RESUMEN
Mesenchymal stem cells (MSCs) are expected to be useful therapeutics in osteoarthritis (OA), the most common joint disorder characterized by cartilage degradation. However, evidence is limited with regard to cartilage repair in clinical trials because of the uncontrolled differentiation and weak cartilage-targeting ability of MSCs after injection. To overcome these drawbacks, here we synthesized CuO@MSN nanoparticles (NPs) to deliver Sox9 plasmid DNA (favoring chondrogenesis) and recombinant protein Bmp7 (inhibiting hypertrophy). After taking up CuO@MSN/Sox9/Bmp7 (CSB NPs), the expressions of chondrogenic markers were enhanced while hypertrophic markers were decreased in response to these CSB-engineered MSCs. Moreover, a cartilage-targeted peptide (designated as peptide W) was conjugated onto the surface of MSCs via a click chemistry reaction, thereby prolonging the residence time of MSCs in both the knee joint cavity of mice and human-derived cartilage. In a surgery-induced OA mouse model, the NP and peptide dual-modified W-CSB-MSCs showed an enhancing therapeutic effect on cartilage repair in knee joints compared with other engineered MSCs after intra-articular injection. Most importantly, W-CSB-MSCs accelerated cartilage regeneration in damaged cartilage explants derived from OA patients. Thus, this new peptide and NPs dual engineering strategy shows potential for clinical applications to boost cartilage repair in OA using MSC therapy.
Asunto(s)
Diferenciación Celular , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Nanopartículas , Osteoartritis , Péptidos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Animales , Osteoartritis/terapia , Osteoartritis/patología , Nanopartículas/química , Humanos , Diferenciación Celular/efectos de los fármacos , Péptidos/química , Trasplante de Células Madre Mesenquimatosas/métodos , Condrogénesis/efectos de los fármacos , Ratones , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Cartílago Articular/patología , Cartílago Articular/efectos de los fármacos , Proteína Morfogenética Ósea 7/química , Proteína Morfogenética Ósea 7/farmacología , Ingeniería de Tejidos/métodos , Regeneración/efectos de los fármacosRESUMEN
Fibrosis results from the excessive production of extracellular matrix proteins by myofibroblasts. It has recently been reported that in the heart, myofibroblasts develop chondrocyte-like properties following myocardial infarction as fibrosis progresses and tissues stiffen. However, the nature of these chondrocyte-like myofibroblasts remains unclear. In this study, we found that the expression of the proline- and arginine-rich end leucine-rich repeat protein (PRELP) was upregulated in hearts and livers stiffened by fibrosis with chronic inflammation. Moreover, we established that Prelp was specifically expressed in chondrocyte-like myofibroblasts. Prelp expression was found to be regulated by the transcription factor SOX9, and in cardiac and liver myofibroblasts, Prelp-knockdown was observed to reduce collagen expression. These findings reveal that PRELP is specifically expressed in chondrocyte-like myofibroblasts and that it promotes collagen production. PRELP could thus serve as a novel therapeutic target for treating fibrosis.
Asunto(s)
Colágeno , Cirrosis Hepática , Miofibroblastos , Animales , Masculino , Ratones , Células Cultivadas , Colágeno/metabolismo , Colágeno/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Fibrosis/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Regulación hacia ArribaRESUMEN
Cartilage rarely heals spontaneously once damaged. Osteoarthritis (OA) is the most common degenerative joint disease among the elderly; however, effective treatment for OA is currently lacking. Autologous chondrocyte implantation (ACI), an innovative regenerative technology involving the implantation of healthy chondrocytes, may restore damaged lesions. Chondrocytes for ACI may potentially be induced from differentiated somatic cells using retrovirus (RV)-mediated transduction of three reprogramming factors (SOX9, KLF4, and c-MYC). However, the efficiency of the current induction system needs to be improved and the safety issues arising from the genomic integration of the vector DNA have to be addressed. To solve these problems, we used an RNA vector, termed the replication-defective and persistent Sendai virus vector (SeVdp), to express reprogramming factors for chondrocyte induction. Our results showed that the SeVdp-based vector induced chondrocytes more efficiently than the RV vector, probably because of robust and rapid expression of the transgenes, without any apparent integration of the SeVdp vector. The induced chondrocytes formed cartilage-like tissues when injected subcutaneously into mice. Thus, the SeVdp-based system for inducing chondrocytes may act as a foundation for developing safer and more effective treatments for damaged cartilage.
Asunto(s)
Reprogramación Celular , Condrocitos , Vectores Genéticos , Factor 4 Similar a Kruppel , Virus Sendai , Condrocitos/metabolismo , Condrocitos/citología , Animales , Virus Sendai/genética , Vectores Genéticos/genética , Ratones , Factor 4 Similar a Kruppel/metabolismo , Reprogramación Celular/genética , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Condrogénesis/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Humanos , Transducción Genética , Osteoartritis/metabolismo , Osteoartritis/genética , Osteoartritis/patología , Diferenciación Celular , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation and inflammation. This study investigates the therapeutic potential of secretome derived from adipose tissue mesenchymal stem cells (ASCs) in mitigating inflammation and promoting cartilage repair in an in vitro model of OA. Our in vitro model comprised chondrocytes inflamed with TNF. To assess the therapeutic potential of secretome, inflamed chondrocytes were treated with it and concentrations of pro-inflammatory cytokines, metalloproteinases (MMPs) and extracellular matrix markers were measured. In addition, secretome-treated chondrocytes were subject to a microarray analysis to determine which genes were upregulated and which were downregulated. Treating TNF-inflamed chondrocytes with secretome in vitro inhibits the NF-κB pathway, thereby mediating anti-inflammatory and anti-catabolic effects. Additional protective effects of secretome on cartilage are revealed in the inhibition of hypertrophy markers such as RUNX2 and COL10A1, increased production of COL2A1 and ACAN and upregulation of SOX9. These findings suggest that ASC-derived secretome can effectively reduce inflammation, promote cartilage repair, and maintain chondrocyte phenotype. This study highlights the potential of ASC-derived secretome as a novel, non-cell-based therapeutic approach for OA, offering a promising alternative to current treatments by targeting inflammation and cartilage repair mechanisms.
Asunto(s)
Tejido Adiposo , Condrocitos , Células Madre Mesenquimatosas , Osteoartritis , Factor de Transcripción SOX9 , Secretoma , Células Madre Mesenquimatosas/metabolismo , Osteoartritis/metabolismo , Osteoartritis/terapia , Osteoartritis/patología , Condrocitos/metabolismo , Humanos , Secretoma/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , FN-kappa B/metabolismo , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo X/metabolismo , Colágeno Tipo X/genética , Agrecanos/metabolismo , Agrecanos/genética , Células Cultivadas , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Introduction: Osteoarthritis is a degenerative condition of the cartilage, often common among the population and occurs frequently with aging. Many factors are decisive for the development of its pathogenesis such as age, obesity, trauma, mechanical load, and modification of synovial biology. The main features of osteoarthritis are chondrocytes and cartilage matrix loss, which lead to pain, loss of function of the whole joint, and disability, representing a relevant health problem. Recently, a new therapeutic approach based on cell therapy has been studying the regenerative ability of mesenchymal stem cells for osteoarthritic chondrocytes. Aim: This in vitro study clarifies the regenerative effects of multipotent adipose-derived stem cells and the pluripotent amniotic epithelial stem cells on arthrosis chondrocytes by performing co-culture experiments. Methods: We studied the regenerative potential of secretome (soluble factors and extracellular vesicles), mesenchymal stem cells, and the adipose stromal vascular fraction. The regenerative effects were evaluated by gene and protein expression analysis of articular cartilage-specific genes and proteins like col2a1, acan, and sox9. Results: Mesenchymal stem cells, secretome, and adipose stromal vascular fractions influenced the cartilage genes and protein expression. Conclusions: The results indicate that the treatment with mesenchymal stem cells could be the best biological approach for cartilage regenerative medicine.
Asunto(s)
Cartílago Articular , Condrocitos , Células Madre Mesenquimatosas , Osteoartritis , Secretoma , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Secretoma/metabolismo , Condrocitos/metabolismo , Osteoartritis/terapia , Osteoartritis/metabolismo , Osteoartritis/patología , Cartílago Articular/metabolismo , Cartílago Articular/patología , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Técnicas de Cocultivo , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética , Agrecanos/metabolismo , Agrecanos/genética , Células CultivadasRESUMEN
Combined hepatocellular carcinoma-cholangiocarcinoma (cHCC-CCA) is a challenging primary liver cancer subtype with limited treatment options and a devastating prognosis. Recent studies have underscored the context-dependent roles of SOX9 in liver cancer formation in a preventive manner. Here, we revealed that liver-specific developmental Sox9 elimination using Alb-Cre;Sox9(flox/flox) (LKO) and CRISPR/Cas9-based tumor-specific acute Sox9 elimination (CKO) in SB-HDTVI-based Akt-YAP1 (AY) and Akt-NRAS (AN) cHCC-CCA models showed contrasting responses. LKO abrogates the AY CCA region while stimulating poorly differentiated HCC proliferation, whereas CKO prevents AY and AN cHCC-CCA development irrespective of tumor cell fate. Additionally, AN, but not AY, tumor formation partially depends on the Sox9-Dnmt1 cascade. SOX9 is dispensable for AY-mediated, HC-derived, LPC-like immature CCA formation but is required for their maintenance and transformation into mature CCA. Therapeutic Sox9 elimination using the OPN-CreERT2 strain combined with inducible Sox9 iKO specifically reduces AY but not AN cHCC-CCA tumors. This necessitates the careful consideration of genetic liver cancer studies using developmental Cre and somatic mutants, particularly for genes involved in liver development. Our findings suggest that SOX9 elimination may hold promise as a therapeutic approach for a subset of cHCC-CCA and highlight the need for further investigation to translate these preclinical insights into personalized clinical applications.
Asunto(s)
Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Factor de Transcripción SOX9 , Animales , Humanos , Ratones , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferación Celular/genética , Colangiocarcinoma/patología , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genéticaRESUMEN
Genetic factors play a significant role in the pathogenesis of mitral valve diseases, including mitral valve prolapse (MVP) and mitral valve regurgitation. Genes like Fibrillin-1 (FBN1), Filamin A (FLNA), matrix metalloproteinase 2 (MMP2), and SRY-box transcription factor 9 (SOX9) are known to influence mitral valve pathology but knowledge of the exact mechanism is far from clear. Data regarding serum parameters, transesophageal echocardiography, and genetic and histopathologic parameters were investigated in 54 patients who underwent cardiovascular surgery for mitral valve regurgitation. The possible association between Fibrillin-1, Filamin A, MMP2, and SOX9 gene expressions was checked in relationship with the parameters of systemic inflammatory response. The mRNA expression levels (RQ-relative quantification) were categorized into three distinct groups: low (RQ < 1), medium/normal (RQ = 1-2), and high (RQ > 2). Severe fibrosis of the mitral valve was reflected by high expression of FBN1 and low expression of MMP2 (p < 0.05). The myxoid degeneration level was associated with the mRNA expression level for FBN1 and a low lymphocyte-monocyte ratio was associated with an increased mRNA expression of FBN1 (p < 0.05). A high number of monocytes was associated with high values of FBN1 whereas the increase in the number of lymphocytes was associated with high levels of MMP2. In addition, we observed that the risk of severe hyalinization was enhanced by a low mRNA expression of FLNA and/or SOX9. In conclusion, a lower FLNA mRNA expression can reflect the aging process that is highlighted in mitral valve pathology as a higher risk for hyalinization, especially in males, that might be prevented by upregulation of the SOX9 gene. FBN1 and MMP2 influence the inflammation-related fibrotic degeneration of the mitral valve. Understanding the genetic base of mitral valve pathology can provide insights into disease mechanisms, risk stratification, and potential therapeutic targets.
Asunto(s)
Fibrilina-1 , Filaminas , Metaloproteinasa 2 de la Matriz , Válvula Mitral , Factor de Transcripción SOX9 , Humanos , Fibrilina-1/genética , Fibrilina-1/metabolismo , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Filaminas/metabolismo , Filaminas/genética , Masculino , Femenino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Persona de Mediana Edad , Válvula Mitral/patología , Válvula Mitral/metabolismo , Anciano , Prolapso de la Válvula Mitral/genética , Prolapso de la Válvula Mitral/metabolismo , Prolapso de la Válvula Mitral/patología , Insuficiencia de la Válvula Mitral/genética , Insuficiencia de la Válvula Mitral/metabolismo , Insuficiencia de la Válvula Mitral/patología , AdipoquinasRESUMEN
Background: Maintaining intrinsic articular cartilage homeostasis is essential for the health of cartilage. However, the impact of aerobic exercise of varying intensities on the articular cartilage homeostasis has never been studied. This study aims to elucidate the influence of different aerobic exercise intensities on the anabolic and catabolic processes within articular cartilage. Methods: Forty-eight male C57BL/6J mice, aged 7 weeks, were divided into 4 aerobic exercise groups and 1 control group. The aerobic exercise groups were subjected to both acute and chronic exercise protocols with varying intensities of 8, 12, 16, 20, and 24 m min-1. Total RNA from the knee joint cartilage was extracted in both phases to quantify mRNA of anabolic (Sox9, Col2a1, and Acan) and catabolic (MMP-13 and ADAMTS5) markers. In the chronic exercise, articular cartilage thickness and chondrocyte density were histologically assessed. Additionally, immunohistochemical staining quantified relevant molecules involved in cartilage metabolism. Results: In the acute exercise, the 8 m min-1 group exhibited reduced ADAMTS5 expression compared to the control, 16 m min-1, and 24 m min-1 groups. Chronic exercise showed enhanced articular cartilage thickness in both the 8 and 12 m min-1 groups relative to the control group. Moreover, the 8 m min-1 group demonstrated elevated aggrecan levels in comparison to both the control and 24 m min-1 groups. Additionally, the 24 m min-1 group exhibited significantly higher ADAMTS5 levels than the control group. Conclusion: Our findings suggest that consistent low-intensity aerobic exercise suppresses catabolic molecule expression in articular cartilage, thereby fostering anabolic activity. Conversely, continuous high-intensity aerobic exercise can potentially disrupt cartilage homeostasis by enhancing catabolic processes. This dichotomy underscores the need for balanced exercise regimens to maintain cartilage health.
Asunto(s)
Proteína ADAMTS5 , Cartílago Articular , Ratones Endogámicos C57BL , Condicionamiento Físico Animal , Animales , Cartílago Articular/metabolismo , Cartílago Articular/fisiología , Masculino , Condicionamiento Físico Animal/fisiología , Condicionamiento Físico Animal/métodos , Ratones , Proteína ADAMTS5/metabolismo , Colágeno Tipo II/metabolismo , Agrecanos/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Factor de Transcripción SOX9/metabolismo , Condrocitos/metabolismo , Condrocitos/fisiologíaRESUMEN
Articular cartilage phenotypic homeostasis is crucial for life-long joint function, but the underlying cellular and molecular mechanisms governing chondrocyte stability remain poorly understood. Here, we show that the protein tyrosine phosphatase SHP2 is differentially expressed in articular cartilage (AC) and growth plate cartilage (GPC) and that it negatively regulates cell proliferation and cartilage phenotypic program. Postnatal SHP2 deletion in Prg4+ AC chondrocytes increased articular cellularity and thickness, whereas SHP2 deletion in Acan+ pan-chondrocytes caused excessive GPC chondrocyte proliferation and led to joint malformation post-puberty. These observations were verified in mice and in cultured chondrocytes following treatment with the SHP2 PROTAC inhibitor SHP2D26. Further mechanistic studies indicated that SHP2 negatively regulates SOX9 stability and transcriptional activity by influencing SOX9 phosphorylation and promoting its proteasome degradation. In contrast to published work, SHP2 ablation in chondrocytes did not impact IL-1-evoked inflammation responses, and SHP2's negative regulation of SOX9 could be curtailed by genetic or chemical SHP2 inhibition, suggesting that manipulating SHP2 signaling has translational potential for diseases of cartilage dyshomeostasis.
Asunto(s)
Cartílago Articular , Condrocitos , Osteoartritis , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Factor de Transcripción SOX9 , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Animales , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Condrocitos/metabolismo , Condrocitos/patología , Ratones , Cartílago Articular/metabolismo , Cartílago Articular/patología , Osteoartritis/metabolismo , Osteoartritis/patología , Proliferación Celular , Células Cultivadas , Ratones Endogámicos C57BL , Ratones Noqueados , MasculinoRESUMEN
Developing strategies to enhance cartilage differentiation in mesenchymal stem cells and preserve the extracellular matrix is crucial for successful cartilage tissue reconstruction. Hypoxia-inducible factor-1α (HIF-1α) plays a pivotal role in maintaining the extracellular matrix and chondrocyte phenotype, thus serving as a key regulator in chondral tissue engineering strategies. Recent studies have shown that Ubiquitin C-terminal hydrolase L1 (UCHL1) is involved in the deubiquitylation of HIF-1α. However, the regulatory role of UCHL1 in chondrogenic differentiation has not been investigated. In the present study, we initially validated the promotive effect of UCHL1 expression on chondrogenesis in adipose-derived stem cells (ADSCs). Subsequently, a hybrid baculovirus system was designed and employed to utilize three CRISPR activation (CRISPRa) systems, employing dead Cas9 (dCas9) from three distinct bacterial sources to target UCHL1. Then UCHL1 and HIF-1α inhibitor and siRNA targeting SRY-box transcription factor 9 (SOX9) were used to block UCHL1, HIF-1α and SOX9, respectively. Cartilage differentiation and chondrogenesis were measured by qRT-PCR, immunofluorescence and histological staining. We observed that the CRISPRa system derived from Staphylococcus aureus exhibited superior efficiency in activating UCHL1 compared to the commonly used the CRISPRa system derived from Streptococcus pyogenes. Furthermore, the duration of activation was extended by utilizing the Cre/loxP-based hybrid baculovirus. Moreover, our findings show that UCHL1 enhances SOX9 expression by regulating the stability and localization of HIF-1α, which promotes cartilage production in ADSCs. These findings suggest that activating UCHL1 using the CRISPRa system holds significant potential for applications in cartilage regeneration.
Asunto(s)
Diferenciación Celular , Condrogénesis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Factor de Transcripción SOX9 , Ubiquitina Tiolesterasa , Animales , Ratones , Cartílago/metabolismo , Diferenciación Celular/genética , Condrocitos/metabolismo , Condrocitos/citología , Condrogénesis/genética , Sistemas CRISPR-Cas , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Ratas , Línea CelularRESUMEN
BACKGROUND: Moderate mechanical stress generated by normal joint loading and movements helps maintain the health of articular cartilage. Despite growing interest in the pathogenesis of cartilage degeneration caused by reduced mechanical stress, its reversibility by mechanical reloading is less understood. This study aimed to investigate the response of articular cartilage exposed to mechanical reloading after unloading in vivo and in vitro. METHODS AND RESULTS: Disuse atrophy was induced in the knee joint cartilage of adult mice through hindlimb unloading by tail suspension. For in vivo experiments, mice were subjected to reloading with or without daily exercise intervention or surgical destabilization of the knee joint. Microcomputed tomography and histomorphometric analyses were performed on the harvested knee joints. Matrix loss and thinning of articular cartilage due to unloading were fully or partially restored by reloading, and exercise intervention enhanced the restoration. Subchondral bone density decreased by unloading and increased to above-normal levels by reloading. The severity of cartilage damage caused by joint instability was not different even with prior non-weight bearing. For in vitro experiments, articular chondrocytes isolated from the healthy or unloaded joints of the mice were embedded in agarose gel. After dynamic compression loading, the expression levels of anabolic (Sox9, Col2a1, and Acan) and catabolic (Mmp13 and Adamts5) factors of cartilage were analyzed. In chondrocytes isolated from the unloaded joints, similar to those from healthy joints, dynamic compression increased the expression of anabolic factors but suppressed the expression of catabolic factors. CONCLUSION: The results of this study indicate that the morphological changes in articular cartilage exposed to mechanical unloading may be restored in response to mechanical reloading by shifting extracellular matrix metabolism in chondrocytes to anabolism.
Asunto(s)
Proteína ADAMTS5 , Cartílago Articular , Condrocitos , Suspensión Trasera , Estrés Mecánico , Animales , Cartílago Articular/patología , Cartílago Articular/metabolismo , Ratones , Condrocitos/metabolismo , Condrocitos/patología , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Suspensión Trasera/efectos adversos , Metaloproteinasa 13 de la Matriz/metabolismo , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Agrecanos/metabolismo , Colágeno Tipo II/metabolismo , Masculino , Microtomografía por Rayos X , Soporte de Peso/fisiología , Atrofia , Articulación de la Rodilla/patología , Articulación de la Rodilla/fisiopatología , Articulación de la Rodilla/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Condicionamiento Físico AnimalRESUMEN
Pulmonary hypertension (PH) is a progressive cardiopulmonary disorder characterized by pulmonary vascular remodeling (PVR), primarily due to the excessive proliferation of pulmonary artery smooth muscle cells (PASMCs). This study aimed to investigate the role and molecular mechanism of SOX9 in hypoxic PH in rats. The findings revealed that SOX9 was upregulated in the pulmonary arteries and PASMCs of hypoxia-exposed rats. SOX9 knockdown inhibited hypoxia-induced proliferation and migration of PASMCs, reduced PVR, and subsequently alleviated hypoxia-induced PH in rats, suggesting that SOX9 plays a critical role in PH. Further investigation demonstrated that SOX9 interacted with DPP4, preventing its ubiquitin degradation in hypoxia-exposed PASMCs. DPP4 knockdown inhibited hypoxia-induced PASMC proliferation and migration, and administration of the DPP4 inhibitor sitagliptin (5 mg/kg) significantly reduced PVR and alleviated hypoxia-induced PH in rats, indicating that SOX9 contributes to PH by stabilizing DPP4. The results also showed that hypoxia induced YAP1 expression and dephosphorylation, leading to YAP1 nuclear localization. YAP1 knockdown promoted the degradation of HIF-1α in hypoxia-exposed PASMCs and inhibited hypoxia-induced proliferation and migration of PASMCs. Additionally, HIF-1α, as a transcription factor, promoted SOX9 expression by binding to the SOX9 promoter in hypoxia-exposed PASMCs. In conclusion, hypoxia promotes the proliferation and migration of PASMCs through the regulation of the YAP1/HIF-1α/SOX9/DPP4 signaling pathway, leading to PH in rats. These findings suggest that SOX9 may serve as a potential prognostic marker and therapeutic target for PH.
Asunto(s)
Movimiento Celular , Proliferación Celular , Dipeptidil Peptidasa 4 , Hipertensión Pulmonar , Miocitos del Músculo Liso , Arteria Pulmonar , Ratas Sprague-Dawley , Factor de Transcripción SOX9 , Animales , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/genética , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratas , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Masculino , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil Peptidasa 4/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteínas Señalizadoras YAP/metabolismo , Transducción de Señal , Remodelación Vascular , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Hipoxia de la Célula , Hipoxia/metabolismo , Células CultivadasRESUMEN
The sex determination in mammals refers to the development of an initial bipotential organ, termed the bipotential gonad/genital ridge, into either a testis or an ovary at the early stages of embryonic development, under the precise regulation of transcription factors. SOX9 (SRY-box transcription factor 9) is a multifunctional transcription factor in mammalian development and plays a critical role in sex determination and subsequent male reproductive organs development. Recent studies have shown that several enhancers upstream of SOX9 also play an important role in the process of sex determination. In this review, we summarize the progress on the role of SOX9 and its gonadal enhancers in sex determination. This review will facilitate to understand the regulatory mechanism of sex determination of SOX9 and provides a theoretical basis for the further development of animal sex manipulation technologies.
Asunto(s)
Mamíferos , Factor de Transcripción SOX9 , Procesos de Determinación del Sexo , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Animales , Procesos de Determinación del Sexo/genética , Humanos , Mamíferos/genética , Masculino , Femenino , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión GénicaRESUMEN
G9a is a histone methyltransferase that catalyzes the methylation of histone 3 lysine 9 (H3K9), which is involved in the regulation of gene expression. We had previously reported that G9a is expressed in developing tendons in vivo and in vitro and that G9a-deficient tenocytes show impaired proliferation and differentiation in vitro. In this study, we investigated the functions of G9a in tendon development in vivo by using G9a conditional knockout (G9a cKO) mice. We crossed Sox9Cre/+ mice with G9afl/fl mice to generate G9afl/fl; Sox9Cre/+ mice. The G9a cKO mice showed hypoplastic tendon formation at 3 weeks of age. Bromodeoxyuridine labeling on embryonic day 16.5 (E16.5) revealed decreased cell proliferation in the tenocytes of G9a cKO mice. Immunohistochemical analysis revealed decreased expression levels of G9a and its substrate, H3K9me2, in the vertebral tendons of G9a cKO mice. The tendon tissue of the vertebrae and limbs of G9a cKO mice showed reduced expression of a tendon marker, tenomodulin (Tnmd), and col1a1 genes, suggesting that tenocyte differentiation was suppressed. Overexpression of G9a resulted in enhancement of Tnmd and col1a1 expression in tenocytes in vitro. These results suggest that G9a regulates the proliferation and differentiation of tendon progenitor cells during tendon development. Thus, our results suggest that G9a plays an essential role in tendon development.
Asunto(s)
Diferenciación Celular , Proliferación Celular , N-Metiltransferasa de Histona-Lisina , Ratones Noqueados , Tendones , Animales , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Tendones/metabolismo , Tendones/embriología , Ratones , Tenocitos/metabolismo , Histonas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Cadena alfa 1 del Colágeno Tipo I/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genéticaRESUMEN
Rotator cuff injuries present a clinical challenge for repair due to current limitations in functional regeneration of the native tendon-to-bone enthesis. A biomaterial that can regionally instruct unique tissue-specific phenotypes offers potential to promote enthesis repair. We have recently demonstrated the mechanical benefits of a stratified triphasic biomaterial made up of tendon- and bone-mimetic collagen scaffold compartments connected via a continuous hydrogel, and we now explore the potential of a biologically favorable enthesis hydrogel for this application. Here we report in vitro behavior of human mesenchymal stem cells (hMSCs) within thiolated gelatin (Gel-SH) hydrogels in response to chondrogenic stimuli as well as paracrine signals derived from MSC-seeded bone and tendon scaffold compartments. Chondrogenic differentiation media promoted upregulation of cartilage and entheseal fibrocartilage matrix markers COL2, COLX, and ACAN as well as the enthesis-associated transcription factors SCX, SOX9, and RUNX2 in hMSCs within Gel-SH. Similar effects were observed in response to TGF-ß3 and BMP-4, enthesis-associated growth factors known to play a role in entheseal development and maintenance. Conditioned media generated by hMSCs seeded in tendon- and bone-mimetic collagen scaffolds influenced patterns of gene expression regarding enthesis-relevant growth factors, matrix markers, and tendon-to-bone transcription factors for hMSCs within the material. Together, these findings demonstrate that a Gel-SH hydrogel provides a permissive environment for enthesis tissue engineering and highlights the significance of cellular crosstalk between adjacent compartments within a spatially graded biomaterial.
Asunto(s)
Diferenciación Celular , Fibrocartílago , Gelatina , Hidrogeles , Células Madre Mesenquimatosas , Comunicación Paracrina , Humanos , Gelatina/química , Hidrogeles/química , Hidrogeles/farmacología , Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Comunicación Paracrina/efectos de los fármacos , Fibrocartílago/química , Fibrocartílago/efectos de los fármacos , Fibrocartílago/metabolismo , Condrogénesis/efectos de los fármacos , Manguito de los Rotadores , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Factor de Transcripción SOX9/metabolismo , Andamios del Tejido/química , Lesiones del Manguito de los Rotadores/terapia , Agrecanos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice BásicoRESUMEN
Although enhanced fibroblast growth factor (FGF) signaling has been demonstrated to be crucial in many cases of syndromic cleft palate caused by tongue malposition in humans, animal models that recapitulate this phenotype are limited, and the precise mechanisms remain elusive. Mutations in FGF9 with the effect of either loss- or gain-of-function effects have been identified to be associated with cleft palate in humans. Here, we generated a mouse model with a transgenic Fgf9 allele specifically activated in cranial neural crest cells, aiming to elucidate the gain-of-function effects of Fgf9 in palatogenesis. We observed cleft palate with 100% penetrance in mutant mice. Further analysis demonstrated that no inherent defects in the morphogenic competence of palatal shelves could be found, but a passively lifted tongue prevented the elevation of palatal shelves, leading to the cleft palate. This tongue malposition was induced by posterior spatial confinement that was exerted by temporomandibular joint (TMJ) dysplasia characterized by a reduction in Sox9+ progenitors within the condyle and a structural decrease in the posterior dimension of the lower jaw. Our findings highlight the critical role of excessive FGF signaling in disrupting spatial coordination during palate development and suggest a potential association between palatal shelf elevation and early TMJ development.
Asunto(s)
Fisura del Paladar , Factor 9 de Crecimiento de Fibroblastos , Cresta Neural , Transducción de Señal , Animales , Cresta Neural/metabolismo , Cresta Neural/patología , Fisura del Paladar/genética , Fisura del Paladar/patología , Fisura del Paladar/metabolismo , Ratones , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Factor 9 de Crecimiento de Fibroblastos/genética , Ratones Transgénicos , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Hueso Paladar/metabolismo , Hueso Paladar/embriología , Hueso Paladar/patología , Articulación Temporomandibular/patología , Articulación Temporomandibular/metabolismo , Lengua/patología , Lengua/metabolismo , Modelos Animales de EnfermedadRESUMEN
Sequencing-based mapping of ensemble pairwise interactions among regulatory elements support the existence of topological assemblies known as promoter-enhancer hubs or cliques in cancer. Yet, prevalence, regulators, and functions of promoter-enhancer hubs in individual cancer cells remain unclear. Here, we systematically integrated functional genomics, transcription factor screening, and optical mapping of promoter-enhancer interactions to identify key promoter-enhancer hubs, examine heterogeneity of their assembly, determine their regulators, and elucidate their role in gene expression control in individual triple negative breast cancer (TNBC) cells. Optical mapping of individual SOX9 and MYC alleles revealed the existence of frequent multiway interactions among promoters and enhancers within spatial hubs. Our single-allele studies further demonstrated that lineage-determining SOX9 and signaling-dependent NOTCH1 transcription factors compact MYC and SOX9 hubs. Together, our findings suggest that promoter-enhancer hubs are dynamic and heterogeneous topological assemblies, which are controlled by oncogenic transcription factors and facilitate subtype-restricted gene expression in cancer.
Asunto(s)
Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Regiones Promotoras Genéticas , Factor de Transcripción SOX9 , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Humanos , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Línea Celular Tumoral , Femenino , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Oncogenes , Receptor Notch1/genética , Receptor Notch1/metabolismoRESUMEN
Paneth cells at the bottom of small intestinal crypts secrete antimicrobial peptides, enzymes, and growth factors and contribute to pathogen clearance and maintenance of the stem cell niche. Loss of Paneth cells and their dysfunction occur commonly in various pathologies, but the mechanism underlying the control of Paneth cell function remains largely unknown. Here, we identified microRNA-195 (miR-195) as a repressor of Paneth cell development and activity by altering SOX9 translation via interaction with RNA-binding protein HuR. Tissue-specific transgenic expression of miR-195 (miR195-Tg) in the intestinal epithelium decreased the levels of mucosal SOX9 and reduced the numbers of lysozyme-positive (Paneth) cells in mice. Ectopically expressed SOX9 in the intestinal organoids derived from miR-195-Tg mice restored Paneth cell development ex vivo. miR-195 did not bind to Sox9 mRNA but it directly interacted with HuR and prevented HuR binding to Sox9 mRNA, thus inhibiting SOX9 translation. Intestinal mucosa from mice that harbored both Sox9 transgene and ablation of the HuR locus exhibited lower levels of SOX9 protein and Paneth cell numbers than those observed in miR-195-Tg mice. Inhibition of miR-195 activity by its specific antagomir improved Paneth cell function in HuR-deficient intestinal organoids. These results indicate that interaction of miR-195 with HuR regulates Paneth cell function by altering SOX9 translation in the small intestinal epithelium.NEW & NOTEWORTHY Our results indicate that intestinal epithelial tissue-specific transgenic miR-195 expression decreases the levels of SOX9 expression, along with reduced numbers of Paneth cells. Ectopically expressed SOX9 in the intestinal organoids derived from miR-195-Tg mice restores Paneth cell development ex vivo. miR-195 inhibits SOX9 translation by preventing binding of HuR to Sox9 mRNA. These findings suggest that interaction between miR-195 and HuR controls Paneth cell function via SOX9 in the intestinal epithelium.
Asunto(s)
Proteína 1 Similar a ELAV , Mucosa Intestinal , MicroARNs , Células de Paneth , Factor de Transcripción SOX9 , Animales , MicroARNs/genética , MicroARNs/metabolismo , Células de Paneth/metabolismo , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Mucosa Intestinal/metabolismo , Ratones , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Ratones Transgénicos , Humanos , Organoides/metabolismo , Biosíntesis de Proteínas , Ratones Endogámicos C57BLRESUMEN
Breast cancer is a leading cause of female mortality and despite advancements in personalized therapeutics, metastatic disease largely remains incurable due to drug resistance. The estrogen receptor (ER, ESR1) is expressed in two-thirds of all breast cancer, and under endocrine stress, somatic ESR1 mutations arise in approximately 30% of cases that result in endocrine resistance. We and others reported ESR1 fusions as a mechanism of ER-mediated endocrine resistance. ER fusions, which retain the activation function 1- and DNA-binding domains, harbor ESR1 exons 1 to 6 fused to an in-frame gene partner resulting in loss of the ER ligand-binding domain (LBD). We demonstrate that in a no-special type (invasive ductal carcinoma [IDC]-NST) and an invasive lobular carcinoma (ILC) cell line, ER fusions exhibit robust hyperactivation of canonical ER signaling pathways independent of estradiol or antiendocrine therapies. We employ cell line models stably overexpressing ER fusions with concurrent endogenous ER knockdown to minimize endogenous ER influence. Cell lines exhibited shared transcriptomic enrichment in pathways known to be drivers of metastatic disease, notably MYC signaling. Cells expressing the 3' fusion partners SOX9 and YAP1 consistently demonstrated enhanced growth and cell survival. ILC cells expressing the DAB2 fusion led to enhanced growth, survival, and migration, phenotypes not appreciated in the IDC-NST DAB2 model. Herein, we report that cell line activity is subtype-, fusion-, and assay-specific, suggesting that LBD loss, the fusion partner, and the cellular landscape all influence fusion activities. Therefore, it will be critical to assess fusion frequency in the context of the clinicopathology.
Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Línea Celular Tumoral , Fenotipo , Proteínas Señalizadoras YAP/genética , Proteínas Señalizadoras YAP/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patología , Carcinoma Ductal de Mama/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Transducción de Señal/genética , Carcinoma Lobular/genética , Carcinoma Lobular/metabolismo , Carcinoma Lobular/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ligandos , Proliferación Celular/genéticaRESUMEN
Chemotherapeutic drug resistance is a challenge for the effective treatment of OSCC. There are a couple of studies on the involvement of microRNAs (miRNAs) in chemoresistance of oral squamous cell carcinoma (OSCC), but the exact molecular events in many cases are not clearly understood. In this work, we intend to track down key miRNA(s) and unveil their regulatory molecular mechanisms in imparting chemoresistance in this lethal cancer. We analyzed gene and miRNA array profiles of drug-resistant OSCC cells, predicted miRNA targets, performed enrichment analysis, and validated our findings in cisplatin-sensitive and cisplatin-resistant SCC9 and H357 OSCC cells. We evaluated the anticancer and chemosensitivity roles of selected miRNA by adopting several molecular assays like qRT-PCR, MTT assay, wound healing assay, fluorescence imaging by DCFHDA, AO/EB staining, DAPI, and γ-H2AX accumulation assay. We also validated the miRNA-target binding by qRT-PCR and luciferase reporter assay. Among the enriched miRNAs, we found miR-185-5p downregulated in cisplatin-resistant OSCC cells as a signature miRNA modulating chemoresistance. The upregulation of miR-185-5p by mimic transfection restores cisplatin sensitivity by decreasing cell viability in a dose-dependent manner and increasing ROS-induced DNA damage and apoptosis. miR-185-5p overexpression increases miR-203a-3p expression through negative regulation of SOX9. siRNA-mediated silencing of the SOX9 also shows similar results. Mechanistically, miR-185-5p dependent miR-203a-3p expression decreases cisplatin efflux and cisplatin-induced DNA damage repair by regulating ABCC1, ABCB1, RRM2, and RAN. This study will pave the way for employing this miR-185-5p as a combination therapeutic strategy to combat cisplatin resistance in oral cancer.