Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Curr Opin Struct Biol ; 75: 102404, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35700575

RESUMEN

RNA polymerase II (Pol II)-mediated transcription in eukaryotic cells starts with assembly of preinitiation complex (PIC) on core promoter, a DNA sequence of ∼100 base pairs. The transcription PIC consists of Pol II and general transcription factors TFIID, TFIIA, TFIIB, TFIIF, TFIIE, and TFIIH. Previous structural studies focused on PIC assembled on TATA box promoters with TFIID replaced by its subunit, TATA box-binding protein (TBP). However, the megadalton TFIID complex is essential for promoter recognition, TBP loading onto promoter, and PIC assembly for almost all Pol II-mediated transcription, especially on the TATA-less promoters, which account for ∼85% of core promoters of human coding genes. The functions of TFIID could not be replaced by TBP. The recent breakthrough in structure determination of TFIID-based PIC complexes in different assembly stages revealed mechanistic insights into PIC assembly on TATA box and TATA-less promotes and provided a framework for further investigation of transcription initiation.


Asunto(s)
ARN Polimerasa II , Factor de Transcripción TFIID , Iniciación de la Transcripción Genética , Humanos , ARN Polimerasa II/química , TATA Box , Proteína de Unión a TATA-Box/química , Factor de Transcripción TFIIA/química , Factor de Transcripción TFIID/química
2.
Biochim Biophys Acta Gene Regul Mech ; 1863(10): 194611, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32745626

RESUMEN

General transcription factors and core promoter elements play a pivotal role in RNA polymerase II (Pol II)-mediated transcription initiation. In the previous work, we have defined a TFIIA recognition element (IIARE) that modulates Pol II-directed gene transcription in a promoter context-dependent manner. However, how TFIIA interacts with the IIARE and whether the interaction between TFIIA and the IIARE is involved in the regulation of gene transcription by Pol II are not fully understood. In the present study, we confirm that both K348 and K350 residues in TFIIAαß are required for the interaction between TFIIAαß and the IIARE. Disruption of the interaction between them by gene mutations dampens TFIIAαß binding to the AdML-IIARE promoter and the transcriptional activation of the promoter containing a IIARE in vitro and in vivo. Stable expression of the TFIIAαß mutant containing both K348A and K350A in the cell line with endogenous TFIIAαß silence represses endogenous gene expression by reducing the occupancies of TFIIAαß, TBP, p300, and Pol II at the promoters containing a IIARE. The findings from this study provide a novel insight into the regulatory mechanism of gene transcription mediated by TFIIA and the IIARE.


Asunto(s)
Sitios de Unión , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Elementos de Respuesta , Factor de Transcripción TFIIA/metabolismo , Factor de Transcripción TFIIB/metabolismo , Activación Transcripcional , Aminoácidos , Secuencia de Bases , Línea Celular , Humanos , Modelos Moleculares , Mutación , Motivos de Nucleótidos , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Factor de Transcripción TFIIA/química , Factor de Transcripción TFIIA/genética , Factor de Transcripción TFIIB/química , Factor de Transcripción TFIIB/genética
3.
Nature ; 577(7792): 711-716, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31969704

RESUMEN

SAGA (Spt-Ada-Gcn5-acetyltransferase) is a 19-subunit complex that stimulates transcription via two chromatin-modifying enzymatic modules and by delivering the TATA box binding protein (TBP) to nucleate the pre-initiation complex on DNA, a pivotal event in the expression of protein-encoding genes1. Here we present the structure of yeast SAGA with bound TBP. The core of the complex is resolved at 3.5 Å resolution (0.143 Fourier shell correlation). The structure reveals the intricate network of interactions that coordinate the different functional domains of SAGA and resolves an octamer of histone-fold domains at the core of SAGA. This deformed octamer deviates considerably from the symmetrical analogue in the nucleosome and is precisely tuned to establish a peripheral site for TBP, where steric hindrance represses binding of spurious DNA. Complementary biochemical analysis points to a mechanism for TBP delivery and release from SAGA that requires transcription factor IIA and whose efficiency correlates with the affinity of DNA to TBP. We provide the foundations for understanding the specific delivery of TBP to gene promoters and the multiple roles of SAGA in regulating gene expression.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Pichia , Regiones Promotoras Genéticas/genética , Proteína de Unión a TATA-Box/metabolismo , Transactivadores/química , Transactivadores/metabolismo , Sitios de Unión , ADN de Hongos/química , ADN de Hongos/metabolismo , Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Pichia/química , Pichia/genética , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Proteína de Unión a TATA-Box/química , Factor de Transcripción TFIIA/química , Factor de Transcripción TFIIA/metabolismo , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/metabolismo
4.
J Biol Chem ; 292(28): 11873-11885, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28539359

RESUMEN

RNA polymerase II (pol II) is required for the transcription of all protein-coding genes and as such represents a major enzyme whose activity is tightly regulated. Transcriptional initiation therefore requires numerous general transcriptional factors and cofactors that associate with pol II at the core promoter to form a pre-initiation complex. Transcription factor IIA (TFIIA) is a general cofactor that binds TFIID and stabilizes the TFIID-DNA complex during transcription initiation. Previous studies showed that TFIIA can make contact with the DNA sequence upstream or downstream of the TATA box, and that the region bound by TFIIA could overlap with the elements recognized by another factor, TFIIB, at adenovirus major late core promoter. Whether core promoters contain a DNA motif recognized by TFIIA remains unknown. Here we have identified a core promoter element upstream of the TATA box that is recognized by TFIIA. A search of the human promoter database revealed that many natural promoters contain a TFIIA recognition element (IIARE). We show that the IIARE enhances TFIIA-promoter binding and enhances the activity of TATA-containing promoters, but represses or activates promoters that lack a TATA box. Chromatin immunoprecipitation assays revealed that the IIARE activates transcription by increasing the recruitment of pol II, TFIIA, TAF4, and P300 at TATA-dependent promoters. These findings extend our understanding of the role of TFIIA in transcription, and provide new insights into the regulatory mechanism of core promoter elements in gene transcription by pol II.


Asunto(s)
Regulación de la Expresión Génica , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Elementos de Respuesta , TATA Box , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIIA/metabolismo , Factor de Transcripción TFIID/metabolismo , Sitios de Unión , Inmunoprecipitación de Cromatina , ADN Recombinante , Proteína p300 Asociada a E1A/química , Proteína p300 Asociada a E1A/metabolismo , Genes Reporteros , Células HEK293 , Humanos , Mutagénesis Sitio-Dirigida , Mutación , Motivos de Nucleótidos , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa II/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Factores Asociados con la Proteína de Unión a TATA/química , Proteína de Unión a TATA-Box/química , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIIA/química , Factor de Transcripción TFIIA/genética , Factor de Transcripción TFIID/química , Factores Estimuladores hacia 5'/química , Factores Estimuladores hacia 5'/genética , Factores Estimuladores hacia 5'/metabolismo
5.
Protein Expr Purif ; 133: 50-56, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28259734

RESUMEN

In vitro transcription systems have been utilized to elucidate detailed mechanisms of transcription. Purified RNA polymerase II (pol II) and general transcription factors (GTFs) are required for the in vitro reconstitution of eukaryotic transcription systems. Among GTFs, TFIID and TFIIA play critical roles in the early stage of transcription initiation; TFIID first binds to the DNA in transcription initiation and TFIIA regulates TFIID's DNA binding activity. Despite the important roles of TFIIA, the time-consuming steps required to purify it, such as denaturing and refolding, have hampered the preparation of in vitro transcription systems. Here, we report an improved method for soluble expression and rapid purification of yeast TFIIA. The subunits of TFIIA, TOA1 and TOA2, were bacterially expressed as fusion proteins in soluble form, then processed by the PreScission protease and co-purified. TFIIA's heterodimer formation was confirmed by size exclusion chromatography-multiangle light scattering (SEC-MALS). The hydrodynamic radius (Rh) and radius of gyration (Rg) were measured by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), respectively. The Rg/Rh value implied that the intrinsically disordered region of TOA1 might not have an extended structure in solution. Our improved method provides highly purified TFIIA of sufficient quality for biochemical, biophysical, and structural analyses of eukaryotic transcription systems.


Asunto(s)
Escherichia coli/metabolismo , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Factor de Transcripción TFIIA , Escherichia coli/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Solubilidad , Factor de Transcripción TFIIA/biosíntesis , Factor de Transcripción TFIIA/química , Factor de Transcripción TFIIA/genética
6.
Nature ; 531(7596): 604-9, 2016 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-27007846

RESUMEN

The general transcription factor IID (TFIID) plays a central role in the initiation of RNA polymerase II (Pol II)-dependent transcription by nucleating pre-initiation complex (PIC) assembly at the core promoter. TFIID comprises the TATA-binding protein (TBP) and 13 TBP-associated factors (TAF1-13), which specifically interact with a variety of core promoter DNA sequences. Here we present the structure of human TFIID in complex with TFIIA and core promoter DNA, determined by single-particle cryo-electron microscopy at sub-nanometre resolution. All core promoter elements are contacted by subunits of TFIID, with TAF1 and TAF2 mediating major interactions with the downstream promoter. TFIIA bridges the TBP-TATA complex with lobe B of TFIID. We also present the cryo-electron microscopy reconstruction of a fully assembled human TAF-less PIC. Superposition of common elements between the two structures provides novel insights into the general role of TFIID in promoter recognition, PIC assembly, and transcription initiation.


Asunto(s)
Regiones Promotoras Genéticas/genética , Factor de Transcripción TFIID/metabolismo , Factor de Transcripción TFIID/ultraestructura , Iniciación de la Transcripción Genética , Microscopía por Crioelectrón , ADN/química , ADN/metabolismo , ADN/ultraestructura , Humanos , Modelos Moleculares , Unión Proteica , Especificidad por Sustrato , TATA Box/genética , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factores Asociados con la Proteína de Unión a TATA/ultraestructura , Proteína de Unión a TATA-Box/química , Proteína de Unión a TATA-Box/metabolismo , Proteína de Unión a TATA-Box/ultraestructura , Factor de Transcripción TFIIA/química , Factor de Transcripción TFIIA/metabolismo , Factor de Transcripción TFIIA/ultraestructura , Factor de Transcripción TFIID/química
7.
Nature ; 465(7300): 956-60, 2010 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-20559389

RESUMEN

Transcription of eukaryotic messenger RNA (mRNA) encoding genes by RNA polymerase II (Pol II) is triggered by the binding of transactivating proteins to enhancer DNA, which stimulates the recruitment of general transcription factors (TFIIA, B, D, E, F, H) and Pol II on the cis-linked promoter, leading to pre-initiation complex formation and transcription. In TFIID-dependent activation pathways, this general transcription factor containing TATA-box-binding protein is first recruited on the promoter through interaction with activators and cooperates with TFIIA to form a committed pre-initiation complex. However, neither the mechanisms by which activation signals are communicated between these factors nor the structural organization of the activated pre-initiation complex are known. Here we used cryo-electron microscopy to determine the architecture of nucleoprotein complexes composed of TFIID, TFIIA, the transcriptional activator Rap1 and yeast enhancer-promoter DNA. These structures revealed the mode of binding of Rap1 and TFIIA to TFIID, as well as a reorganization of TFIIA induced by its interaction with Rap1. We propose that this change in position increases the exposure of TATA-box-binding protein within TFIID, consequently enhancing its ability to interact with the promoter. A large Rap1-dependent DNA loop forms between the activator-binding site and the proximal promoter region. This loop is topologically locked by a TFIIA-Rap1 protein bridge that folds over the DNA. These results highlight the role of TFIIA in transcriptional activation, define a molecular mechanism for enhancer-promoter communication and provide structural insights into the pathways of intramolecular communication that convey transcription activation signals through the TFIID complex.


Asunto(s)
Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Factor de Transcripción TFIIA/metabolismo , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Microscopía por Crioelectrón , Nucleoproteínas/química , Nucleoproteínas/ultraestructura , Estructura Terciaria de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura , Complejo Shelterina , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/ultraestructura , Factor de Transcripción TFIIA/química , Factor de Transcripción TFIID/química , Factores de Transcripción/química , Factores de Transcripción/ultraestructura
8.
Nucleic Acids Res ; 36(19): 6143-54, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18824481

RESUMEN

We have developed an approach that enables nonradioactive, ultrasensitive (attamole sensitivity) site-specific protein-protein photocrosslinking, and we have applied the approach to the analysis of interactions of alpha-helix 2 (H2) of human TATA-element binding protein (TBP) with general transcription factor TFIIA and transcriptional repressor NC2. We have found that TBP H2 can be crosslinked to TFIIA in the TFIIA-TBP-DNA complex and in higher order transcription-initiation complexes, and we have mapped the crosslink to the 'connector' region of the TFIIA alpha/beta subunit (TFIIAalpha/beta). We further have found that TBP H2 can be crosslinked to NC2 in the NC2-TBP-DNA complex, and we have mapped the crosslink to the C-terminal 'tail' of the NC2 alpha-subunit (NC2alpha). Interactions of TBP H2 with the TFIIAalpha/beta connector and the NC2alpha C-terminal tail were not observed in crystal structures of TFIIA-TBP-DNA and NC2-TBP-DNA complexes, since relevant segments of TFIIA and NC2 were not present in truncated TFIIA and NC2 derivatives used for crystallization. We propose that interactions of TBP H2 with the TFIIAalpha/beta connector and the NC2alpha C-terminal tail provide an explanation for genetic results suggesting importance of TBP H2 in TBP-TFIIA interactions and TBP-NC2 interactions, and provide an explanation-steric exclusion-for competition between TFIIA and NC2.


Asunto(s)
Fosfoproteínas/química , Proteínas Represoras/química , Proteína de Unión a TATA-Box/química , Factor de Transcripción TFIIA/química , Factores de Transcripción/química , Sitios de Unión , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/efectos de la radiación , ADN/metabolismo , Humanos , Indicadores y Reactivos , Fosfoproteínas/metabolismo , Estructura Secundaria de Proteína , ARN Polimerasa II/metabolismo , Proteínas Represoras/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIIA/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción TFII/metabolismo , Rayos Ultravioleta
9.
FEBS J ; 275(11): 2873-83, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18459978

RESUMEN

The positive cofactor 4 (PC4) protein has an important role in transcriptional activation, which has been proposed to be mediated by transcription factor IIA (TFIIA) and TATA-binding protein-associated factors. To test this hypothesis, we cloned the Schizosaccharomyces pombe PC4 gene and analysed the role of the PC4 protein in the stimulation of basal transcription driven by TATA-containing and TATA-less promoters. Sc. pombe PC4 was able to stimulate basal transcription from several TATA-containing promoters and from the Initiator sequences of the highly transcribed Sc. pombe nmt1 gene. Moreover, it was demonstrated that Sc. pombe PC4 stimulates formation of the transcription preinitiation complex. Activation of transcription by PC4 was dependent on the Mediator complex and TFIIA, but was independent of TATA-binding protein-associated factor. PC4 binds to double-stranded and single-stranded DNA and interacts with TATA-binding protein, TFIIB, TFIIA, Mediator, TFIIH and the transcriptional activator protein VP16.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Regulación Fúngica de la Expresión Génica , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/metabolismo , TATA Box , Secuencia de Aminoácidos , Clonación Molecular , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Proteína Vmw65 de Virus del Herpes Simple/química , Humanos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Mapeo de Interacción de Proteínas , Proteínas de Schizosaccharomyces pombe/química , Factor de Transcripción TFIIA/química , Transcripción Genética , Activación Transcripcional
10.
Mol Cell ; 29(1): 81-91, 2008 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-18206971

RESUMEN

Proper ovarian development requires the cell type-specific transcription factor TAF4b, a subunit of the core promoter recognition complex TFIID. We present the 35 A structure of a cell type-specific core promoter recognition complex containing TAF4b and TAF4 (4b/4-IID), which is responsible for directing transcriptional synergy between c-Jun and Sp1 at a TAF4b target promoter. As a first step toward correlating potential structure/function relationships of the prototypic TFIID versus 4b/4-IID, we have compared their 3D structures by electron microscopy and single-particle reconstruction. These studies reveal that TAF4b incorporation into TFIID induces an open conformation at the lobe involved in TFIIA and putative activator interactions. Importantly, this open conformation correlates with differential activator-dependent transcription and promoter recognition by 4b/4-IID. By combining functional and structural analysis, we find that distinct localized structural changes in a megadalton macromolecular assembly can significantly alter its activity and lead to a TAF4b-induced reprogramming of promoter specificity.


Asunto(s)
Microscopía Electrónica , Regiones Promotoras Genéticas/genética , Mapeo de Interacción de Proteínas , Factores Asociados con la Proteína de Unión a TATA/ultraestructura , Factor de Transcripción TFIID/ultraestructura , Linfocitos B , Línea Celular Tumoral , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Modelos Moleculares , Especificidad de Órganos , Conformación Proteica , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factor de Transcripción Sp1/metabolismo , Relación Estructura-Actividad , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIIA/química , Factor de Transcripción TFIIA/genética , Factor de Transcripción TFIIA/metabolismo , Factor de Transcripción TFIIA/ultraestructura , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Activación Transcripcional
11.
Biochim Biophys Acta ; 1769(7-8): 429-36, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17560669

RESUMEN

TFIIA was classified as a general transcription factor when it was first identified. Since then it has been debated to what extent it can actually be regarded as "general". The most notable feature of TFIIA is the proteolytical cleavage of the TFIIAalphabeta into a TFIIAalpha and TFIIAbeta moiety which has long remained a mystery. Recent studies have showed that TFIIA is cleaved by Taspase1 which was initially identified as the protease for the proto-oncogene MLL. Cleavage of TFIIA does not appear to serve as a step required for its activation as the uncleaved TFIIA in the Taspase1 knock-outs adequately support bulk transcription. Instead, cleavage of TFIIA seems to affect its turn-over and may be a part of an intricate degradation mechanism that allows fine-tuning of cellular levels of TFIIA. Cleavage might also be responsible for switching transcription program as the uncleaved and cleaved TFIIA might have distinct promoter specificity during development and differentiation. This review will focus on functional characteristics of TFIIA and discuss novel insights in the role of this elusive transcription factor.


Asunto(s)
Factor de Transcripción TFIIA/fisiología , Secuencia de Aminoácidos , Animales , Endopeptidasas/fisiología , Humanos , Modelos Químicos , Datos de Secuencia Molecular , Proto-Oncogenes Mas , Proteínas de Saccharomyces cerevisiae/química , Alineación de Secuencia , Factor de Transcripción TFIIA/química , Factores de Transcripción/química
12.
Proc Natl Acad Sci U S A ; 104(10): 3742-6, 2007 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-17360423

RESUMEN

Cellular regulatory networks are organized such that many proteins have few interactions, whereas a few proteins have many. These densely connected protein "hubs" are critical for the system-wide behavior of cells, and the capability of selectively perturbing a subset of interactions at these hubs is invaluable in deciphering and manipulating regulatory mechanisms. SELEX-generated RNA aptamers are proving to be highly effective reagents for inhibiting targeted proteins, but conventional methods generate one or several aptamer clones that usually bind to a single target site most preferred by a nucleic acid ligand. We advance a generalized scheme for isolating aptamers to multiple sites on a target molecule by reducing the ability of the preferred site to select its cognate aptamer. We demonstrate the use of this scheme by generating aptamers directed to discrete functional surfaces of the yeast TATA-binding protein (TBP). Previously we selected "class 1" RNA aptamers that interfere with the TBP's binding to TATA-DNA. By masking TBP with TATA-DNA or an unamplifiable class 1 aptamer, we isolated a new aptamer class, "class 2," that can bind a TBP.DNA complex and is in competition with binding another general transcription factor, TFIIA. Moreover, we show that both of these aptamers inhibit RNA polymerase II-dependent transcription, but analysis of template-bound factors shows they do so in mechanistically distinct and unexpected ways that can be attributed to binding either the DNA or TFIIA recognition sites. These results should spur innovative approaches to modulating other highly connected regulatory proteins.


Asunto(s)
Aptámeros de Nucleótidos/genética , Proteínas Fúngicas/química , ARN/química , Aptámeros de Nucleótidos/química , Secuencia de Bases , Sitios de Unión , Evolución Molecular , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Ácidos Nucleicos/química , Polímeros/química , Conformación Proteica , Estructura Terciaria de Proteína , Proteína de Unión a TATA-Box/química , Factor de Transcripción TFIIA/química
13.
Mol Genet Genomics ; 275(4): 354-66, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16614777

RESUMEN

The recessive gene xa5 for resistance to bacterial blight resistance of rice is located on chromosome 5, and evidence based on genetic recombination has been shown to encode a small subunit of the basal transcription factor IIA (Iyer and McCouch in MPMI 17(12):1348-1354, 2004). However, xa5 has not been demonstrated by a complementation test. In this study, we introduced the dominant allele Xa5 into a homozygous xa5-line, which was developed from a cross between IRBB5 (an indica variety with xa5) and Nipponbare (a japonica variety with Xa5). Transformation of Xa5 and subsequent segregation analysis confirmed that xa5 is a V39E substitution variant of the gene for TFIIAgamma on chromosome 5 (TFIIAgamma5 or Xa5). The rice has an addition gene for TFIIAgamma exists on chromosome 1 (TFIIAgamma1). Analysis of the expression patterns of Xa5 (TFIIAgamma5)/xa5 and TFIIAgamma1 revealed that both the genes are constitutively expressed in different rice organs. However, no expression of TFIIAgamma1 could be detected in the panicle by reverse transcriptase-polymerase chain reaction. To compare the structural difference between the Xa5/xa5 and TFIIAgamma1 proteins, 3-D structures were predicted using computer-aided modeling techniques. The modeled structures of Xa5 (xa5) and TFIIAgamma1 fit well with the structure of TFIIA small subunit from human, suggesting that they may all act as a small subunit of TFIIA. The E39V substitution in the xa5 protein occurs in the alpha-helix domain, a supposed conservative substitutable site, which should not affect the basal transcription function of TFIIAgamma. The structural analysis indicates that xa5 and Xa5 potentially retain their basic transcription factor function, which, in turn, may mediate the novel pathway for bacterial blight resistance and susceptibility, respectively.


Asunto(s)
Genes de Plantas , Oryza/fisiología , Enfermedades de las Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Predisposición Genética a la Enfermedad , Modelos Moleculares , Datos de Secuencia Molecular , Oryza/microbiología , Filogenia , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Conformación Proteica , Homología de Secuencia de Aminoácido , Homología Estructural de Proteína , Factor de Transcripción TFIIA/química , Factor de Transcripción TFIIA/genética , Xanthomonas/patogenicidad
14.
Mol Cell Biol ; 26(7): 2728-35, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16537915

RESUMEN

In higher eukaryotes, the large subunit of the general transcription factor TFIIA is encoded by the single TFIIAalphabeta gene and posttranslationally cleaved into alpha and beta subunits. The molecular mechanisms and biological significance of this proteolytic process have remained obscure. Here, we show that TFIIA is a substrate of taspase 1 as reported for the trithorax group mixed-lineage leukemia protein. We demonstrate that recombinant taspase 1 cleaves TFIIA in vitro. Transfected taspase 1 enhances cleavage of TFIIA, and RNA interference knockdown of endogenous taspase 1 diminishes cleavage of TFIIA in vivo. In taspase 1-/- MEF cells, only uncleaved TFIIA is detected. In Xenopus laevis embryos, knockdown of TFIIA results in phenotype and expression defects. Both defects can be rescued by expression of an uncleavable TFIIA mutant. Our study shows that uncleaved TFIIA is transcriptionally active and that cleavage of TFIIA does not serve to render TFIIA competent for transcription. We propose that cleavage fine tunes the transcription regulation of a subset of genes during differentiation and development.


Asunto(s)
Endopeptidasas/metabolismo , Procesamiento Proteico-Postraduccional , Factor de Transcripción TFIIA/metabolismo , Transcripción Genética/genética , Secuencia de Aminoácidos , Animales , Extractos Celulares , Núcleo Celular/metabolismo , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células HeLa , Humanos , Datos de Secuencia Molecular , Mutación/genética , Péptido Hidrolasas/metabolismo , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Factor de Transcripción TFIIA/química , Xenopus
15.
Mol Cell Biol ; 25(16): 7303-13, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16055738

RESUMEN

In the unicellular human parasites Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp., the spliced-leader (SL) RNA is a key molecule in gene expression donating its 5'-terminal region in SL addition trans splicing of nuclear pre-mRNA. While there is no evidence that this process exists in mammals, it is obligatory in mRNA maturation of trypanosomatid parasites. Hence, throughout their life cycle, these organisms crucially depend on high levels of SL RNA synthesis. As putative SL RNA gene transcription factors, a partially characterized small nuclear RNA-activating protein complex (SNAP(c)) and the TATA-binding protein related factor 4 (TRF4) have been identified thus far. Here, by tagging TRF4 with a novel epitope combination termed PTP, we tandem affinity purified from crude T. brucei extracts a stable and transcriptionally active complex of six proteins. Besides TRF4 these were identified as extremely divergent subunits of SNAP(c) and of transcription factor IIA (TFIIA). The latter finding was unexpected since genome databases of trypanosomatid parasites appeared to lack general class II transcription factors. As we demonstrate, the TRF4/SNAP(c)/TFIIA complex binds specifically to the SL RNA gene promoter upstream sequence element and is absolutely essential for SL RNA gene transcription in vitro.


Asunto(s)
Regiones no Traducidas 5' , Empalme del ARN , Secuencia de Aminoácidos , Animales , Western Blotting , Centrifugación por Gradiente de Densidad , Proteínas Cromosómicas no Histona/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Drosophila , Epítopos/química , Genoma , Humanos , Immunoblotting , Técnicas In Vitro , Modelos Genéticos , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Péptidos/química , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Estructura Terciaria de Proteína , ARN/metabolismo , Homología de Secuencia de Aminoácido , Sacarosa/farmacología , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIIA/química , Factores de Transcripción/metabolismo , Transcripción Genética , Trypanosoma brucei brucei
16.
EMBO J ; 23(15): 3083-91, 2004 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-15257296

RESUMEN

The transcription factor TFIIA is encoded by two genes, TFIIAalphabeta and TFIIAgamma. In higher eukaryotes, the TFIIAalphabeta is translated as a precursor and undergoes proteolytic cleavage; the regulation and biological implications of the cleavage have remained elusive. We determined by Edman degradation that the TFIIAbeta subunit starts at Asp 278. We found that a cleavage recognition site (CRS), a string of amino acids QVDG at positions -6 to -3 from Asp 278, is essential for cleavage. Mutations in the CRS that prevent cleavage significantly prolong the half-life of TFIIA. Consistently, the cleaved TFIIA is a substrate for the ubiquitin pathway and proteasome-mediated degradation. We show that mutations in the putative phosphorylation sites of TFIIAbeta greatly affect degradation of the beta-subunit. We propose that cleavage and subsequent degradation fine-tune the amount of TFIIA in the cell and consequently the level of transcription.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Factor de Transcripción TFIIA/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Chlorocebus aethiops , Humanos , Datos de Secuencia Molecular , Mutación/genética , Alineación de Secuencia , Especificidad por Sustrato , Factor de Transcripción TFIIA/química , Factor de Transcripción TFIIA/genética , Factor de Transcripción TFIIA/aislamiento & purificación , Factores de Transcripción/metabolismo
17.
Genes Dev ; 18(9): 1022-34, 2004 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15132995

RESUMEN

A surface that is required for rapid formation of preinitiation complexes (PICs) was identified on the N-terminal domain (NTD) of the RNA Pol II general transcription factor TFIIA. Site-specific photocross-linkers and tethered protein cleavage reagents positioned on the NTD of TFIIA and assembled in PICs identified the SAGA subunit Spt8 and the TFIID subunit Taf4 as located near this surface. In agreement with these findings, mutations in Spt8 and the TFIIA NTD interact genetically. Using purified proteins, it was found that TFIIA and Spt8 do not stably bind to each other, but rather both compete for binding to TBP. Consistent with this competition, Spt8 inhibits the binding of SAGA to PICs in the absence of activator. In the presence of activator, Spt8 enhances transcription in vitro, and the positive function of the TFIIA NTD is largely mediated through Spt8. Our results suggest a mechanism for the previously observed positive and negative effects of Spt8 on transcription observed in vivo.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIIA/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Unión Competitiva , Reactivos de Enlaces Cruzados , Radical Hidroxilo/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Proteína de Unión a TATA-Box/genética , Factor de Transcripción TFIIA/química , Factor de Transcripción TFIIA/genética , Factores de Transcripción/genética
18.
Mol Cell Biol ; 24(6): 2467-77, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14993284

RESUMEN

Xenopus transcription factor IIIA (TFIIIA) is phosphorylated on serine-16 by CK2. Replacements with alanine or glutamic acid were made at this position in order to address the question of whether phosphorylation possibly influences the function of this factor. Neither substitution has an effect on the DNA or RNA binding activity of TFIIIA. The wild-type factor and the alanine variant activate transcription of somatic- and oocyte-type 5S rRNA genes in nuclear extract immunodepleted of endogenous TFIIIA. The glutamic acid variant (S16E) supports the transcription of somatic-type genes at levels comparable to those of wild-type TFIIIA; however, there is no transcription of the oocyte-type genes. This differential behavior of the phosphomimetic mutant protein is also observed in vivo when using early-stage embryos, where this mutant failed to activate transcription of the endogenous oocyte-type genes. Template exclusion assays establish that the S16E mutant binds to the oocyte-type 5S rRNA genes and recruits at least one other polymerase III transcription factor into an inactive complex. Phosphorylation of TFIIIA by CK2 may allow the factor to continue to act as a positive activator of the somatic-type genes and simultaneously as a repressor of the oocyte-type 5S rRNA genes, indicating that there is a mechanism that actively promotes repression of the oocyte-type genes at the end of oogenesis.


Asunto(s)
ARN Ribosómico 5S/genética , Factor de Transcripción TFIIA/metabolismo , Xenopus/genética , Xenopus/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión/genética , Quinasa de la Caseína II , Femenino , Técnicas In Vitro , Mutagénesis Sitio-Dirigida , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Oogénesis/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Factor de Transcripción TFIIA/química , Factor de Transcripción TFIIA/genética , Transcripción Genética
19.
J Mol Biol ; 332(4): 783-93, 2003 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-12972251

RESUMEN

RNA polymerase II-dependent transcription requires the assembly of a multi-protein, preinitiation complex on core promoter elements. Transcription factor IID (TFIID) comprising the TATA box-binding protein (TBP) and TBP-associated factors (TAFs) is responsible for promoter recognition in this complex. Subsequent association of TFIIA and TFIIB provides enhanced complex stability. TFIIA is required for transcriptional stimulation by certain viral and cellular activators, and favors formation of the preinitiation complex in the presence of repressor NC2. The X-ray structures of human and yeast TBP/TFIIA/DNA complexes at 2.1A and 1.9A resolution, respectively, are presented here and seen to resemble each other closely. The interactions made by human TFIIA with TBP and DNA within and upstream of the TATA box, including those involving water molecules, are described and compared to the yeast structure. Of particular interest is a previously unobserved region of TFIIA that extends the binding interface with TBP in the yeast, but not in the human complex, and that further elucidates biochemical and genetic results.


Asunto(s)
ADN/metabolismo , Proteínas Fúngicas/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIIA/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , ADN/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Humanos , Sustancias Macromoleculares , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Conformación de Ácido Nucleico , Estructura Cuaternaria de Proteína , Alineación de Secuencia , Proteína de Unión a TATA-Box/química , Proteína de Unión a TATA-Box/genética , Factor de Transcripción TFIIA/química , Factor de Transcripción TFIIA/genética
20.
Biochim Biophys Acta ; 1577(3): 395-400, 2002 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-12359329

RESUMEN

The transcription factor TFIIB has been identified and cloned from the yeast Schizosaccharomyces pombe. The cloned polypeptide is highly homologous to human TFIIB and to Saccharomyces cerevisiae TFIIB. S. pombe TFIIB is a 340-amino-acid-long protein and it possesses a repeated motif of 75 amino acids near the carboxy-terminal region. The purified recombinant protein is able to bind to the TBP-DNA promoter complex in gel retardation experiments. Recombinant S. pombe TFIIB is active in in vitro transcription assays, since it can complement the transcription activity of a S. pombe cell extract in which TFIIB was depleted by using antibodies.


Asunto(s)
Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Factor de Transcripción TFIIB/genética , Secuencia de Aminoácidos , Clonación Molecular , Ensayo de Cambio de Movilidad Electroforética , Datos de Secuencia Molecular , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Proteínas de Schizosaccharomyces pombe/biosíntesis , Proteínas de Schizosaccharomyces pombe/química , Alineación de Secuencia , Proteína de Unión a TATA-Box/química , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIIA/química , Factor de Transcripción TFIIA/metabolismo , Factor de Transcripción TFIIB/biosíntesis , Factor de Transcripción TFIIB/química , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA