Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Arthritis Rheumatol ; 74(1): 163-173, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34279042

RESUMEN

OBJECTIVE: Genetic variants spanning UBE2L3 are associated with increased expression of the UBE2L3-encoded E2 ubiquitin-conjugating enzyme H7 (UbcH7), which facilitates activation of proinflammatory NF-κB signaling and susceptibility to autoimmune diseases. We undertook this study to delineate how genetic variants carried on the UBE2L3/YDJC autoimmune risk haplotype function to drive hypermorphic UBE2L3 expression. METHODS: We used bioinformatic analyses, electrophoretic mobility shift assays, and luciferase reporter assays to identify and functionally characterize allele-specific effects of risk variants positioned in chromatin accessible regions of immune cells. Chromatin conformation capture with quantitative polymerase chain reaction (3C-qPCR), chromatin immunoprecipitation (ChIP)-qPCR, and small interfering RNA (siRNA) knockdown assays were performed on patient-derived Epstein-Barr virus-transformed B cells homozygous for the UBE2L3/YDJC nonrisk or risk haplotype to determine if the risk haplotype increases UBE2L3 expression by altering the regulatory chromatin architecture in the region. RESULTS: Of the 7 prioritized variants, 5 demonstrated allele-specific increases in nuclear protein binding affinity and regulatory activity. High-throughput sequencing of chromosome conformation capture coupled with ChIP (HiChIP) and 3C-qPCR uncovered a long-range interaction between the UBE2L3 promoter (rs140490, rs140491, rs11089620) and the downstream YDJC promoter (rs3747093) that was strengthened in the presence of the UBE2L3/YDJC risk haplotype, and correlated with the loss of CCCTC-binding factor (CTCF) and gain of YY1 binding at the risk alleles. Depleting YY1 by siRNA disrupted the long-range interaction between the 2 promoters and reduced UBE2L3 expression. CONCLUSION: The UBE2L3/YDJC autoimmune risk haplotype increases UBE2L3 expression through strengthening a YY1-mediated interaction between the UBE2L3 and YDJC promoters.


Asunto(s)
Enfermedades Autoinmunes/genética , Factor de Unión a CCCTC/fisiología , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/fisiología , Factor de Transcripción YY1/fisiología , Regulación de la Expresión Génica , Variación Genética , Haplotipos , Humanos , Factores de Riesgo
2.
Nat Cell Biol ; 23(8): 881-893, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34326481

RESUMEN

The 11 zinc finger (ZF) protein CTCF regulates topologically associating domain formation and transcription through selective binding to thousands of genomic sites. Here, we replaced endogenous CTCF in mouse embryonic stem cells with green-fluorescent-protein-tagged wild-type or mutant proteins lacking individual ZFs to identify additional determinants of CTCF positioning and function. While ZF1 and ZF8-ZF11 are not essential for cell survival, ZF8 deletion strikingly increases the DNA binding off-rate of mutant CTCF, resulting in reduced CTCF chromatin residence time. Loss of ZF8 results in widespread weakening of topologically associating domains, aberrant gene expression and increased genome-wide DNA methylation. Thus, important chromatin-templated processes rely on accurate CTCF chromatin residence time, which we propose depends on local sequence and chromatin context as well as global CTCF protein concentration.


Asunto(s)
Factor de Unión a CCCTC/fisiología , Cromatina/metabolismo , Metilación de ADN , Regulación de la Expresión Génica , Genoma , Células Madre Pluripotentes/fisiología , Animales , Factor de Unión a CCCTC/genética , Femenino , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones , Mitosis , Células Madre Embrionarias de Ratones , Mutación , Células Madre Pluripotentes/metabolismo , Factores de Tiempo , Elongación de la Transcripción Genética
3.
Biochim Biophys Acta Gene Regul Mech ; 1864(10): 194733, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34311130

