Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 775
Filtrar
1.
Biomed Pharmacother ; 174: 116563, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583341

RESUMEN

Mammalian skeletal myogenesis is a complex process that allows precise control of myogenic cells' proliferation, differentiation, and fusion to form multinucleated, contractile, and functional muscle fibers. Typically, myogenic progenitors continue growth and division until acquiring a differentiated state, which then permanently leaves the cell cycle and enters terminal differentiation. These processes have been intensively studied using the skeletal muscle developing models in vitro and in vivo, uncovering a complex cellular intrinsic network during mammalian skeletal myogenesis containing transcription factors, translation factors, extracellular matrix, metabolites, and mechano-sensors. Examining the events and how they are knitted together will better understand skeletal myogenesis's molecular basis. This review describes various regulatory mechanisms and recent advances in myogenic cell proliferation and differentiation during mammalian skeletal myogenesis. We focus on significant cell cycle regulators, myogenic factors, and chromatin regulators impacting the coordination of the cell proliferation versus differentiation decision, which will better clarify the complex signaling underlying skeletal myogenesis.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Desarrollo de Músculos , Músculo Esquelético , Desarrollo de Músculos/fisiología , Diferenciación Celular/fisiología , Animales , Proliferación Celular/fisiología , Humanos , Músculo Esquelético/citología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Mamíferos , Transducción de Señal , Factores Reguladores Miogénicos/metabolismo , Factores Reguladores Miogénicos/genética
2.
Gene ; 909: 148322, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38423140

RESUMEN

Myocyte-specific enhancer binding factor 2 (MEF2), which belongs to the MADS superfamily, is a pivotal and conserved transcription factor that combines with the E-box motif to control the expression of muscle genes. Myostatin (mstn), a muscle growth inhibitor, is a vital member of the TGF-ß superfamily. Currently, an understanding of the mechanisms of A. latus mstn (Almstn) transcriptional regulation mediated by MEF2 in fish muscle development is lacking. In the present study, two AlMEF2s (AlMEF2A and AlMEF2B) and Almstn2a were characterized from Acanthopagrus latus. AlMEF2A and AlMEF2B had 456 and 315 amino acid (aa) residues, respectively. Two typical regions, a MADS-box, MEF2, and transcriptionally activated (TAD) domains, are present in both AlMEF2s. The expression profiles of the two AlMEF2 genes were similar. The AlMEF2 genes were mainly expressed in the brain, white muscle, and liver, while Almstn2a expression was higher in the brain than in other tissues. Moreover, the expression trends of AlMEF2s and Almstn2a were significantly changed after starvation and refeeding in the five groups. Additionally, truncation experiments showed that -987 to +168 and -105 to +168 were core promoters of Almstn2a that responded to AlMEF2A and AlMEF2B, respectively. The point mutation experiment confirmed that Almstn2a transcription relies on the mutation binding sites 1 or 5 (M1/5) and mutation binding sites 4 or 5 (M4/5) for AlMEF2A and AlMEF2B regulation, respectively. The electrophoretic mobile shift assay (EMSA) further verified that M1 (-527 to -512) was a pivotal site where AlMEF2A acted on the Almstn2a gene. Furthermore, a siRNA interference gene expression experiment showed that reduced levels of AlMEF2A or AlMEF2B could prominently increase Almstn2a transcription. These results provide new information about the regulation of Almstn2a transcriptional activity by AlMEF2s and a theoretical basis for the regulatory mechanisms involved in muscle development in fish.


Asunto(s)
Perciformes , Dorada , Animales , Dorada/genética , Dorada/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Músculos/metabolismo , Perciformes/genética , Perciformes/metabolismo
3.
Cancer Biol Ther ; 25(1): 2314324, 2024 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-38375821

RESUMEN

Colorectal cancer (CRC) is one of the most lethal cancers. Single-cell RNA sequencing (scRNA-seq) and protein-protein interactions (PPIs) have enabled the systematic study of CRC. In our research, the activation of the AKT pathway in CRC was analyzed by KEGG using single-cell sequencing data from the GSE144735 dataset. The correlation and PPIs of MDFI and ITGB4/LAMB3 were examined. The results were verified in the TCGA and CCLE and further tested by coimmunoprecipitation experiments. The effect of MDFI on the AKT pathway via ITGB4/LAMB3 was validated by knockdown and lentiviral overexpression experiments. The effect of MDFI on oxaliplatin/fluorouracil sensitivity was probed by colony formation assay and CCK8 assay. We discovered that MDFI was positively associated with ITGB4/LAMB3. In addition, MDFI was negatively associated with oxaliplatin/fluorouracil sensitivity. MDFI upregulated the AKT pathway by directly interacting with LAMB3 and ITGB4 in CRC cells, and enhanced the proliferation of CRC cells via the AKT pathway. Finally, MDFI reduced the sensitivity of CRC cells to oxaliplatin and fluorouracil. In conclusion, MDFI promotes the proliferation and tolerance to chemotherapy of colorectal cancer cells, partially through the activation of the AKT signaling pathway by the binding to ITGB4/LAMB3. Our findings provide a possible molecular target for CRC therapy.


Asunto(s)
Neoplasias Colorrectales , Integrina beta4 , Kalinina , Factores Reguladores Miogénicos , Proteínas Proto-Oncogénicas c-akt , Humanos , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica , Integrina beta4/genética , Integrina beta4/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Oxaliplatino/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Kalinina/genética , Kalinina/metabolismo
4.
Nucleic Acids Res ; 52(5): 2711-2723, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38281192

RESUMEN

Class IIa Histone deacetylases (HDACs), including HDAC4, 5, 7 and 9, play key roles in multiple important developmental and differentiation processes. Recent studies have shown that class IIa HDACs exert their transcriptional repressive function by interacting with tissue-specific transcription factors, such as members of the myocyte enhancer factor 2 (MEF2) family of transcription factors. However, the molecular mechanism is not well understood. In this study, we determined the crystal structure of an HDAC4-MEF2A-DNA complex. This complex adopts a dumbbell-shaped overall architecture, with a 2:4:2 stoichiometry of HDAC4, MEF2A and DNA molecules. In the complex, two HDAC4 molecules form a dimer through the interaction of their glutamine-rich domain (GRD) to form the stem of the 'dumbbell'; while two MEF2A dimers and their cognate DNA molecules are bridged by the HDAC4 dimer. Our structural observations were then validated using biochemical and mutagenesis assays. Further cell-based luciferase reporter gene assays revealed that the dimerization of HDAC4 is crucial in its ability to repress the transcriptional activities of MEF2 proteins. Taken together, our findings not only provide the structural basis for the assembly of the HDAC4-MEF2A-DNA complex but also shed light on the molecular mechanism of HDAC4-mediated long-range gene regulation.


Asunto(s)
ADN , Histona Desacetilasas , Factores de Transcripción MEF2 , Proteínas Represoras , ADN/química , ADN/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Factores de Transcripción MEF2/química , Factores de Transcripción MEF2/metabolismo , Factores Reguladores Miogénicos/química , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Humanos , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo
5.
Science ; 381(6659): 799-804, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37590348

RESUMEN

Piezo channels are critical cellular sensors of mechanical forces. Despite their large size, ubiquitous expression, and irreplaceable roles in an ever-growing list of physiological processes, few Piezo channel-binding proteins have emerged. In this work, we found that MyoD (myoblast determination)-family inhibitor proteins (MDFIC and MDFI) are PIEZO1/2 interacting partners. These transcriptional regulators bind to PIEZO1/2 channels, regulating channel inactivation. Using single-particle cryogenic electron microscopy, we mapped the interaction site in MDFIC to a lipidated, C-terminal helix that inserts laterally into the PIEZO1 pore module. These Piezo-interacting proteins fit all the criteria for auxiliary subunits, contribute to explaining the vastly different gating kinetics of endogenous Piezo channels observed in many cell types, and elucidate mechanisms potentially involved in human lymphatic vascular disease.


Asunto(s)
Canales Iónicos , Factores Reguladores Miogénicos , Humanos , Microscopía por Crioelectrón , Células HEK293 , Activación del Canal Iónico , Canales Iónicos/química , Canales Iónicos/genética , Canales Iónicos/metabolismo , Cinética , Enfermedades Linfáticas/genética , Mutación , Factores Reguladores Miogénicos/química , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Dominios Proteicos , Mioblastos/metabolismo , Animales , Ratones
6.
Med Sci Sports Exerc ; 55(2): 199-208, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36136603

RESUMEN

INTRODUCTION: DNA methylation regulates exercise-induced changes in the skeletal muscle transcriptome. However, the specificity and the time course responses in the myogenic regulatory factors DNA methylation and mRNA expression after divergent exercise modes are unknown. PURPOSE: This study aimed to compare the time course changes in DNA methylation and mRNA expression for selected myogenic regulatory factors ( MYOD1 , MYF5 , and MYF6 ) immediately after, 4 h after, and 8 h after a single bout of resistance exercise (RE), high-intensity interval exercise (HIIE), and concurrent exercise (CE). METHODS: Nine healthy but untrained males (age, 23.9 ± 2.8 yr; body mass, 70.1 ± 14.9 kg; peak oxygen uptake [V̇O 2peak ], 41.4 ± 5.2 mL·kg -1 ·min -1 ; mean ± SD) performed a counterbalanced, randomized order of RE (4 × 8-12 repetition maximum), HIIE (12 × 1 min sprints at V̇O 2peak running velocity), and CE (RE followed by HIIE). Skeletal muscle biopsies (vastus lateralis) were taken before (REST) immediately (0 h), 4 h, and 8 h after each exercise bout. RESULTS: Compared with REST, MYOD1 , MYF5 , and MYF6 , mean methylation across all CpGs analyzed was reduced after 4 and 8 h in response to all exercise protocols ( P < 0.05). Reduced levels of MYOD1 methylation were observed after HIIE and CE compared with RE ( P < 0.05). Compared with REST, all exercise bouts increased mRNA expression over time ( MYOD1 at 4 and 8 h, and MYF6 at 4 h; P < 0.05). MYF5 mRNA expression was lower after 4 h compared with 0 h and higher at 8 h compared with 4 h ( P < 0.05). CONCLUSIONS: We observed an interrelated but not time-aligned response between the exercise-induced changes in myogenic regulatory factors demethylation and mRNA expression after divergent exercise modes. Despite divergent contractile stimuli, changes in DNA methylation and mRNA expression in skeletal muscle were largely confined to the late (4-8 h) recovery period and similar between the different exercise challenges.


Asunto(s)
Ejercicio Físico , Factores Reguladores Miogénicos , Masculino , Humanos , Adulto Joven , Adulto , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , ARN Mensajero/metabolismo , Desmetilación
7.
Cell Cycle ; 22(5): 495-505, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36184878

RESUMEN

Skeletal muscle development is a multistep biological process regulated by a variety of myogenic regulatory factors, including MyoG, MyoD, Myf5, and Myf6 (also known as MRF4), as well as members of the FoxO subfamily. Differentiation and regeneration during skeletal muscle myogenesis contribute to the physiological function of muscles. Super enhancers (SEs) and enhancer RNAs (eRNAs) are involved in the regulation of development and diseases. Few studies have identified the roles of SEs and eRNAs in muscle development and pathophysiology. To develop approaches to enhance skeletal muscle mass and function, a more comprehensive understanding of the key processes underlying muscular diseases is needed. In this review, we summarize the roles of SEs and eRNAs in muscle development and disease through affecting of DNA methylation, FoxO subfamily, RAS-MEK signaling, chromatin modifications and accessibility, MyoD and cis regulating target genes. The summary could inform strategies to increase muscle mass and treat muscle-related diseases.


Asunto(s)
Músculo Esquelético , Factores Reguladores Miogénicos , Factores Reguladores Miogénicos/genética , Músculo Esquelético/fisiología , ARN , Desarrollo de Músculos/genética , Proteína MioD/genética , Diferenciación Celular/genética
8.
Cells ; 11(24)2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36552743

RESUMEN

BACKGROUND: During aging, muscle cell apoptosis increases and myogenesis gradually declines. The impaired myogenic and survival potential of the aged skeletal muscle can be ameliorated by its mechanical loading. However, the molecular responses of aged muscle cells to mechanical loading remain unclear. This study examined the effect of mechanical loading of aged, proliferating, and differentiated myoblasts on the gene expression and signaling responses associated with their myogenic lineage progression and survival. METHODS: Control and aged C2C12 cells were cultured on elastic membranes and underwent passive stretching for 12 h at a low frequency (0.25 Hz) and different elongations, varying the strain on days 0 and 10 of myoblast differentiation. Activation of ERK1/2 and Akt, and the expression of focal adhesion kinase (FAK) and key myogenic regulatory factors (MRFs), MyoD and Myogenin, were determined by immunoblotting of the cell lysates derived from stretched and non-stretched myoblasts. Changes in the expression levels of the MRFs, muscle growth, atrophy, and pro-apoptotic factors in response to mechanical loading of the aged and control cells were quantified by real-time qRT-PCR. RESULTS: Mechanical stretching applied on myoblasts resulted in the upregulation of FAK both in proliferating (day 0) and differentiated (day 10) cells, as well as in increased phosphorylation of ERK1/2 in both control and aged cells. Moreover, Akt activation and the expression of early differentiation factor MyoD increased significantly after stretching only in the control myoblasts, while the late differentiation factor Myogenin was upregulated in both the control and aged myoblasts. At the transcriptional level, mechanical loading of the proliferating myoblasts led to an increased expression of IGF-1 isoforms and MRFs, and to downregulation of muscle atrophy factors mainly in control cells, as well as in the upregulation of pro-apoptotic factors both in control and aged cells. In differentiated cells, mechanical loading resulted in an increased expression of the IGF-1Ea isoform and Myogenin, and in the downregulation of atrophy and pro-apoptotic factors in both the control and aged cells. CONCLUSIONS: This study revealed a diminished beneficial effect of mechanical loading on the myogenic and survival ability of the senescent muscle cells compared with the controls, with a low strain (2%) loading being most effective in upregulating myogenic/anabolic factors and downregulating atrophy and pro-apoptotic genes mainly in the aged myotubes.


Asunto(s)
Factores Reguladores Miogénicos , Proteínas Proto-Oncogénicas c-akt , Miogenina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores Reguladores Miogénicos/genética , Mioblastos/metabolismo , Desarrollo de Músculos/genética
9.
Biomarkers ; 27(8): 753-763, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35946424

RESUMEN

BACKGROUND: The present study aimed to analyse the role of myokines and the regeneration capacity of skeletal muscle during chronic hypobaric hypoxia (CHH). METHODS: Male Sprague-Dawley rats were exposed to hypobaric hypoxia (HH) for 1d, 3d and 7d. RESULTS: Exposure to HH enhanced the levels of decorin, irisin, IL-6 and IL-15 till 3 days of hypoxia and on 7 day of exposure, no significant changes were observed in relation to control. A significant upregulation in myostatin, activated protein kinase, SMAD3, SMAD4, FOXO-1, MURF-1 expression was observed with prolonged HH exposure as compared to normoxic control. Further, myogenesis-related markers, PAX-7, Cyclin D1 and myogenin were downregulated during CHH exposure in comparison to control. Energy metabolism regulators such as Sirtuin 1, proliferator-activated receptor gamma coactivator-1α and GLUT-4, were also increased on 1-d HH exposure that showed a declining trend on CHH exposure. CONCLUSIONS: These results indicated the impairment in the levels of myokines and myogenesis during prolonged hypoxia. CHH exposure enhanced the levels of myostatin and reduced the regeneration or repair capacity of the skeletal muscles. Myokine levels could be a predictive biomarker for evaluating skeletal muscle performance and loss at high altitudes.


Asunto(s)
Factores Reguladores Miogénicos , Miostatina , Ratas , Animales , Masculino , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Ratas Sprague-Dawley , Hipoxia , Músculo Esquelético
10.
Dev Biol ; 490: 134-143, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35917935

RESUMEN

The vertebrate embryonic midline vasculature forms in close proximity to the developing skeletal muscle, which originates in the somites. Angioblasts migrate from bilateral positions along the ventral edge of the somites until they meet at the midline, where they sort and differentiate into the dorsal aorta and the cardinal vein. This migration occurs at the same time that myoblasts in the somites are beginning to differentiate into skeletal muscle, a process which requires the activity of the basic helix loop helix (bHLH) transcription factors Myod and Myf5. Here we examined vasculature formation in myod and myf5 mutant zebrafish. In the absence of skeletal myogenesis, angioblasts migrate normally to the midline but form only the cardinal vein and not the dorsal aorta. The phenotype is due to the failure to activate vascular endothelial growth factor ligand vegfaa expression in the somites, which in turn is required in the adjacent angioblasts for dorsal aorta specification. Myod and Myf5 cooperate with Hedgehog signaling to activate and later maintain vegfaa expression in the medial somites, which is required for angiogenic sprouting from the dorsal aorta. Our work reveals that the early embryonic skeletal musculature in teleosts evolved to organize the midline vasculature during development.


Asunto(s)
Proteína MioD , Factores Reguladores Miogénicos , Animales , Aorta/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Musculares/genética , Músculo Esquelético , Proteína MioD/genética , Proteína MioD/metabolismo , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
11.
Genes (Basel) ; 13(8)2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-36011349

RESUMEN

Previous genome-wide association studies (GWAS) have found that LAP3 may have the potential function to impact sheep muscle development. In order to further explore whether LAP3 expression has an important role in the development of sheep embryonic myoblasts, we conducted the spatiotemporal expression profile analysis of LAP3 at the tissue and cellular level. Then we used small interfering RNA and eukaryotic recombinant vectors to perform gain/loss-of-function analysis of LAP3. CCK-8 detection, EdU staining, and flow cytometry were used to investigate the impact of LAP3 knockdown or overexpression on the proliferation of embryonic myoblasts. In addition, cell phenotype observation, MyHC indirect immunofluorescence, and quantitative detection of the expression changes of myogenic regulatory factors (MRFs) were used to explore the effect of LAP3 on myogenic differentiation. The results showed that the LAP3 expression level in muscle tissue of fetuses was significantly higher than that in newborn lambs and adult sheep, and its expression level on day 3 of differentiation was also significantly higher than that in the proliferation phase and other differentiation time points. LAP3 silencing could significantly increase cell viability and EdU-positive cells, as well as prolonging the length of S phase of myoblasts to promote proliferation, while the results were reversed when LAP3 was overexpressed. Moreover, LAP3 silencing significantly hindered myotube formation and down-regulated the expression levels of MRFs from day 5 to day 7 of terminal differentiation, while the results were reversed when LAP3 was highly expressed. Overall, our results suggested that the expression of LAP3 impacts on the development of sheep embryonic myoblasts which provides an important theoretical basis for molecular breeding of meat production in sheep.


Asunto(s)
Estudio de Asociación del Genoma Completo , Leucil Aminopeptidasa , Animales , Proliferación Celular , Leucil Aminopeptidasa/genética , Desarrollo de Músculos/genética , Mioblastos/metabolismo , Factores Reguladores Miogénicos/genética , Ovinos/genética
12.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35805999

RESUMEN

Epinephelus coioides is a fish species with high economic value due to its delicious meat, high protein content, and rich fatty acid nutrition. It has become a high-economic fish in southern parts of China and some other Southeast Asian countries. In this study, the myostatin nucleic acid vaccine was constructed and used to immunize E. coioides. The results from body length and weight measurements indicated the myostatin nucleic acid vaccine promoted E. coioides growth performance by increasing muscle fiber size. The results from RT-qPCR analysis showed that myostatin nucleic acid vaccine upregulated the expression of myod, myog and p21 mRNA, downregulated the expression of smad3 and mrf4 mRNA. This preliminary study is the first report that explored the role of myostatin in E. coioides and showed positive effects of autologous nucleic acid vaccine on the muscle growth of E. coioides. Further experiments with increased numbers of animals and different doses are needed for its application to E. coiodes aquaculture production.


Asunto(s)
Fibras Musculares Esqueléticas , Miostatina , Perciformes , Animales , Peso Corporal , Peces , Regulación de la Expresión Génica , Fibras Musculares Esqueléticas/fisiología , Proteína MioD/genética , Proteína MioD/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Miogenina/genética , Miogenina/metabolismo , Miostatina/genética , Miostatina/inmunología , Vacunación Basada en Ácidos Nucleicos/administración & dosificación , Vacunación Basada en Ácidos Nucleicos/inmunología , Perciformes/crecimiento & desarrollo , Perciformes/fisiología , Proteína smad3/genética , Proteína smad3/metabolismo , Vacunación , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
13.
PLoS One ; 17(7): e0271554, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35862472

RESUMEN

To gain understanding into the mechanisms of transcriptional activation of muscle genes, we sought to determine if genes targeted by the myogenic transcription factor Myocyte enhancer factor-2 (MEF2) were enriched for specific core promoter elements. We identified 330 known MEF2 target promoters in Drosophila, and analyzed them for for the presence and location of 17 known consensus promoter sequences. As a control, we also searched all Drosophila RNA polymerase II-dependent promoters for the same sequences. We found that promoter motifs were readily detected in the MEF2 target dataset, and that many of them were slightly enriched in frequency compared to the control dataset. A prominent sequence over-represented in the MEF2 target genes was NDM2, that appeared in over 50% of MEF2 target genes and was 2.5-fold over-represented in MEF2 targets compared to background. To test the functional significance of NDM2, we identified two promoters containing a single copy of NDM2 plus an upstream MEF2 site, and tested the activity of these promoters in vivo. Both the sticks and stones and Kahuli fragments showed strong skeletal myoblast-specific expression of a lacZ reporter in embryos. However, the timing and level of reporter expression was unaffected when the NDM2 site in either element was mutated. These studies identify variations in promoter architecture for a set of regulated genes compared to all RNA polymerase II-dependent genes, and underline the potential redundancy in the activities of some core promoter elements.


Asunto(s)
Drosophila , Factores Reguladores Miogénicos , Animales , Drosophila/genética , Elementos de Facilitación Genéticos , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Células Musculares/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
14.
Gene ; 834: 146608, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35659893

RESUMEN

Myod and Myf5 are muscle-specific basic helix-loop-helix (bHLH) transcription factors that play essential roles in regulating skeletal muscle development and growth. In order to investigate potential function of myod and myf5 of Megalobrama amblycephala, an economically important freshwater fish species, in the present study, we characterized the sequences and expression profiles of M. amblycephala myod and myf5. The open reading frame (ORF) sequences of myod and myf5 encoded 275 and 240 amino acids, respectively, possessing analogous structure with the highly conserved domains, bHLH and C-terminal helix III domains. Spatio-temporal expression patterns revealed that myod and myf5 were predominant in skeletal muscle with the highest expression in white muscle, and the highest at 10 days post-hatching (dph) and the segmentation period, respectively. Furthermore, we evaluated the effects of lipopolysaccharide (LPS) on the expression of muscle-related genes in white and red muscle, and proliferation and differentiation of satellite cells. The myod, myf5 and pax-7 expression generally increased and then decreased with increase of LPS concentration and treatment time in red muscle, while these genes showed inconsistent expression patterns in white muscle. In addition, LPS administration caused the frequency increase of satellite cells in red and white muscle especially at 3 and 7 days after LPS-injection.


Asunto(s)
Cipriniformes , Células Satélite del Músculo Esquelético , Animales , Diferenciación Celular , Cipriniformes/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Músculo Esquelético/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/metabolismo , Factores Reguladores Miogénicos/genética
15.
Cells ; 11(9)2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35563799

RESUMEN

MyoD, Myf5, myogenin, and MRF4 (also known as Myf6 or herculin) are myogenic regulatory factors (MRFs). MRFs are regarded as master transcription factors that are upregulated during myogenesis and influence stem cells to differentiate into myogenic lineage cells. In this review, we summarize MRFs, their regulatory factors, such as TLE3, NF-κB, and MRF target genes, including non-myogenic genes such as taste receptors. Understanding the function of MRFs and the physiology or pathology of satellite cells will contribute to the development of cell therapy and drug discovery for muscle-related diseases.


Asunto(s)
Músculo Esquelético , Proteína MioD , Desarrollo de Músculos/genética , Proteína MioD/genética , Factores Reguladores Miogénicos/genética , Células Madre
16.
Sci Transl Med ; 14(634): eabm4869, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35235341

RESUMEN

Central conducting lymphatic anomaly (CCLA), characterized by the dysfunction of core collecting lymphatic vessels including the thoracic duct and cisterna chyli, and presenting as chylothorax, pleural effusions, chylous ascites, and lymphedema, is a severe disorder often resulting in fetal or perinatal demise. Although pathogenic variants in RAS/mitogen activated protein kinase (MAPK) signaling pathway components have been documented in some patients with CCLA, the genetic etiology of the disorder remains uncharacterized in most cases. Here, we identified biallelic pathogenic variants in MDFIC, encoding the MyoD family inhibitor domain containing protein, in seven individuals with CCLA from six independent families. Clinical manifestations of affected fetuses and children included nonimmune hydrops fetalis (NIHF), pleural and pericardial effusions, and lymphedema. Generation of a mouse model of human MDFIC truncation variants revealed that homozygous mutant mice died perinatally exhibiting chylothorax. The lymphatic vasculature of homozygous Mdfic mutant mice was profoundly mispatterned and exhibited major defects in lymphatic vessel valve development. Mechanistically, we determined that MDFIC controls collective cell migration, an important early event during the formation of lymphatic vessel valves, by regulating integrin ß1 activation and the interaction between lymphatic endothelial cells and their surrounding extracellular matrix. Our work identifies MDFIC variants underlying human lymphatic disease and reveals a crucial, previously unrecognized role for MDFIC in the lymphatic vasculature. Ultimately, understanding the genetic and mechanistic basis of CCLA will facilitate the development and implementation of new therapeutic approaches to effectively treat this complex disease.


Asunto(s)
Quilotórax , Vasos Linfáticos , Linfedema , Factores Reguladores Miogénicos , Animales , Quilotórax/genética , Quilotórax/metabolismo , Células Endoteliales , Femenino , Humanos , Hidropesía Fetal/genética , Hidropesía Fetal/metabolismo , Vasos Linfáticos/patología , Linfedema/genética , Linfedema/metabolismo , Ratones , Factores Reguladores Miogénicos/genética , Embarazo
17.
Asian Pac J Cancer Prev ; 23(2): 683-694, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35225482

RESUMEN

BACKGROUND: Gastric cancer (GC) is a complex disorder with an inadequate response to treatment. Although many efforts have been made to clarify the development of GC, the exact etiology and molecular mechanisms of this malignancy remain unclear. This study was designed to identify and characterize essential associated genes with GC to construct a prognostic model. METHODS: In this Insilco study, the gene expression microarray dataset GSE122401 was downloaded from the Gene Expression Omnibus (GEO). The raw data were processed and quantile-normalized with the edgeR package of R ver.3.5.3. The module-trait relationship and hub-genes associated with GC were analyzed with Weighted Gene Co-expression Network Analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed by Cluepedia and Enrichr Database. Finally, hub-genes were screened and validated by GEPIA online database. RESULTS: According to the WGCNA results, the blue module was found to be strongly correlated with the GC (r=0.91, p-value=1e-57). DEGs analysis was performed by edgeR package of R and indicated a total of 47 genes as hub-genes. Verifying the hub-genes expression using GEPIA online database showed a significantly increased level of ACAN gene expression in primary cancer cell line compared to metastatic cell line. On the other hand, the expression of MDFI and CHST1 genes in primary cell lines were lower compared to metastatic cancer cell lines. CONCLUSIONS: This study provides a framework of the co-expression gene modules ACAN, MDFI, and CHST1 as hub-genes. These hub-genes might offer candidate biomarkers to targeted therapy against GC. Further experiment validation and animal models are needed to reveal the exact mechanism of the above-mentioned genes in the pathogenesis and prognoses of GC.


Asunto(s)
Agrecanos/genética , Factores Reguladores Miogénicos/genética , Neoplasias Gástricas/genética , Sulfotransferasas/economía , Biomarcadores de Tumor/genética , Simulación por Computador , Ontología de Genes , Redes Reguladoras de Genes , Humanos , Análisis por Micromatrices , Pronóstico , Carbohidrato Sulfotransferasas
18.
J Muscle Res Cell Motil ; 43(1): 9-20, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35018575

RESUMEN

Skeletal muscle contractions are caused to release myokines by muscle fiber. This study investigated the myogenic regulatory factors, as MHC I, IIA, IIX, Myo-D, MRF4, Murf, Atrogin-1, Decorin, Myonection, and IL-15 mRNA expression in the response of eccentric vs concentric contraction. Eighteen healthy men were randomly divided into two eccentric and concentric groups, each of 9 persons. Isokinetic contraction protocols included maximal single-leg eccentric or concentric knee extension tasks at 60°/s with the dominant leg. Contractions consisted of a maximum of 12 sets of 10 reps, and the rest time between each set was 30 s. The baseline biopsy was performed 4 weeks before the study, and post-test biopsies were taken immediately after exercise protocols from the vastus lateralis muscle. The gene expression levels were evaluated using Real-Time PCR methods. The eccentric group showed a significantly lower RPE score than the concentric group (P ≤ 0.05). A significant difference in MyoD, MRF4, Myonection, and Decorin mRNA, were observed following eccentric or concentric contractions (P ≤ 0.05). The MHC I, MHC IIA, IL-15 mRNA has been changed significantly compared to the pre-exercise in the concentric group (P ≤ 0.05). While only MHC IIX and Atrogin-1 mRNA changed significantly in the eccentric group (P ≤ 0.05). Additionally, the results showed a significant difference in MyoD, MRF4, IL-15, and Decorin at the follow-up values between eccentric or concentric groups (P ≤ 0.05). Our findings highlight the growing importance of elucidating the different responses of muscle growth factors associated with a myogenic activity such as MHC IIA, Decorin, IL-15, Myonectin, Decorin, MuRF1, and MHC IIX mRNA in following various types of exercise.


Asunto(s)
Factores Reguladores Miogénicos , Músculo Cuádriceps , Decorina/genética , Decorina/metabolismo , Humanos , Interleucina-15/genética , Interleucina-15/metabolismo , Masculino , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Músculo Cuádriceps/metabolismo , ARN Mensajero/metabolismo
19.
Exp Cell Res ; 410(1): 112950, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838813

RESUMEN

Drosophila embryonic somatic muscles represent a simple and tractable model system to study the gene regulatory networks that control diversification of cell types. Somatic myogenesis in Drosophila is initiated by intrinsic action of the mesodermal master gene twist, which activates a cascade of transcriptional outputs including myogenic differentiation factor Mef2, which triggers all aspects of the myogenic differentiation program. In parallel, the expression of a combinatorial code of identity transcription factors (iTFs) defines discrete particular features of each muscle fiber, such as number of fusion events, and specific attachment to tendon cells or innervation, thus ensuring diversification of muscle types. Here, we take the example of a subset of lateral transverse (LT) muscles and discuss how the iTF code and downstream effector genes progressively define individual LT properties such as fusion program, attachment and innervation. We discuss new challenges in the field including the contribution of posttranscriptional and epitranscriptomic regulation of gene expression in the diversification of cell types.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Desarrollo Embrionario/genética , Desarrollo de Músculos/genética , Factores Reguladores Miogénicos/genética , Animales , Diferenciación Celular/genética , Drosophila melanogaster/crecimiento & desarrollo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/genética , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Músculos/metabolismo
20.
J Biophotonics ; 15(2): e202100219, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34799996

RESUMEN

Non-invasive promotion of myogenic regulatory factors (MRFs), through photobiomodulation therapy (PBMT), may be a viable method of facilitating skeletal muscle regeneration post-injury, given the importance of MRF in skeletal muscle regeneration. The aim of this systematic review was to collate current evidence, identifying key themes and changes in expression of MRF in in vivo models. Web of Science, PubMed, Scopus and Cochrane databases were systematically searched and identified 1459 studies, of which 10 met the inclusion criteria. Myogenic determination factor was most consistently regulated in response to PBMT treatment, and the expression of remaining MRFs was heterogenous. All studies exhibited a high risk of bias, primarily due to lack of blinding in PBMT application and MRF analysis. Our review suggests that the current evidence base for MRF expression from PBMT is highly variable. Future research should focus on developing a robust methodology for determining the effect of laser therapy on MRF expression, as well as long-term assessment of skeletal muscle regeneration.


Asunto(s)
Terapia por Luz de Baja Intensidad , Factores Reguladores Miogénicos , Terapia por Luz de Baja Intensidad/métodos , Desarrollo de Músculos/genética , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA