Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 598(7880): 368-372, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34526721

RESUMEN

Transcription-coupled DNA repair removes bulky DNA lesions from the genome1,2 and protects cells against ultraviolet (UV) irradiation3. Transcription-coupled DNA repair begins when RNA polymerase II (Pol II) stalls at a DNA lesion and recruits the Cockayne syndrome protein CSB, the E3 ubiquitin ligase, CRL4CSA and UV-stimulated scaffold protein A (UVSSA)3. Here we provide five high-resolution structures of Pol II transcription complexes containing human transcription-coupled DNA repair factors and the elongation factors PAF1 complex (PAF) and SPT6. Together with biochemical and published3,4 data, the structures provide a model for transcription-repair coupling. Stalling of Pol II at a DNA lesion triggers replacement of the elongation factor DSIF by CSB, which binds to PAF and moves upstream DNA to SPT6. The resulting elongation complex, ECTCR, uses the CSA-stimulated translocase activity of CSB to pull on upstream DNA and push Pol II forward. If the lesion cannot be bypassed, CRL4CSA spans over the Pol II clamp and ubiquitylates the RPB1 residue K1268, enabling recruitment of TFIIH to UVSSA and DNA repair. Conformational changes in CRL4CSA lead to ubiquitylation of CSB and to release of transcription-coupled DNA repair factors before transcription may continue over repaired DNA.


Asunto(s)
Microscopía por Crioelectrón , Reparación del ADN , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , ARN Polimerasa II/química , ARN Polimerasa II/ultraestructura , Transcripción Genética , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas Portadoras/ultraestructura , ADN Helicasas/química , ADN Helicasas/metabolismo , ADN Helicasas/ultraestructura , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/ultraestructura , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Humanos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/química , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/ultraestructura , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Factor de Transcripción TFIIH/química , Factor de Transcripción TFIIH/metabolismo , Factor de Transcripción TFIIH/ultraestructura , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Factores de Transcripción/ultraestructura , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/ultraestructura , Ubiquitinación
2.
Nucleic Acids Res ; 48(22): 12689-12696, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33166411

RESUMEN

Nucleotide excision repair (NER) in eukaryotes is orchestrated by the core form of the general transcription factor TFIIH, containing the helicases XPB, XPD and five 'structural' subunits, p62, p44, p34, p52 and p8. Recent cryo-EM structures show that p62 makes extensive contacts with p44 and in part occupies XPD's DNA binding site. While p44 is known to regulate the helicase activity of XPD during NER, p62 is thought to be purely structural. Here, using helicase and adenosine triphosphatase assays we show that a complex containing p44 and p62 enhances XPD's affinity for dsDNA 3-fold over p44 alone. Remarkably, the relative affinity is further increased to 60-fold by dsDNA damage. Direct binding studies show this preference derives from p44/p62's high affinity (20 nM) for damaged ssDNA. Single molecule imaging of p44/p62 complexes without XPD reveals they bind to and randomly diffuse on DNA, however, in the presence of UV-induced DNA lesions these complexes stall. Combined with the analysis of a recent cryo-EM structure, we suggest that p44/p62 acts as a novel DNA-binding entity that enhances damage recognition in TFIIH. This revises our understanding of TFIIH and prompts investigation into the core subunits for an active role during DNA repair and/or transcription.


Asunto(s)
Reparación del ADN/genética , Proteínas de Unión al ARN/ultraestructura , Factor de Transcripción TFIIH/ultraestructura , Sitios de Unión/efectos de la radiación , Microscopía por Crioelectrón , Daño del ADN/efectos de la radiación , ADN Helicasas/genética , ADN Helicasas/ultraestructura , ADN de Cadena Simple/genética , ADN de Cadena Simple/efectos de la radiación , ADN de Cadena Simple/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Proteínas de Unión al ARN/genética , Imagen Individual de Molécula , Factor de Transcripción TFIIH/genética , Transcripción Genética/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/ultraestructura
3.
Curr Opin Struct Biol ; 59: 188-194, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31600675

RESUMEN

Eukaryotic transcription factor IIH (TFIIH) is a 500 kDa-multiprotein complex that harbors two SF2-family DNA-dependent ATPase/helicase subunits and the kinase activity of Cyclin-dependent kinase 7. TFIIH serves as a general transcription factor for transcription initiation by eukaryotic RNA polymerase II and plays an important role in nucleotide excision DNA repair. Aiming to understand the molecular mechanisms of its function and regulation in two key cellular pathways, the high-resolution structure of TFIIH has been pursued for decades. Recent breakthroughs, largely enabled by methodological advances in cryo-electron microscopy, have finally revealed the structure of TFIIH and its interactions in the context of the Pol II-pre-initiation complex, and provide a first glimpse of a TFIIH-containing assembly in DNA repair. Here, we review and discuss these recent structural insights and their functional implications.


Asunto(s)
Microscopía por Crioelectrón , Relación Estructura-Actividad Cuantitativa , Factor de Transcripción TFIIH/química , Factor de Transcripción TFIIH/metabolismo , Factor de Transcripción TFIIH/ultraestructura , ADN/química , ADN/metabolismo , Reparación del ADN , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Transcripción Genética , Proteína de la Xerodermia Pigmentosa del Grupo A/química , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
4.
Nature ; 549(7672): 414-417, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28902838

RESUMEN

Human transcription factor IIH (TFIIH) is part of the general transcriptional machinery required by RNA polymerase II for the initiation of eukaryotic gene transcription. Composed of ten subunits that add up to a molecular mass of about 500 kDa, TFIIH is also essential for nucleotide excision repair. The seven-subunit TFIIH core complex formed by XPB, XPD, p62, p52, p44, p34, and p8 is competent for DNA repair, while the CDK-activating kinase subcomplex, which includes the kinase activity of CDK7 as well as the cyclin H and MAT1 subunits, is additionally required for transcription initiation. Mutations in the TFIIH subunits XPB, XPD, and p8 lead to severe premature ageing and cancer propensity in the genetic diseases xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy, highlighting the importance of TFIIH for cellular physiology. Here we present the cryo-electron microscopy structure of human TFIIH at 4.4 Å resolution. The structure reveals the molecular architecture of the TFIIH core complex, the detailed structures of its constituent XPB and XPD ATPases, and how the core and kinase subcomplexes of TFIIH are connected. Additionally, our structure provides insight into the conformational dynamics of TFIIH and the regulation of its activity.


Asunto(s)
Microscopía por Crioelectrón , Factor de Transcripción TFIIH/química , Factor de Transcripción TFIIH/ultraestructura , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/ultraestructura , Adenosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Mutación , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , ARN Polimerasa II/ultraestructura , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo , Iniciación de la Transcripción Genética
5.
Nature ; 545(7653): 248-251, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28467824

RESUMEN

Mediator is a multiprotein co-activator that binds the transcription pre-initiation complex (PIC) and regulates RNA polymerase (Pol) II. The Mediator head and middle modules form the essential core Mediator (cMed), whereas the tail and kinase modules play regulatory roles. The architecture of Mediator and its position on the PIC are known, but atomic details are limited to Mediator subcomplexes. Here we report the crystal structure of the 15-subunit cMed from Schizosaccharomyces pombe at 3.4 Å resolution. The structure shows an unaltered head module, and reveals the intricate middle module, which we show is globally required for transcription. Sites of known Mediator mutations cluster at the interface between the head and middle modules, and in terminal regions of the head subunits Med6 (ref. 16) and Med17 (ref. 17) that tether the middle module. The structure led to a model for Saccharomyces cerevisiae cMed that could be combined with the 3.6 Å cryo-electron microscopy structure of the core PIC (cPIC). The resulting atomic model of the cPIC-cMed complex informs on interactions of the submodules forming the middle module, called beam, knob, plank, connector, and hook. The hook is flexibly linked to Mediator by a conserved hinge and contacts the transcription initiation factor IIH (TFIIH) kinase that phosphorylates the carboxy (C)-terminal domain (CTD) of Pol II and was recently positioned on the PIC. The hook also contains residues that crosslink to the CTD and reside in a previously described cradle. These results provide a framework for understanding Mediator function, including its role in stimulating CTD phosphorylation by TFIIH.


Asunto(s)
Microscopía por Crioelectrón , Complejo Mediador/química , ARN Polimerasa II/química , Schizosaccharomyces/química , Factores de Transcripción TFII/ultraestructura , Iniciación de la Transcripción Genética , Cristalografía por Rayos X , Complejo Mediador/genética , Complejo Mediador/metabolismo , Complejo Mediador/ultraestructura , Modelos Moleculares , Mutación , Fosforilación , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Schizosaccharomyces/ultraestructura , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Factor de Transcripción TFIIH/química , Factor de Transcripción TFIIH/metabolismo , Factor de Transcripción TFIIH/ultraestructura , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Factores de Transcripción TFII/química , Factores de Transcripción TFII/metabolismo
6.
Proc Natl Acad Sci U S A ; 109(6): 1949-54, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22308316

RESUMEN

Structures of complete 10-subunit yeast TFIIH and of a nested set of subcomplexes, containing 5, 6, and 7 subunits, have been determined by electron microscopy (EM) and 3D reconstruction. Consistency among all the structures establishes the location of the "minimal core" subunits (Ssl1, Tfb1, Tfb2, Tfb4, and Tfb5), and additional densities can be specifically attributed to Rad3, Ssl2, and the TFIIK trimer. These results can be further interpreted by placement of previous X-ray structures into the additional densities to give a preliminary picture of the RNA polymerase II preinitiation complex. In this picture, the key catalytic components of TFIIH, the Ssl2 ATPase/helicase and the Kin28 protein kinase are in proximity to their targets, downstream promoter DNA and the RNA polymerase C-terminal domain.


Asunto(s)
Subunidades de Proteína/química , Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIH/química , Calmodulina/metabolismo , Electroforesis en Gel de Poliacrilamida , Modelos Moleculares , Complejos Multiproteicos/aislamiento & purificación , Coloración y Etiquetado , Factor de Transcripción TFIIH/aislamiento & purificación , Factor de Transcripción TFIIH/ultraestructura
7.
Mol Cell Biol ; 30(23): 5502-13, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20876299

RESUMEN

Genome annotation suggested that early-diverged kinetoplastids possess a reduced set of basal transcription factors. More recent work, however, on the lethal parasite Trypanosoma brucei identified extremely divergent orthologs of TBP, TFIIA, TFIIB, and TFIIH which, together with the small nuclear RNA-activating protein complex, form a transcription preinitiation complex (PIC) at the spliced leader (SL) RNA gene (SLRNA) promoter. The SL RNA is a small nuclear RNA and a trans splicing substrate for the maturation of all pre-mRNAs which is metabolized continuously to sustain gene expression. Here, we identified and biochemically characterized a novel TFIIH-associated protein complex in T. brucei (Med-T) consisting of nine subunits whose amino acid sequences are conserved only among kinetoplastid organisms. Functional analyses in vivo and in vitro demonstrated that the complex is essential for cell viability, SLRNA transcription, and PIC integrity. Molecular structure analysis of purified Med-T and Med-T/TFIIH complexes by electron microscopy revealed that Med-T corresponds to the mediator head module of higher eukaryotes. These data therefore show that mediator is a basal factor for small nuclear SL RNA gene transcription in trypanosomes and that the basal transcription function of mediator head is a characteristic feature of eukaryotes which developed early in their evolution.


Asunto(s)
Proteínas Protozoarias/genética , ARN Protozoario/genética , ARN Nuclear Pequeño/genética , ARN Lider Empalmado/genética , Factor de Transcripción TFIIH/genética , Trypanosoma brucei brucei/genética , Secuencia de Bases , Cartilla de ADN/genética , Evolución Molecular , Genes Protozoarios , Microscopía Electrónica de Transmisión , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Regiones Promotoras Genéticas , Subunidades de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/ultraestructura , Factor de Transcripción TFIIH/química , Factor de Transcripción TFIIH/ultraestructura , Transcripción Genética
8.
Nucleic Acids Res ; 37(11): 3811-20, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19386623

RESUMEN

Trypanosoma brucei is a member of the early-diverged, protistan family Trypanosomatidae and a lethal parasite causing African Sleeping Sickness in humans. Recent studies revealed that T. brucei harbors extremely divergent orthologues of the general transcription factors TBP, TFIIA, TFIIB and TFIIH and showed that these factors are essential for initiating RNA polymerase II-mediated synthesis of spliced leader (SL) RNA, a trans splicing substrate and key molecule in trypanosome mRNA maturation. In yeast and metazoans, TFIIH is composed of a core of seven conserved subunits and the ternary cyclin-activating kinase (CAK) complex. Conversely, only four TFIIH subunits have been identified in T. brucei. Here, we characterize the first protistan TFIIH which was purified in its transcriptionally active form from T. brucei extracts. The complex consisted of all seven core subunits but lacked the CAK sub-complex; instead it contained two trypanosomatid-specific subunits, which were indispensable for parasite viability and SL RNA gene transcription. These findings were corroborated by comparing the molecular structures of trypanosome and human TFIIH. While the ring-shaped core domain was surprisingly congruent between the two structures, trypanosome TFIIH lacked the knob-like CAK moiety and exhibited extra densities on either side of the ring, presumably due to the specific subunits.


Asunto(s)
Subunidades de Proteína/química , Proteínas Protozoarias/química , Factor de Transcripción TFIIH/química , Trypanosoma brucei brucei/genética , Secuencia de Aminoácidos , Animales , Núcleo Celular/química , Células Cultivadas , Quinasas Ciclina-Dependientes/análisis , Datos de Secuencia Molecular , Subunidades de Proteína/análisis , Subunidades de Proteína/metabolismo , Proteínas Protozoarias/análisis , Proteínas Protozoarias/metabolismo , Interferencia de ARN , ARN Lider Empalmado/biosíntesis , Homología de Secuencia de Aminoácido , Factor de Transcripción TFIIH/metabolismo , Factor de Transcripción TFIIH/ultraestructura , Transcripción Genética , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...