RESUMEN

CTCF is the most likely ancestor of proteins that contain large clusters of C2H2 zinc finger domains (C2H2) and is conserved among most bilateral organisms. In mammals, CTCF functions as the main architectural protein involved in the organization of topology-associated domains (TADs). In vertebrates and Drosophila, CTCF is involved in the regulation of homeotic genes. Previously, it was found that null mutations in the dCTCF gene died as pharate adults, which failed to eclose from their pupal case, or shortly after hatching of adults. Here, we obtained several new null dCTCF mutations and found that the complete inactivation of dCTCF appears is limited mainly to phenotypic manifestations of the Abd-B gene and fertility of adult flies. Many modifiers that are not associated with an independent phenotypic manifestation can significantly enhance the expressivity of the null dCTCF mutations, indicating that other architectural proteins are able to functionally compensate for dCTCF inactivation in Drosophila. We also mapped the 715-735 aa region of dCTCF as being essential for the interaction with the BTB (Broad-Complex, Tramtrack, and Bric a brac) and microtubule-targeting (M) domains of the CP190 protein, which binds to many architectural proteins. However, the mutational analysis showed that the interaction with CP190 was not important for the functional activity of dCTCF in vivo.


Asunto(s)
Factor de Unión a CCCTC/fisiología , Proteínas de Drosophila/fisiología , Animales , Factor de Unión a CCCTC/química , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Infertilidad/genética , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Dominios y Motivos de Interacción de Proteínas
4.
Nucleic Acids Res ; 49(11): 6315-6330, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34107024

RESUMEN

DNA methylation, chromatin-binding proteins, and DNA looping are common components regulating genomic imprinting which leads to parent-specific monoallelic gene expression. Loss of methylation (LOM) at the human imprinting center 2 (IC2) on chromosome 11p15 is the most common cause of the imprinting overgrowth disorder Beckwith-Wiedemann Syndrome (BWS). Here, we report a familial transmission of a 7.6 kB deletion that ablates the core promoter of KCNQ1. This structural alteration leads to IC2 LOM and causes recurrent BWS. We find that occupancy of the chromatin organizer CTCF is disrupted proximal to the deletion, which causes chromatin architecture changes both in cis and in trans. We also profile the chromatin architecture of IC2 in patients with sporadic BWS caused by isolated LOM to identify conserved features of IC2 regulatory disruption. A strong interaction between CTCF sites around KCNQ1 and CDKN1C likely drive their expression on the maternal allele, while a weaker interaction involving the imprinting control region element may impede this connection and mediate gene silencing on the paternal allele. We present an imprinting model in which KCNQ1 transcription is necessary for appropriate CTCF binding and a novel chromatin conformation to drive allele-specific gene expression.


Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , Factor de Unión a CCCTC/metabolismo , Cromosomas Humanos Par 11 , Canal de Potasio KCNQ1/genética , Factor de Unión a CCCTC/fisiología , Centrómero , Deleción Cromosómica , Femenino , Impresión Genómica , Humanos , Recién Nacido , Transcripción Genética
5.
BMB Rep ; 54(6): 317-322, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33612151

RESUMEN

CCCTC-binding factor (CTCF), a zinc finger protein, is a transcription factor and regulator of chromatin structure. Forebrain excitatory neuron-specific CTCF deficiency contributes to inflammation via enhanced transcription of inflammation-related genes in the cortex and hippocampus. However, little is known about the long-term effect of CTCF deficiency on postnatal neurons, astrocytes, or microglia in the hippocampus of adult mice. To address this, we knocked out the Ctcf gene in forebrain glutamatergic neurons (Ctcf cKO) by crossing Ctcf-floxed mice with Camk2a-Cre mice and examined the hippocampi of 7.5-10-month-old male mice using immunofluorescence microscopy. We found obvious neuronal cell death and reactive gliosis in the hippocampal cornu ammonis (CA)1 in 7.5-10-month-old cKO mice. Prominent rod-shaped microglia that participate in immune surveillance were observed in the stratum pyramidale and radiatum layer, indicating a potential increase in inflammatory mediators released by hippocampal neurons. Although neuronal loss was not observed in CA3, and dentate gyrus (DG) CTCF depletion induced a significant increase in the number of microglia in the stratum oriens of CA3 and reactive microgliosis and astrogliosis in the molecular layer and hilus of the DG in 7.5-10-month-old cKO mice. These results suggest that long-term Ctcf deletion from forebrain excitatory neurons may contribute to reactive gliosis induced by neuronal damage and consequent neuronal loss in the hippocampal CA1, DG, and CA3 in sequence over 7 months of age. [BMB Reports 2021; 54(6): 317-322].


Asunto(s)
Astrocitos/patología , Factor de Unión a CCCTC/fisiología , Gliosis/patología , Hipocampo/patología , Microglía/patología , Neuronas/patología , Prosencéfalo/metabolismo , Animales , Astrocitos/metabolismo , Muerte Celular , Gliosis/etiología , Gliosis/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Masculino , Ratones , Ratones Noqueados , Microglía/metabolismo , Neuronas/metabolismo
6.
J Biol Chem ; 296: 100413, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33581110

RESUMEN

Proper expression of Homeobox A cluster genes (HoxA) is essential for embryonic stem cell (ESC) differentiation and individual development. However, mechanisms controlling precise spatiotemporal expression of HoxA during early ESC differentiation remain poorly understood. Herein, we identified a functional CTCF-binding element (CBE+47) closest to the 3'-end of HoxA within the same topologically associated domain (TAD) in ESC. CRISPR-Cas9-mediated deletion of CBE+47 significantly upregulated HoxA expression and enhanced early ESC differentiation induced by retinoic acid (RA) relative to wild-type cells. Mechanistic analysis by chromosome conformation capture assay (Capture-C) revealed that CBE+47 deletion decreased interactions between adjacent enhancers, enabling formation of a relatively loose enhancer-enhancer interaction complex (EEIC), which overall increased interactions between that EEIC and central regions of HoxA chromatin. These findings indicate that CBE+47 organizes chromatin interactions between its adjacent enhancers and HoxA. Furthermore, deletion of those adjacent enhancers synergistically inhibited HoxA activation, suggesting that these enhancers serve as an EEIC required for RA-induced HoxA activation. Collectively, these results provide new insight into RA-induced HoxA expression during early ESC differentiation, also highlight precise regulatory roles of the CTCF-binding element in orchestrating high-order chromatin structure.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Células Madre Embrionarias/metabolismo , Proteínas de Homeodominio/metabolismo , Animales , Factor de Unión a CCCTC/fisiología , Diferenciación Celular , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Células Madre Embrionarias/fisiología , Elementos de Facilitación Genéticos/genética , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Genes Homeobox/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Ratones , Activación Transcripcional , Tretinoina/farmacología
7.
Cell Microbiol ; 23(2): e13274, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33006186

RESUMEN

Hepatitis B virus (HBV) infection is of global importance with over 2 billion people exposed to the virus during their lifetime and at risk of progressive liver disease, cirrhosis and hepatocellular carcinoma. HBV is a member of the Hepadnaviridae family that replicates via episomal copies of a covalently closed circular DNA (cccDNA) genome. The chromatinization of this small viral genome, with overlapping open reading frames and regulatory elements, suggests an important role for epigenetic pathways to regulate viral transcription. The chromatin-organising transcriptional insulator protein, CCCTC-binding factor (CTCF), has been reported to regulate transcription in a diverse range of viruses. We identified two conserved CTCF binding sites in the HBV genome within enhancer I and chromatin immunoprecipitation (ChIP) analysis demonstrated an enrichment of CTCF binding to integrated or episomal copies of the viral genome. siRNA knock-down of CTCF results in a significant increase in pre-genomic RNA levels in de novo infected HepG2 cells and those supporting episomal HBV DNA replication. Furthermore, mutation of these sites in HBV DNA minicircles abrogated CTCF binding and increased pre-genomic RNA levels, providing evidence of a direct role for CTCF in repressing HBV transcription.


Asunto(s)
Factor de Unión a CCCTC/fisiología , Elementos de Facilitación Genéticos , Regulación Viral de la Expresión Génica , Virus de la Hepatitis B/fisiología , Transcripción Viral , Sitios de Unión , Línea Celular , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , ADN Viral/metabolismo , Epigenómica , Células Hep G2 , Hepatitis B/virología , Humanos , Mutación , ARN Viral , Replicación Viral
8.
Leukemia ; 34(9): 2295-2304, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32518417

RESUMEN

Recent technological advancements and genome-wide studies provide compelling evidence that dynamic chromatin interaction and three-dimensional genome organization in nuclei play an important role in regulating gene expression. Mammalian genomes consist of many small functional domains termed topologically associated domains (TADs), many of them organized by CCCTC-binding factor (CTCF) and the cohesion complex. Changes in genome TADs might result in inappropriate promoter/enhancer communications leading to activation of oncogenes or suppression of tumor suppressors. During normal hematopoiesis and leukemogenesis, genome structure alters considerably to facilitate normal and malignant hematopoiesis, respectively. Delineating theses normal and abnormal processes will evolve our understanding of disease pathogenesis and development of potential treatment strategies. This review highlights the role of CTCF and its associated protein complexes in three-dimensional genome organization in development and leukemogenesis, as well as the roles of CTCF boundary defined TAD in transcription regulation. We further explore the function of chromatin modulators, such as CTCF, cohesin, and long noncoding RNAs (lncRNAs) in chromosomal interactions and hematopoietic genome organization. Finally, we focus on the implication of 3D genome alteration in the pathogenesis of leukemia and provide a scientific basis for targeted intervention.


Asunto(s)
Factor de Unión a CCCTC/fisiología , Genoma , Leucemia/patología , Cromatina/genética , Regulación Neoplásica de la Expresión Génica , Hematopoyesis/genética , Humanos , Leucemia/genética , ARN Largo no Codificante/genética , Transcripción Genética
9.
Nat Genet ; 52(7): 655-661, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32514124

RESUMEN

Three-dimensional organization of the genome is important for transcriptional regulation1-7. In mammals, CTCF and the cohesin complex create submegabase structures with elevated internal chromatin contact frequencies, called topologically associating domains (TADs)8-12. Although TADs can contribute to transcriptional regulation, ablation of TAD organization by disrupting CTCF or the cohesin complex causes modest gene expression changes13-16. In contrast, CTCF is required for cell cycle regulation17, embryonic development and formation of various adult cell types18. To uncouple the role of CTCF in cell-state transitions and cell proliferation, we studied the effect of CTCF depletion during the conversion of human leukemic B cells into macrophages with minimal cell division. CTCF depletion disrupts TAD organization but not cell transdifferentiation. In contrast, CTCF depletion in induced macrophages impairs the full-blown upregulation of inflammatory genes after exposure to endotoxin. Our results demonstrate that CTCF-dependent genome topology is not strictly required for a functional cell-fate conversion but facilitates a rapid and efficient response to an external stimulus.


Asunto(s)
Linfocitos B/fisiología , Factor de Unión a CCCTC/fisiología , Macrófagos/fisiología , Mielopoyesis/fisiología , Antígenos de Diferenciación/metabolismo , Factor de Unión a CCCTC/genética , Línea Celular Tumoral , Proliferación Celular/fisiología , Cromatina/fisiología , Regulación de la Expresión Génica , Humanos , Conformación Molecular , Mielopoyesis/genética , Conformación Proteica
10.
Elife ; 92020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-32065581

RESUMEN

Eukaryotic genomes are folded into loops. It is thought that these are formed by cohesin complexes via extrusion, either until loop expansion is arrested by CTCF or until cohesin is removed from DNA by WAPL. Although WAPL limits cohesin's chromatin residence time to minutes, it has been reported that some loops exist for hours. How these loops can persist is unknown. We show that during G1-phase, mammalian cells contain acetylated cohesinSTAG1 which binds chromatin for hours, whereas cohesinSTAG2 binds chromatin for minutes. Our results indicate that CTCF and the acetyltransferase ESCO1 protect a subset of cohesinSTAG1 complexes from WAPL, thereby enable formation of long and presumably long-lived loops, and that ESCO1, like CTCF, contributes to boundary formation in chromatin looping. Our data are consistent with a model of nested loop extrusion, in which acetylated cohesinSTAG1 forms stable loops between CTCF sites, demarcating the boundaries of more transient cohesinSTAG2 extrusion activity.


Asunto(s)
Acetiltransferasas/fisiología , Factor de Unión a CCCTC/fisiología , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Acetilación , Proteínas Portadoras/genética , Simulación por Computador , Fase G1 , Genoma Humano , Humanos , Proteínas Nucleares/genética , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Cohesinas
11.
Nat Chem Biol ; 16(3): 257-266, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31792445

RESUMEN

The enormous size of mammalian genomes means that for a DNA-binding protein the number of nonspecific, off-target sites vastly exceeds the number of specific, cognate sites. How mammalian DNA-binding proteins overcome this challenge to efficiently locate their target sites is not known. Here, through live-cell single-molecule tracking, we show that CCCTC-binding factor, CTCF, is repeatedly trapped in small zones that likely correspond to CTCF clusters, in a manner that is largely dependent on an internal RNA-binding region (RBRi). We develop a new theoretical model called anisotropic diffusion through transient trapping in zones to explain CTCF dynamics. Functionally, transient RBRi-mediated trapping increases the efficiency of CTCF target search by ~2.5-fold. Overall, our results suggest a 'guided' mechanism where CTCF clusters concentrate diffusing CTCF proteins near cognate binding sites, thus increasing the local ON-rate. We suggest that local guiding may allow DNA-binding proteins to more efficiently locate their target sites.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Imagen Individual de Molécula/métodos , Animales , Sitios de Unión/fisiología , Factor de Unión a CCCTC/fisiología , Línea Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Femenino , Humanos , Masculino , Ratones , Unión Proteica/fisiología , Proteínas Represoras/metabolismo
12.
Life Sci ; 242: 117158, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31837328

RESUMEN

AIMS: Pediatric heart failure is a common cardiovascular disease in clinical pediatrics. CCCTC-binding factor (CTCF), a novel transcriptional repressor, was reported to participate in the occurrence of various cardiovascular diseases. The present study focuses on exploring the effects of CTCF on tunicamycin (TM)-induced endoplasmic reticulum (ER) stress, and investigating the underlying mechanisms. MATERIALS AND METHOD: Expression of CTCF in blood samples of heart failure children and TM-induced cardiomyocytes were evaluated by real-time quantitative PCR (RT-qPCR). Apoptotic rate of cardiomyocytes was detected by Annexin v assay. Western blotting and enzyme-linked immunosorbent assay (ELISA) were applied to examine the effect of CTCF on ER stress. Co-immunoprecipitation and western blotting were devoted to explore the mechanism by which CTCF contributes to ER stress. KEY FINDINGS: We proved that CTCF was lowly expressed in blood samples of heart failure children and TM-induced cardiomyocytes, and overexpression of CTCF weaken the TM-induced ER stress. Using co-immunoprecipitation and protein blots, we demonstrated that CTCF upregulates RYR2 by inhibiting S100A1, thus mediating the PERK signaling pathway and regulating ER stress. SIGNIFICANCE: Our data revealed that CTCF protects cardiomyocytes from ER stress through S100A1-RYR2 axis, and can be applied as a therapeutic target for the treatment of pediatric heart failure in future.


Asunto(s)
Apoptosis/fisiología , Factor de Unión a CCCTC/fisiología , Estrés del Retículo Endoplásmico/fisiología , Miocitos Cardíacos/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Proteínas S100/metabolismo , Adolescente , Animales , Western Blotting , Factor de Unión a CCCTC/metabolismo , Niño , Preescolar , Ensayo de Inmunoadsorción Enzimática , Femenino , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Inmunoprecipitación , Masculino , Ratones , Miocitos Cardíacos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Proteínas S100/fisiología , Regulación hacia Arriba
13.
Nucleic Acids Res ; 47(21): 11181-11196, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31665434

RESUMEN

The CCCTC-binding factor (CTCF) organises the genome in 3D through DNA loops and in 1D by setting boundaries isolating different chromatin states, but these processes are not well understood. Here we investigate chromatin boundaries in mouse embryonic stem cells, defined by the regions with decreased Nucleosome Repeat Length (NRL) for ∼20 nucleosomes near CTCF sites, affecting up to 10% of the genome. We found that the nucleosome-depleted region (NDR) near CTCF is asymmetrically located >40 nucleotides 5'-upstream from the centre of CTCF motif. The strength of CTCF binding to DNA and the presence of cohesin is correlated with the decrease of NRL near CTCF, and anti-correlated with the level of asymmetry of the nucleosome array. Individual chromatin remodellers have different contributions, with Snf2h having the strongest effect on the NRL decrease near CTCF and Chd4 playing a major role in the symmetry breaking. Upon differentiation, a subset of preserved, common CTCF sites maintains asymmetric nucleosome pattern and small NRL. The sites which lost CTCF upon differentiation are characterized by nucleosome rearrangement 3'-downstream, with unchanged NDR 5'-upstream of CTCF motifs. Boundaries of topologically associated chromatin domains frequently contain several inward-oriented CTCF motifs whose effects, described above, add up synergistically.


Asunto(s)
Factor de Unión a CCCTC/fisiología , Ensamble y Desensamble de Cromatina/fisiología , Cromatina/química , Cromatina/metabolismo , Nucleosomas/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Diferenciación Celular/genética , Cromatina/genética , Humanos , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Conformación de Ácido Nucleico , Unión Proteica
14.
Oncogene ; 38(41): 6770-6780, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31391552

RESUMEN

Although multiple factors are known to contribute to pancreatic ductal adenocarcinoma (PDAC) progression, the role of long non-coding RNAs (lncRNAs) in PDAC remains largely unknown. In this study, we present data that long intergenic non-coding RNA 346 (LINC00346) functions as a promoting factor for PDAC development. We first show that LINC00346 is highly expressed in pancreatic tumor specimens as compared to normal pancreatic tissue based on interrogation of The Cancer Genome Atlas (TCGA) pancreatic adenocarcinoma dataset. Of significance, this upregulation of LINC00346 is associated with overall survival (OS) and disease-free survival (DFS), respectively. We further show that knockout (KO) of LINC00346 impairs pancreatic cancer cell proliferation, tumorigenesis, migration, and invasion ability. Importantly, these phenotypes can be restored by LINC00346 re-expression in KO cells (i.e., rescue experiment). RNA precipitation assays combined with mass spectrometry analysis indicate that LINC00346 interacts with CCCTC-binding factor (CTCF), a known transcriptional repressor of c-Myc. This interaction between LINC00346 and CTCF prevents the binding of CTCF to c-Myc promoter, relieving the CTCF-mediated repression of c-Myc. Thus, LINC00346 functions as a positive transcriptional regulator of c-Myc. Together, these results suggest that LINC00346 contributes to PDAC pathogenesis by activating c-Myc, and as such, LINC00346 may serve as a potential biomarker and therapeutic target for PDAC.


Asunto(s)
Factor de Unión a CCCTC/fisiología , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-myc/genética , ARN Largo no Codificante/fisiología , Transcripción Genética , Biomarcadores de Tumor/metabolismo , Factor de Unión a CCCTC/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferación Celular , Progresión de la Enfermedad , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Pronóstico , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/metabolismo
16.
Nucleic Acids Res ; 47(13): 6699-6713, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31127282

RESUMEN

Numerous pieces of evidence support the complex, 3D spatial organization of the genome dictates gene expression. CTCF is essential to define topologically associated domain boundaries and to facilitate the formation of insulated chromatin loop structures. To understand CTCF's direct role in global transcriptional regulation, we integrated the miniAID-mClover3 cassette to the endogenous CTCF locus in a human pediatric B-ALL cell line, SEM, and an immortal erythroid precursor cell line, HUDEP-2, to allow for acute depletion of CTCF protein by the auxin-inducible degron system. In SEM cells, CTCF loss notably disrupted intra-TAD loops and TAD integrity in concurrence with a reduction in CTCF-binding affinity, while showing no perturbation to nuclear compartment integrity. Strikingly, the overall effect of CTCF's loss on transcription was minimal. Whole transcriptome analysis showed hundreds of genes differentially expressed in CTCF-depleted cells, among which MYC and a number of MYC target genes were specifically downregulated. Mechanically, acute depletion of CTCF disrupted the direct interaction between the MYC promoter and its distal enhancer cluster residing ∼1.8 Mb downstream. Notably, MYC expression was not profoundly affected upon CTCF loss in HUDEP-2 cells suggesting that CTCF could play a B-ALL cell line specific role in maintaining MYC expression.


Asunto(s)
Factor de Unión a CCCTC/fisiología , Cromatina/ultraestructura , Elementos de Facilitación Genéticos/genética , Regulación Leucémica de la Expresión Génica , Genes myc , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Factor de Unión a CCCTC/deficiencia , Línea Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Cromatina/genética , Regulación hacia Abajo , Células Precursoras Eritroides/metabolismo , Técnicas de Sustitución del Gen , Genes Reporteros , Humanos , Conformación de Ácido Nucleico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Transcriptoma
17.
Nat Commun ; 10(1): 1535, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30948729

RESUMEN

CTCF plays key roles in gene regulation, chromatin insulation, imprinting, X chromosome inactivation and organizing the higher-order chromatin architecture of mammalian genomes. Previous studies have mainly focused on the roles of the canonical CTCF isoform. Here, we explore the functions of an alternatively spliced human CTCF isoform in which exons 3 and 4 are skipped, producing a shorter isoform (CTCF-s). Functionally, we find that CTCF-s competes with the genome binding of canonical CTCF and binds a similar DNA sequence. CTCF-s binding disrupts CTCF/cohesin binding, alters CTCF-mediated chromatin looping and promotes the activation of IFI6 that leads to apoptosis. This effect is caused by an abnormal long-range interaction at the IFI6 enhancer and promoter. Taken together, this study reveals a non-canonical function for CTCF-s that antagonizes the genomic binding of canonical CTCF and cohesin, and that modulates chromatin looping and causes apoptosis by stimulating IFI6 expression.


Asunto(s)
Apoptosis , Factor de Unión a CCCTC/fisiología , Cromatina/metabolismo , Empalme Alternativo , Unión Competitiva , Factor de Unión a CCCTC/química , Factor de Unión a CCCTC/metabolismo , Cromatina/química , Células HEK293 , Células HeLa , Humanos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiología
18.
J Neurosci ; 39(1): 177-192, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30377227

RESUMEN

The CCCTC-binding factor (CTCF) is a central regulator of chromatin topology recently linked to neurodevelopmental disorders such as intellectual disability, autism, and schizophrenia. The aim of this study was to identify novel roles of CTCF in the developing mouse brain. We provide evidence that CTCF is required for the expression of the LIM homeodomain factor LHX6 involved in fate determination of cortical interneurons (CINs) that originate in the medial ganglionic eminence (MGE). Conditional Ctcf ablation in the MGE of mice of either sex leads to delayed tangential migration, abnormal distribution of CIN in the neocortex, a marked reduction of CINs expressing parvalbumin and somatostatin (Sst), and an increased number of MGE-derived cells expressing Lhx8 and other markers of basal forebrain projection neurons. Likewise, Ctcf-null MGE cells transplanted into the cortex of wild-type hosts generate fewer Sst-expressing CINs and exhibit lamination defects that are efficiently rescued upon reexpression of LHX6. Collectively, these data indicate that CTCF regulates the dichotomy between Lhx6 and Lhx8 to achieve correct specification and migration of MGE-derived CINs.SIGNIFICANCE STATEMENT This work provides evidence that CCCTC-binding factor (CTCF) controls an early fate decision point in the generation of cortical interneurons mediated at least in part by Lhx6. Importantly, the abnormalities described could reflect early molecular and cellular events that contribute to human neurological disorders previously linked to CTCF, including schizophrenia, autism, and intellectual disability.


Asunto(s)
Factor de Unión a CCCTC/fisiología , Corteza Cerebral/fisiología , Interneuronas/fisiología , Eminencia Media/fisiología , Animales , Factor de Unión a CCCTC/genética , Recuento de Células , Movimiento Celular/genética , Movimiento Celular/fisiología , Corteza Cerebral/citología , Femenino , Proteínas con Homeodominio LIM/biosíntesis , Proteínas con Homeodominio LIM/genética , Masculino , Eminencia Media/citología , Ratones , Ratones Endogámicos C57BL , Neocórtex/citología , Neocórtex/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Parvalbúminas/metabolismo , Somatostatina/metabolismo , Telencéfalo/citología , Telencéfalo/crecimiento & desarrollo , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Ácido gamma-Aminobutírico/fisiología
19.
Cell ; 175(1): 224-238.e15, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30173918

RESUMEN

More than 25 inherited human disorders are caused by the unstable expansion of repetitive DNA sequences termed short tandem repeats (STRs). A fundamental unresolved question is why some STRs are susceptible to pathologic expansion, whereas thousands of repeat tracts across the human genome are relatively stable. Here, we discover that nearly all disease-associated STRs (daSTRs) are located at boundaries demarcating 3D chromatin domains. We identify a subset of boundaries with markedly higher CpG island density compared to the rest of the genome. daSTRs specifically localize to ultra-high-density CpG island boundaries, suggesting they might be hotspots for epigenetic misregulation or topological disruption linked to STR expansion. Fragile X syndrome patients exhibit severe boundary disruption in a manner that correlates with local loss of CTCF occupancy and the degree of FMR1 silencing. Our data uncover higher-order chromatin architecture as a new dimension in understanding repeat expansion disorders.


Asunto(s)
Cromatina/genética , Repeticiones de Microsatélite/fisiología , Expansión de Repetición de Trinucleótido/fisiología , Adulto , Encéfalo/citología , Encéfalo/patología , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/fisiología , Línea Celular , Cromatina/fisiología , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Islas de CpG/genética , Islas de CpG/fisiología , ADN/genética , Enfermedad/etiología , Enfermedad/genética , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Genoma Humano/genética , Humanos , Masculino , Repeticiones de Microsatélite/genética , Expansión de Repetición de Trinucleótido/genética
20.
J Neurosci ; 38(21): 4846-4858, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29712779

RESUMEN

Dopamine is critical for processing of reward and etiology of drug addiction. Astrocytes throughout the brain express dopamine receptors, but consequences of astrocytic dopamine receptor signaling are not well established. We found that extracellular dopamine triggered rapid concentration-dependent stellation of astrocytic processes that was not a result of dopamine oxidation but instead relied on both cAMP-dependent and cAMP-independent dopamine receptor signaling. This was accompanied by reduced duration and increased frequency of astrocytic Ca2+ transients, but little effect on astrocytic voltage-gated potassium channel currents. To isolate possible mechanisms underlying these structural and functional changes, we used whole-genome RNA sequencing and found prominent dopamine-induced enrichment of genes containing the CCCTC-binding factor (CTCF) motif, suggesting involvement of chromatin restructuring in the nucleus. CTCF binding to promoter sites bidirectionally regulates gene transcription and depends on activation of poly-ADP-ribose polymerase 1 (PARP1). Accordingly, antagonism of PARP1 occluded dopamine-induced changes, whereas a PARP1 agonist facilitated dopamine-induced changes on its own. These results indicate that astrocyte response to elevated dopamine involves PARP1-mediated CTCF genomic restructuring and concerted expression of gene networks. Our findings propose epigenetic regulation of chromatin landscape as a critical factor in the rapid astrocyte response to dopamine.SIGNIFICANCE STATEMENT Although dopamine is widely recognized for its role in modulating neuronal responses both in healthy and disease states, little is known about dopamine effects at non-neuronal cells in the brain. To address this gap, we performed whole-genome sequencing of astrocytes exposed to elevated extracellular dopamine and combined it with evaluation of effects on astrocyte morphology and function. We demonstrate a temporally dynamic pattern of genomic plasticity that triggers pronounced changes in astrocyte morphology and function. We further show that this plasticity depends on activation of genes sensitive to DNA-binding protein CTCF. Our results propose that a broad pattern of astrocyte responses to dopamine specifically relies on CTCF-dependent gene networks.


Asunto(s)
Astrocitos/efectos de los fármacos , Astrocitos/ultraestructura , Factor de Unión a CCCTC/efectos de los fármacos , Factor de Unión a CCCTC/genética , Dopamina/farmacología , Animales , Factor de Unión a CCCTC/fisiología , Señalización del Calcio/efectos de los fármacos , Cromatina/genética , Cromatina/fisiología , Fenómenos Electrofisiológicos/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Genómica , Poli(ADP-Ribosa) Polimerasa-1/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/genética , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , ARN/genética , Ratas , Ratas Sprague-Dawley , Análisis de Secuencia de ARN , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA