migration, and invasion. Flow cytometry results confirmed that lncRNA E27 could promote apoptosis. Furthermore, based on bioinformatics predictions, dual-luciferase assay and RT-qPCR analysis confirmed that miR-424, as its downstream molecule, competitively regulates the expression of E2F6/E2F7. Rescue experiments further supported that lncRNA E27 inhibited proliferation, migration, invasion, and promoted apoptosis of endometrial cancer through miR-424/E2F6/E2F7 signaling axis. Conclusively, our findings revealed the role of lncRNA E27 in regulating the miR-424/E2F6/E2F7 signaling axis during EC progression, opening up new strategies for the treatment of endometrial cancer.


Asunto(s)
Neoplasias Endometriales , MicroARNs , ARN Largo no Codificante , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción E2F7/genética , Factor de Transcripción E2F7/metabolismo , Factor de Transcripción E2F6/genética , Factor de Transcripción E2F6/metabolismo
8.
Folia Neuropathol ; 60(3): 346-354, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36382488

RESUMEN

INTRODUCTION: The paper aimed to explore the mechanism of miR-137 in modulating glioma. MATERIAL AND METHODS: qRT-PCR detected miR-137 and E2F7 mRNA expression in cells. The protein expression of E2F7 was measured using Western blot assay. Cell proliferation, scratch healing, transwell and programmed cell death assays were conducted to examine the influences of the genes on the biological function of glioma cells. The dual-luciferase assay verified the interaction between miR-137 and E2F7. RESULTS: MiR-137 was lowly expressed in glioma cells, and E2F7 was highly expressed. MiR-137 suppressed progression and promoted programmed cell death of glioma cells. MiR-137 could target and negatively regulate E2F7 expression to further accelerate programmed cell death of glioma cells. CONCLUSIONS: It was found that miR-137 could target E2F7 to restrain cell progression and accelerate programmed cell death of glioma cells, which is helpful to search for new molecular therapeutic targets for glioma.


Asunto(s)
Glioma , MicroARNs , Humanos , Regulación Neoplásica de la Expresión Génica/genética , Movimiento Celular , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Glioma/genética , Proliferación Celular/genética , Factor de Transcripción E2F7/genética , Factor de Transcripción E2F7/metabolismo
9.
Mol Carcinog ; 61(11): 975-988, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35924788

RESUMEN

E2F family participates in most human malignancies by activating the transcription of the cell cycle-related genes. Whereas, as a specifical atypical member of this family, E2F7 was described as a repressor against its downstream genes and exerted oscillatory and controversial functions in cancers. Our previous study identified a molecular interaction promoting hepatocellular carcinoma (HCC) growth induced by SOX4 and Anillin. Meanwhile, we preliminarily identified SP1 as the upstream activator of SOX4. Intriguingly, we observed that the repressive E2F7 presents a remarkable high expression in HCC, and is positively correlated and involved in the same pathway with the potentially SP1/SOX4/Anillin axis. However, their exact interaction or mechanism controlling tumor progress between these genes has not been illustrated. Thus, we focused on this point in this study and attempted to improve the potential regulating axis in HCC cell proliferation and tumor growth for promoting tumor prevention and control. The expression profile of E2F7 in HCC tissues and tumor cells was detected along with the related candidate genes, through real-time quantitative polymerase chain reaction assay, the Western blot analysis, and the immunohistochemistry assay, combined with bioinformatics analysis of the HCC information from the the Cancer Genome Altas and Gene Expression Omnibus data sets. The correlation between E2F7 and HCC patients' clinicopathologic features was explored. Gain-of and loss-of-function assays were conducted both in vitro and in vivo along with the rescue experiment, for revealing the relative genes' functions in HCC progress. The ChIP and the dual-luciferase reporter assays were performed to verify the transcriptional regulating profile between E2F7 and SP1/SOX4/Anillin axis. E2F7 was upregulated in HCC and significantly correlated with SP1/SOX4/Anillin axis. High E2F7 expression is associated with dismal clinicopathologic features and poor survival of the patients. E2F7 depletion potently impaired SP1/SOX4/Anillin expression and significantly inhibited HCC growth. Furthermore, intensive exploration demonstrated that E2F7 preserves high SP1 levels by abrogating miR-383-5p in a transcriptional way. Atypical E2F7 is an important repressive transcription factor commonly upregulated in the HCC environment. E2F7 facilitates HCC growth by repressing miR-383-5p transcription and sequentially promoting SP1/SOX4/Anillin axis. Our findings provide us with probable targets for HCC prevention and therapeutic treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas Contráctiles , Factor de Transcripción E2F7/genética , Factor de Transcripción E2F7/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Microfilamentos , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Factores de Transcripción/genética
10.
Cell Death Dis ; 13(2): 174, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197448

