Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dev Biol ; 466(1-2): 1-11, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32800756

RESUMEN

The distal nephron and collecting duct segments of the mammalian kidney consist of intercalated cell types intermingled among principal cell types. Notch signaling ensures that a sufficient number of cells select a principal instead of an intercalated cell fate. However, the precise mechanisms by which Notch signaling patterns the distal nephron and collecting duct cell fates is unknown. Here we observed that Hes1, a direct target of Notch signaling pathway, is required within the mouse developing collecting ducts for repression of Foxi1 expression, an essential intercalated cell specific transcription factor. Interestingly, inactivation of Foxi1 in Hes1-deficient collecting ducts rescues the deficiency in principal cell fate selection, overall urine concentrating deficiency, and reduces the occurrence of hydronephrosis. However, Foxi1 inactivation does not rescue the reduction in expression of all principal cell genes in the Hes1-deficient kidney collecting duct cells that select the principal cell fate. Additionally, suppression of Notch/Hes1 signaling in mature principal cells reduces principal cell gene expression without activating Foxi1. We conclude that Hes1 is a Notch signaling target that is essential for normal patterning of the collecting ducts with intermingled cell types by repressing Foxi1, and for maintenance of principal cell gene expression independent of repressing Foxi1.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Riñón/embriología , Receptores Notch/metabolismo , Transducción de Señal , Factor de Transcripción HES-1/deficiencia , Animales , Factores de Transcripción Forkhead/genética , Ratones , Ratones Mutantes , Receptores Notch/genética , Factor de Transcripción HES-1/metabolismo
2.
Stem Cells ; 38(6): 756-768, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32129527

RESUMEN

The transcriptional repressor Hairy Enhancer of Split 1 (HES1) plays an essential role in the development of many organs by promoting the maintenance of stem/progenitor cells, controlling the reversibility of cellular quiescence, and regulating both cell fate decisions. Deletion of Hes1 in mice results in severe defects in multiple organs and is lethal in late embryogenesis. Here we have investigated the role of HES1 in hematopoiesis using a hematopoietic lineage-specific Hes1 knockout mouse model. We found that while Hes1 is dispensable for steady-state hematopoiesis, Hes1-deficient hematopoietic stem cells (HSCs) undergo exhaustion under replicative stress. Loss of Hes1 upregulates the expression of genes involved in PPARγ signaling and fatty acid metabolism pathways, and augments fatty acid oxidation (FAO) in Hes1 f/f Vav1Cre HSCs and progenitors. Functionally, PPARγ targeting or FAO inhibition ameliorates the repopulating defects of Hes1 f/f Vav1Cre HSCs through improving quiescence in HSCs. Lastly, transcriptome analysis reveals that disruption of Hes1 in hematopoietic lineage alters expression of genes critical to HSC function, PPARγ signaling, and fatty acid metabolism. Together, our findings identify a novel role of HES1 in regulating stress hematopoiesis and provide mechanistic insight into the function of HES1 in HSC maintenance.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Factor de Transcripción HES-1/deficiencia , Animales , Diferenciación Celular , Ratones
3.
J Neurosci ; 40(7): 1501-1513, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31949107

RESUMEN

The bHLH transcription factor Hes1 is a key downstream effector for the Notch signaling pathway. During embryogenesis neural progenitors express low levels of Hes1 in an oscillating pattern, whereas glial brain boundary regions (e.g., isthmus) have high, sustained Hes1 levels that suppress neuronal fates. Here, we show that in the embryonic mouse retina, the optic nerve head and stalk express high Hes1, with the ONH constituting a boundary between the neural retina and glial cells that ultimately line the optic stalk. Using two Cre drivers with distinct spatiotemporal expression we conditionally inactivated Hes1, to delineate the requirements for this transcriptional repressor during retinal neurogenesis versus patterning of the optic cup and stalk. Throughout retinal neurogenesis, Hes1 maintains proliferation and blocks retinal ganglion cell formation, but surprisingly we found it also promotes cone photoreceptor genesis. In the postnatal eye, Hes1 inactivation with Rax-Cre resulted in increased bipolar neurons and a mispositioning of Müller glia. Our results indicate that Notch pathway regulation of cone genesis is more complex than previously assumed, and reveal a novel role for Hes1 in maintaining the optic cup-stalk boundary.SIGNIFICANCE STATEMENT The bHLH repressor Hes1 regulates the timing of neurogenesis, rate of progenitor cell division, gliogenesis, and maintains tissue compartment boundaries. This study expands current eye development models by showing Notch-independent roles for Hes1 in the developing optic nerve head (ONH). Defects in ONH formation result in optic nerve coloboma; our work now inserts Hes1 into the genetic hierarchy regulating optic fissure closure. Given that Hes1 acts analogously in the ONH as the brain isthmus, it prompts future investigation of the ONH as a signaling factor center, or local organizer. Embryonic development of the ONH region has been poorly studied, which is surprising given it is where the pan-ocular disease glaucoma is widely believed to inflict damage on RGC axons.


Asunto(s)
Ojo/embriología , Neurogénesis/fisiología , Factor de Transcripción HES-1/fisiología , Animales , Coloboma/genética , Coloboma/patología , Células Ependimogliales/citología , Ojo/crecimiento & desarrollo , Gastrulación , Estudios de Asociación Genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microftalmía/genética , Microftalmía/patología , Disco Óptico/embriología , Disco Óptico/patología , Receptores Notch/fisiología , Retina/anomalías , Retina/embriología , Células Bipolares de la Retina/citología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Ganglionares de la Retina/citología , Transducción de Señal , Factor de Transcripción HES-1/deficiencia , Factor de Transcripción HES-1/genética
4.
Neurosci Bull ; 36(2): 134-142, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31309426

RESUMEN

Apoptosis induced by endoplasmic reticulum (ER) stress plays a crucial role in mediating brain damage after ischemic stroke. Recently, Hes1 (hairy and enhancer of split 1) has been implicated in the regulation of ER stress, but whether it plays a functional role after ischemic stroke and the underlying mechanism remain unclear. In this study, using a mouse model of ischemic stroke via transient middle cerebral artery occlusion (tMCAO), we found that Hes1 was induced following brain injury, and that siRNA-mediated knockdown of Hes1 increased the cerebral infarction and worsened the neurological outcome, suggesting that Hes1 knockdown exacerbates ischemic stroke. In addition, mechanistically, Hes1 knockdown promoted apoptosis and activated the PERK/eIF2α/ATF4/CHOP signaling pathway after tMCAO. These results suggest that Hes1 knockdown promotes ER stress-induced apoptosis. Furthermore, inhibition of PERK with the specific inhibitor GSK2606414 markedly attenuated the Hes1 knockdown-induced apoptosis and the increased cerebral infarction as well as the worsened neurological outcome following tMCAO, implying that the protection of Hes1 against ischemic stroke is associated with the amelioration of ER stress via modulating the PERK/eIF2α/ATF4/CHOP signaling pathway. Taken together, these results unveil the detrimental role of Hes1 knockdown after ischemic stroke and further relate it to the regulation of ER stress-induced apoptosis, thus highlighting the importance of targeting ER stress in the treatment of ischemic stroke.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Infarto de la Arteria Cerebral Media , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Factor de Transcripción HES-1/deficiencia , Factor de Transcripción Activador 4/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Animales , Apoptosis/genética , Encéfalo/patología , Factor 2 Eucariótico de Iniciación/metabolismo , Indoles/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Accidente Cerebrovascular/patología , Factor de Transcripción CHOP/metabolismo , eIF-2 Quinasa/metabolismo
5.
J Exp Med ; 216(6): 1396-1410, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31015298

RESUMEN

Induction of type I interferons (IFNs) is critical for eliciting competent immune responses, especially antiviral immunity. However, uncontrolled IFN production contributes to pathogenesis of autoimmune and inflammatory diseases. We found that transcription factor Hes1 suppressed production of type I IFNs and expression of IFN-stimulated genes. Functionally, Hes1-deficient mice displayed a heightened IFN signature in vivo, mounted enhanced resistance against encephalomyocarditis virus infection, and showed signs of exacerbated experimental lupus nephritis. Mechanistically, Hes1 did not suppress IFNs via direct transcriptional repression of IFN-encoding genes. Instead, Hes1 attenuated activation of TLR upstream signaling by inhibition of an adaptor molecule, WDFY1. Genome-wide assessment of Hes1 occupancy revealed that suppression of WDFY1 was secondary to direct binding and thus enhancement of expression of VEGF-C by Hes1, making Vegfc a rare example of an Hes1 positively regulated gene. In summary, these results identified Hes1 as a homeostatic negative regulator of type I IFNs for the maintenance of immune balance in the context of antiviral immunity and autoimmune diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Interferón Tipo I/metabolismo , Factor de Transcripción HES-1/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Inmunidad , Nefritis Lúpica/inmunología , Nefritis Lúpica/patología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal , Porcinos , Receptor Toll-Like 3/metabolismo , Factor de Transcripción HES-1/deficiencia , Transcripción Genética , Factor C de Crecimiento Endotelial Vascular/genética
6.
Nature ; 544(7649): 245-249, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28379941

RESUMEN

Normal differentiation and induced reprogramming require the activation of target cell programs and silencing of donor cell programs. In reprogramming, the same factors are often used to reprogram many different donor cell types. As most developmental repressors, such as RE1-silencing transcription factor (REST) and Groucho (also known as TLE), are considered lineage-specific repressors, it remains unclear how identical combinations of transcription factors can silence so many different donor programs. Distinct lineage repressors would have to be induced in different donor cell types. Here, by studying the reprogramming of mouse fibroblasts to neurons, we found that the pan neuron-specific transcription factor Myt1-like (Myt1l) exerts its pro-neuronal function by direct repression of many different somatic lineage programs except the neuronal program. The repressive function of Myt1l is mediated via recruitment of a complex containing Sin3b by binding to a previously uncharacterized N-terminal domain. In agreement with its repressive function, the genomic binding sites of Myt1l are similar in neurons and fibroblasts and are preferentially in an open chromatin configuration. The Notch signalling pathway is repressed by Myt1l through silencing of several members, including Hes1. Acute knockdown of Myt1l in the developing mouse brain mimicked a Notch gain-of-function phenotype, suggesting that Myt1l allows newborn neurons to escape Notch activation during normal development. Depletion of Myt1l in primary postmitotic neurons de-repressed non-neuronal programs and impaired neuronal gene expression and function, indicating that many somatic lineage programs are actively and persistently repressed by Myt1l to maintain neuronal identity. It is now tempting to speculate that similar 'many-but-one' lineage repressors exist for other cell fates; such repressors, in combination with lineage-specific activators, would be prime candidates for use in reprogramming additional cell types.


Asunto(s)
Linaje de la Célula/genética , Reprogramación Celular/genética , Silenciador del Gen , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/citología , Encéfalo/embriología , Encéfalo/metabolismo , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Ratones , Proteínas del Tejido Nervioso/deficiencia , Especificidad de Órganos/genética , Dominios Proteicos , Receptores Notch/deficiencia , Proteínas Represoras/química , Proteínas Represoras/deficiencia , Transducción de Señal , Factor de Transcripción HES-1/deficiencia , Factores de Transcripción/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...