RESUMEN

Recent studies uncovered the emerging roles of SAPCD2 (suppressor anaphase-promoting complex domain containing 2) in several types of human cancer. However, the functions and underlying mechanisms of SAPCD2 in the progression of neuroblastoma (NB) remain elusive. Herein, through integrative analysis of public datasets and regulatory network of GSK-J4, a small-molecule drug with anti-NB activity, we identified SAPCD2 as an appealing target with a high connection to poor prognosis in NB. SAPCD2 promoted NB progression in vitro and in vivo. Mechanistically, SAPCD2 could directly bind to cytoplasmic E2F7 but not E2F1, alter the subcellular distribution of E2F7 and regulate E2F activity. Among the E2F family members, the roles of E2F7 in NB are poorly understood. We found that an increasing level of nuclear E2F7 was induced by SAPCD2 knockdown, thereby affecting the expression of genes involved in the cell cycle and chromosome instability. In addition, Selinexor (KTP-330), a clinically available inhibitor of exportin 1 (XPO1), could induce nuclear accumulation of E2F7 and suppress the growth of NB. Overall, our studies suggested a previously unrecognized role of SAPCD2 in the E2F signaling pathway and a potential therapeutic approach for NB, as well as clues for understanding the differences in subcellular distribution of E2F1 and E2F7 during their nucleocytoplasmic shuttling.


Asunto(s)
Factor de Transcripción E2F7 , Neuroblastoma , Proteínas Nucleares , Transporte Activo de Núcleo Celular , Ciclo Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Factor de Transcripción E2F7/genética , Factor de Transcripción E2F7/metabolismo , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
11.
J Microbiol Biotechnol ; 31(8): 1098-1108, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34226413

RESUMEN

The literature indicates that LINC00174 promotes the growth of colorectal cancer (CRC) cells, but its research needs to be enriched. We tried to explore the function and mechanism of LINC00174 in CRC cell proliferation and migration. Bioinformatics analysis predicted the binding relationship and expressions of lncRNA, miRNA and mRNA. Clinical study analyzes the relationship between LINC00174 and clinical data characteristics of CRC patients. The expressions of LINC00174, miR-3127-5p and E2F7 were verified by RT-qPCR, and the combination of the two was verified by dual luciferase analysis and RNA immunoprecipitation as needed. Western blot was used to detect the expression of EMT-related protein and E2F7 protein. Functional experiments were used to evaluate the function of the target gene on CRC cells. LINC00174 was up-regulated in CRC clinical samples and cells and was related to the clinical characteristics of CRC patients. High-expression of LINC00174, contrary to the effect of siLINC00174, promoted cell viability, proliferation, migration and invasion, up-regulated the expressions of N-Cadherin, Vimentin, E2F7, and inhibited the expression of E-Cadherin. MiR-3127-5p was one of the targeted miRNAs of LINC00174 and was down-regulated in CRC samples. In addition, miR-3127-5p mimic partially reversed the malignant phenotype of CRC cells induced by LINC00174. Besides, E2F7 was a target gene of miR-3127-5p, and LINC00174 repressed miR-3127-5p to regulate E2F7. Our research reveals that LINC00174 affected the biological characteristics of CRC cells through regulated miR-3127-5p/ E2F7 axis.


Asunto(s)
Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Factor de Transcripción E2F7/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Factor de Transcripción E2F7/metabolismo , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Pronóstico
12.
Life Sci ; 267: 118955, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33359669

RESUMEN

BACKGROUND: Increasing biomolecules have been found to be involved in the lung cancer development. This study will perform the function and mechanism analyses of a novel circular RNA copper chaperone for superoxide dismutase (circ-CCS) in lung cancer. METHODS: Circ-CCS, microRNA-383 (miR-383) and E2F transcription factor 7 (E2F7) were quantified by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability was detected using Cell Counting Kit-8 (CCK-8). Clonal ability was measured by colony formation assay. Cell apoptosis was determined via flow cytometry. Cell migration and invasion were assessed by transwell assay. Detection of protein was completed using western blot. Xenograft assay was used for the functional analysis of circ-CCS in vivo. The binding between targets was proved by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. E2F7 protein level was also examined by Immunohistochemistry (IHC) analysis in human tissues. RESULTS: Circ-CCS was upregulated in lung cancer and could predict poor prognosis. Downregulation of circ-CCS inhibited lung cancer cell growth and metastasis while promoted apoptosis in vitro, and suppressed tumorigenesis of lung cancer in vivo. Circ-CCS had sponge effect on miR-383 and the function of si-circ-CCS was achieved by upregulating miR-383. E2F7 was a target gene of miR-383 and its downregulation was responsible for the anti-cancerous role of miR-383 in lung cancer. Circ-CCS could elevate E2F7 expression via interacting with miR-383. CONCLUSION: Circ-CCS was shown to facilitate lung cancer progression via the miR-383/E2F7 axis, exhibiting the pivotal value of circ-CCS in diagnosis and treatment of lung cancer.


Asunto(s)
Factor de Transcripción E2F7/genética , MicroARNs/genética , Chaperonas Moleculares/genética , Apoptosis/genética , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Progresión de la Enfermedad , Factor de Transcripción E2F7/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroARNs/metabolismo , Chaperonas Moleculares/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Transducción de Señal/fisiología
13.
J Cell Physiol ; 236(5): 4050-4065, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33174204

RESUMEN

Arsenic is an environmental toxicant. Its overdose can cause liver damage. Autophagy has been reported to be involved in arsenite (iAs3+ ) cytotoxicity and plays a dual role in cell proliferation and cell death. However, the effect and molecular regulative mechanisms of iAs3+ on autophagy in hepatocytes remains largely unknown. Here, we found that iAs3+ exposure lead to hepatotoxicity by inducing autophagosome and autolysosome accumulation. On the one hand, iAs3+ promoted autophagosome synthesis by inhibiting E2F1/mTOR pathway in L-02 human hepatocytes. On the other, iAs3+ blocked autophagosome degradation partially via suppressing the expression of INPP5E and Rab7 as well as impairing lysosomal activity. More importantly, autophagosome and autolysosome accumulation induced by iAs3+ increased the protein level of E2F7a, which could further inhibit cell viability and induce apoptosis of L-02 cells. The treatment of Ginkgo biloba extract (GBE) effectively reduced autophagosome and autolysosome accumulation and thus alleviated iAs3+ -induced hepatotoxicity. Moreover, GBE could also protect lysosomal activity, promote the phosphorylation level of E2F1 (Ser364 and Thr433) and Rb (Ser780) as well as suppress the protein level of E2F7a in iAs3+ -treated L-02 cells. Taken together, our data suggested that autophagosome and autophagolysosome accumulation play a critical role for iAs3+ -induced hepatotoxicity, and GBE is a promising candidate for intervening iAs3+ induced liver damage by regulating E2F1-autophagy-E2F7a pathway and restoring lysosomal activity.


Asunto(s)
Arsenitos/toxicidad , Autofagia , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F7/metabolismo , Hígado/patología , Lisosomas/metabolismo , Extractos Vegetales/farmacología , Transducción de Señal , Apoptosis/efectos de los fármacos , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ginkgo biloba , Humanos , Hígado/efectos de los fármacos , Hígado/ultraestructura , Lisosomas/efectos de los fármacos , Lisosomas/ultraestructura , Modelos Biológicos , Transducción de Señal/efectos de los fármacos
14.
PLoS One ; 15(11): e0242179, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33201900

RESUMEN

OBJECTIVE: This study aims to explore the mechanism of the miR-424-5p/E2F7 axis in hepatocellular carcinoma (HCC) and provide new ideas for targeted therapy of HCC. METHODS: Bioinformatics analysis was used to identify the target differentially expressed miRNA in HCC and predict its target gene. qRT-PCR was employed to verify the expression of miR-424-5p and E2F7 mRNA in HCC cells. Western blot was performed to detect the effect of miR-424-5p ectopic expression on the protein expression of E2F7. CCK-8 was used to detect proliferative activity of HCC cells and flow cytometry was carried out for analyzing cell cycle distribution. Dual luciferase reporter assay was conducted to verify the direct targeting relationship between miR-424-5p and E2F7. RESULTS: We observed that miR-424-5p was down-regulated in HCC cells. CCK-8 showed that overexpression of miR-424-5p inhibited cell proliferation, and flow cytometry showed that miR-424-5p could block cells in G0/G1 phase. E2F7 was up-regulated in HCC cells, and E2F7 overexpression could facilitate the proliferative ability of HCC cells and promote the cell cycle progressing from G0/G1 to S phase. Furthermore, dual-luciferase reporter assay indicated that miR-424-5p could directly down-regulate E2F7 expression. Analysis on cell function demonstrated that miR-424-5p inhibited the proliferation of HCC cells and blocked cell cycle at G0/G1 phase by targeting E2F7. CONCLUSION: Our results proved that E2F7 was a direct target of miR-424-5p, and miR-424-5p could regulate cell cycle and further inhibit the proliferation of HCC cells by targeting E2F7.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Factor de Transcripción E2F7/genética , Neoplasias Hepáticas/metabolismo , MicroARNs/genética , Carcinoma Hepatocelular/genética , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Factor de Transcripción E2F7/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Neoplasias Hepáticas/genética , MicroARNs/metabolismo
15.
Eur Rev Med Pharmacol Sci ; 24(20): 10462-10471, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33155202

RESUMEN

OBJECTIVE: Cancer susceptibility 19 (CASC19), a crucial lncRNA associated with multiple cancers, has been reported to play a vital role in the progression of human malignant tumors. However, the underlying mechanism of CASC19 in pancreatic cancer (PC) was still unknown. The purpose of this study was to explore the biological and clinical significance of CASC19 in PC. PATIENTS AND METHODS: RT-qPCR assay was adopted to analyze CASC19 expression in PC tissues and cell lines. Furthermore, the correlation between the CASC19 level and the survival rate of PC patients was assessed by Kaplan-Meier analysis. Bioinformatics analysis and Luciferase reporter assay were utilized to confirm the interaction between miR-148b and CASC19 or E2F7. Cell viability, migration, invasion, and apoptosis were analyzed using MTT, transwell, and TUNEL assays. RESULTS: The results elucidated that CASC19 expression was markedly increased in PC tissues and cell lines. Patients with high expression of CASC19 had a short survival time. Silencing of CASC19 attenuated PC cell proliferation, migration, and invasion. Moreover, we identified that miR-148b was a target of CASC19. CASC19 was negatively correlated with miR-148b and positively correlated with E2F7. The inhibitory effect of CASC19 knockdown on the progression of PC was reversed by the down-regulation of miR-148b or up-regulation of E2F7. CONCLUSIONS: These results demonstrated that CASC19 participated in the development of PC. The CASC19/miR-148b/E2F7 axis might be a new study direction for PC treatment.


Asunto(s)
Factor de Transcripción E2F7/metabolismo , MicroARNs/metabolismo , Neoplasias Pancreáticas/metabolismo , ARN Largo no Codificante/metabolismo , Apoptosis , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Factor de Transcripción E2F7/genética , Humanos , MicroARNs/genética , Neoplasias Pancreáticas/patología , ARN Largo no Codificante/genética
16.
J Exp Clin Cancer Res ; 39(1): 235, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33168027

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) are crucial in the invasion, angiogenesis, progression, and metastasis of hepatocellular carcinoma (HCC). The lncRNA MYLK-AS1 promotes the growth and invasion of HCC through the EGFR/HER2-ERK1/2 signaling pathway. However, the clinical significance of MYLK-AS1 in HCC still needs to be further determined. METHODS: Bioinformatic analysis was performed to determine the potential relationship among MYLK-AS1, miRNAs and mRNAs. A total of 156 samples of normal liver and paired HCC tissues from HCC patients were used to evaluate MYLK-AS1 expression by qRT-PCR. Human HCC cell lines were used to evaluate the colony formation, cell proliferation, migration, invasion, cell cycle and apoptosis after transfection of lentiviral short-hairpin RNAs (shRNAs) targeting MYLK-AS1 or MYLK-AS1 vectors. The competitive endogenous RNA (ceRNA) mechanism was clarified using fluorescence in situ hybridization (FISH), Western blotting, qPCR, RNA binding protein immunoprecipitation (RIP), and dual luciferase reporter analysis. RESULTS: MYLK-AS1 up-regulation was detected in the HCC tumor tissues and cell lines associated with the enhancement of the angiogenesis and tumor progression. The down-regulation of MYLK-AS1 reversed the effects on angiogenesis, proliferation, invasion and metastasis in the HCC cells and in vivo. MYLK-AS1 acted as ceRNA, capable of regulating the angiogenesis in HCC, while the microRNA miR-424-5p was the direct target of MYLK-AS1. Promoting the angiogenesis and the tumor proliferation, the complex MYLK-AS1/miR-424-5p activated the VEGFR-2 signaling through E2F7, whereas the specific targeting of E2F transcription factor 7 (E2F7) by miR-424-5p, was indicated by the mechanism studies. CONCLUSIONS: MYLK-AS1 and E2F7 are closely related to some malignant clinicopathological features and prognosis of HCC, thus the MYLK-AS1/ miR-424-5p/E2F7 signaling pathway might represent a promising treatment strategy to combat HCC.


Asunto(s)
Proteínas de Unión al Calcio/genética , Carcinoma Hepatocelular/irrigación sanguínea , Factor de Transcripción E2F7/metabolismo , Neoplasias Hepáticas/irrigación sanguínea , MicroARNs/metabolismo , Quinasa de Cadena Ligera de Miosina/genética , ARN Largo no Codificante/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Pronóstico , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , Transducción de Señal , Transfección
17.
J Clin Lab Anal ; 34(10): e23442, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32592206

RESUMEN

BACKGROUND: Abnormal microRNAs (miRNAs) expression is closely related to the development and poor prognosis of pancreatic ductal adenocarcinoma (PDAC). We aimed to elucidate the invasive mechanism and clinical significance of miR-10b in PDAC. METHODS: The RNA sequence data of pancreatic cancer were extracted from the TCGA database. R packages were performed to analyze the differential expression of RNAs. TargetScan, picTar, and miRanda were used to predict the target gene of miRNA. The expression level of the selected candidate was tested by western blot and RT-PCR in PDAC cells and tissues. Scrape and Transwell assays were determined the effect of candidate molecules on cell migration and invasion. The gain of function and loss of function was achieved by co-culture with mimics and vector. Luciferase reporters were generated based on the psiCHECK2 vector. The relative luciferase activity was measured with the Dual-Luciferase Reporter Assay System and Infinate M200 PRO microplate reader. RESULTS: Based on the TCGA data and bioinformatics analysis, we obtained seven differentially expressed miRNAs. Both TCGA data and our center clinical date indicated that miR-10b was contributed to the poor survival of PDAC. Based on the target gene prediction database, we found that E2F7 was a target mRNA of miR-10b. In subsequent experiments in molecular biology, miR-10b expression was downregulated in PDAC cells and tissues, while E2F7 was upregulated. Scrape and Transwell assay indicated that miR-10b could inhibit the invasion and migration of PDAC. MiR-10b was confirmed to be by the E2F7 targeting site by dual-luciferase report. Moreover, rescue experiments prove that miR-10b could inhibit the invasion and migration of PDAC cells by regulating E2F7 expression. CONCLUSION: Our results suggest that miR-10b could inhibit the progression of PDAC by regulating E2F7 expression and acts as an independent prognostic risk factor for PDAC.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Movimiento Celular/genética , Factor de Transcripción E2F7/genética , MicroARNs/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Adenocarcinoma/patología , Secuencia de Bases , Línea Celular Tumoral , Factor de Transcripción E2F7/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Análisis Multivariante , Invasividad Neoplásica , Pronóstico , Neoplasias Pancreáticas
18.
Oncol Rep ; 44(3): 849-862, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32582990

RESUMEN

Prostate cancer (PCa) remains a leading cause of mortality among men in the United States and Western Europe. The molecular mechanism of PCa pathogenesis has not been fully elucidated. In the present study, the expression profile of E2F transcription factor 7 (E2F7) in PCa was examined using immunohistochemistry and reverse transcription­quantitative PCR, whilst cell cycle progression and apoptosis were determined using fluorescent cell activated sorting techniques. Cell viability was measured using Cell Counting Kit­8 in loss­ and gain­of­function studies. Dual­luciferase reporter assay was used to verify if E2F7 was one of the potential targets of miR­30c. The staining score of E2F7 of PCa tissues was found to be notably higher compared with that of adjacent normal tissues. Suppression of E2F7 expression in PCa cell lines led to significantly reduced proliferation rates, increased proportion of cells in the G1 phase of the cell cycle and higher apoptotic rates compared with those in negative control groups. Dual­luciferase reporter assay revealed E2F7 to be one of the binding targets of microRNA (miR)­30c. In addition, transfection of miR­30c mimics into PCa cells resulted in reduced cell viability, increased proportion of cells in the G1 phase and higher apoptotic rates. By contrast, transfection with the miR­30c inhibitor led to lower apoptosis rates of PCa cells compared with negative control groups, whilst E2F7 siRNA co­transfection reversed stimulatory effects of miR­30c inhibitors on cell viability. In addition, the expression of cyclin­dependent kinase inhibitor p21 were found to be upregulated by transfection with either E2F7 siRNA or miR­30c mimics into PCa cells. In conclusion, the present study suggested that E2F7 may be positively associated with PCa cell proliferation by inhibiting p21, whereas E2F7 is in turn under regulation by miR­30c. These observations suggest the miR­30c/E2F7/p21 axis to be a viable therapeutic target for PCa.


Asunto(s)
Factor de Transcripción E2F7/metabolismo , MicroARNs/metabolismo , Apoptosis/fisiología , Ciclo Celular/fisiología , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Factor de Transcripción E2F7/biosíntesis , Factor de Transcripción E2F7/genética , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Masculino , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Células PC-3 , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Transducción de Señal , Análisis de Matrices Tisulares , Transfección , Regulación hacia Arriba
19.
Mol Cancer ; 19(1): 28, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32039732

RESUMEN

BACKGROUND: Accumulating evidence shows that long noncoding RNAs (lncRNAs) are important regulator molecules involved in diverse biological processes. Acquired drug resistance is a major challenge in the clinical treatment of glioblastoma (GBM), and lncRNAs have been shown to play a role in chemotherapy resistance. However, the underlying mechanisms by which lncRNA mediates TMZ resistance in GBM remain poorly characterized. METHODS: Quantitative reverse transcription PCR (qRT-PCR) and fluorescence in situ hybridization assays were used to detect small nucleolar RNA host gene 12 (SNHG12) levels in TMZ-sensitive and TMZ-resistant GBM cells and tissues. The effects of SNHG12 on TMZ resistance were investigated through in vitro assays (western blots, colony formation assays, flow cytometry assays, and TUNEL assays). The mechanism mediating the high expression of SNHG12 in TMZ-resistant cells and its relationships with miR-129-5p, mitogen-activated protein kinase 1 (MAPK1), and E2F transcription factor 7 (E2F7) were determined by bioinformatic analysis, bisulfite amplicon sequencing, methylation-specific PCR, dual luciferase reporter assays, chromatin immunoprecipitation assays, RNA immunoprecipitation assays, immunofluorescence, qRT-PCR, and western blot. For in vivo experiments, an intracranial xenograft tumor mouse model was used to investigate SNHG12 function. RESULTS: SNHG12 was upregulated in TMZ-resistant cells and tissues. Overexpression of SNHG12 led to the development of acquired TMZ resistance, while knockdown of SNHG12 restored TMZ sensitivity. An abnormally low level of DNA methylation was detected within the promoter region of SNHG12, and loss of DNA methylation made this region more accessible to the Sp1 transcription factor (SP1); this indicated that methylation and SP1 work together to regulate SNHG12 expression. In the cytoplasm, SNHG12 served as a sponge for miR-129-5p, leading to upregulation of MAPK1 and E2F7 and endowing the GBM cells with TMZ resistance. Disinhibition of MAPK1 regulated TMZ-induced cell apoptosis and the G1/S cell cycle transition by activating the MAPK/ERK pathway, while E2F7 dysregulation was primarily associated with G1/S cell cycle transition. Clinically, SNHG12 overexpression was associated with poor survival of GBM patients undergoing TMZ treatment. CONCLUSION: Our results suggest that SNHG12 could serve as a promising therapeutic target to surmount TMZ resistance, thereby improving the clinical efficacy of TMZ chemotherapy.


Asunto(s)
Metilación de ADN , Resistencia a Antineoplásicos , Factor de Transcripción E2F7/metabolismo , Glioblastoma/patología , MicroARNs/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , ARN Largo no Codificante/genética , Temozolomida/farmacología , Animales , Antineoplásicos Alquilantes/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Factor de Transcripción E2F7/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteína Quinasa 1 Activada por Mitógenos/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Biomed Pharmacother ; 123: 109650, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31884338

RESUMEN

BACKGROUND: Emerging evidences have proven the important roles of lncRNAs in tumorigenesis and cancer biology. However, the function of lncRNA DLEU2 in the progression of esophageal cancer (EC) has not been elaborated. In the present study, we aimed to investigate the effects of lncRNA DLEU2 on the progression of EC and the underlying mechanism. METHODS: In this study, lncRNA DLEU2 was silenced by siRNA interference in EC cell lines Eca-109 and KYSE-150, and its expression was up-regulated in TE-1 cells by transfection with pcDNA3.1-DLEU2, and its biological functions were examined. Then, bioinformatics analysis and dual-luciferase reporter assay were used to identify the binding miRNA of lncRNA DLEU2 and the target gene of miRNA. In addition, loss-of-function assays were performed to detect the biological functions of the target gene. At last, the rescue assays were used to investigate the relationship among lncRNA DLEU2, miRNA and target gene. RESULTS: With the help of GEPIA analysis, we observed that lncRNA DLEU2 was up-regulated in EC tissues and associated with poor prognosis. Loss-of-function assay showed that silencing lncRNA DLEU2 inhibited the proliferation, migration and invasion of EC cells, and induced apoptosis by regulating the Bcl-2/Bax axis and Caspase cascade. Overexpression of lncRNA DLEU2 increased the proliferation, migration and invasion abilities of TE-1 cells, as well as decreased cell apoptosis. Bioinformatics analysis and dual-luciferase reporter assay verified that miR-30e-5p could directly bind with lncRNA DLEU2, and E2F7 was a direct target for miR-30e-5p in EC cells. Moreover, our data revealed that silencing E2F7 decreased the proliferation, migration and invasion abilities of EC cells, and induced apoptosis. Furthermore, the rescue assays demonstrated that the effects of lncRNA DLEU2 on the proliferation, migration and invasion of EC cells were reversed by miR-30e-5p inhibitor or up-regulation of E2F7. CONCLUSIONS: Our findings revealed the pro-oncogenic role of lncRNA DLEU2 and E2F7 in the progression of EC, suggesting that lncRNA DLEU2 exerts ceRNA functions in EC through regulating miR-30e-5p/E2F7 axis.


Asunto(s)
Factor de Transcripción E2F7/metabolismo , Neoplasias Esofágicas/metabolismo , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Transferasas/metabolismo , Apoptosis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Factor de Transcripción E2F7/genética , Neoplasias Esofágicas/genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , Transferasas/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA