Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.920
Filtrar
1.
Front Immunol ; 15: 1402395, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895112

RESUMEN

Background: Circadian rhythm disruption (CRD) is thought to increase the risk of inflammatory bowel disease. The deletion of Bmal1, a core transcription factor, leads to a complete loss of the circadian rhythm and exacerbates the severity of dextran sodium sulfate (DSS)-induced colitis in mice. However, the underlying mechanisms by which CRD and Bmal1 mediate IBD are still unclear. Methods: We used a CRD mouse model, a mouse colitis model, and an in vitro model of colonic epithelial cell monolayers. We also knocked down and overexpressed Bmal1 in Caco-2 cells by transfecting lentivirus in vitro. The collected colon tissue and treated cells were assessed and analyzed using immunohistochemistry, immunofluorescence staining, quantitative reverse transcription-polymerase chain reaction, western blot, flow cytometry, transmission electron microscopy, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling staining. Results: We found that CRD mice with downregulated Bmal1 expression were more sensitive to DSS-induced colitis and had more severely impaired intestinal barrier function than wild-type mice. Bmal1-/- mice exhibited more severe colitis, accompanied by decreased tight junction protein levels and increased apoptosis of intestinal epithelial cells compared with wild-type mice, which were alleviated by using the autophagy agonist rapamycin. Bmal1 overexpression attenuated Lipopolysaccharide-induced apoptosis of intestinal epithelial cells and impaired intestinal epithelial cells barrier function in vitro, while inhibition of autophagy reversed this protective effect. Conclusion: This study suggests that CRD leads to the downregulation of Bmal1 expression in the colon, which may exacerbate DSS-induced colitis in mice, and that Bmal1 may serve as a novel target for treating inflammatory bowel disease.


Asunto(s)
Factores de Transcripción ARNTL , Ritmo Circadiano , Colitis , Sulfato de Dextran , Modelos Animales de Enfermedad , Regulación hacia Abajo , Mucosa Intestinal , Ratones Noqueados , Animales , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Colitis/inducido químicamente , Colitis/metabolismo , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Humanos , Ritmo Circadiano/genética , Células CACO-2 , Ratones Endogámicos C57BL , Apoptosis , Masculino , Trastornos Cronobiológicos/metabolismo , Trastornos Cronobiológicos/genética
2.
Int J Mol Sci ; 25(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38892255

RESUMEN

The disruption of circadian rhythms (CRs) has been linked to metabolic disorders, yet the role of hepatic BMAL1, a key circadian regulator, in the whole-body metabolism and the associated lipid metabolic phenotype in the liver remains unclear. Bmal1 floxed (Bmal1f/f) and hepatocyte-specific Bmal1 knockout (Bmal1hep-/-) C57BL/6J mice underwent a regular feeding regimen. Hepatic CR, lipid content, mitochondrial function, and systemic metabolism were assessed at zeitgeber time (ZT) 0 and ZT12. Relevant molecules were examined to elucidate the metabolic phenotype. Hepatocyte-specific knockout of Bmal1 disrupted the expression of rhythmic genes in the liver. Bmal1hep-/- mice exhibited decreased hepatic TG content at ZT0, primarily due to enhanced lipolysis, reduced lipogenesis, and diminished lipid uptake. The ß-oxidation function of liver mitochondria decreased at both ZT0 and ZT12. Our findings on the metabolic profile and associated hepatic lipid metabolism in the absence of Bmal1 in hepatocytes provides new insights into metabolic syndromes from the perspective of liver CR disturbances.


Asunto(s)
Factores de Transcripción ARNTL , Ritmo Circadiano , Hepatocitos , Metabolismo de los Lípidos , Hígado , Ratones Endogámicos C57BL , Ratones Noqueados , Animales , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Metabolismo de los Lípidos/genética , Ratones , Hígado/metabolismo , Ritmo Circadiano/genética , Hepatocitos/metabolismo , Fenotipo , Masculino , Metaboloma , Eliminación de Gen , Lipogénesis/genética
3.
FASEB J ; 38(13): e23744, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885031

RESUMEN

The hypothalamic-pituitary-gonadal axis (HPG) is the key neuroendocrine axis involved in reproductive regulation. Brain and muscle ARNT-like protein 1 (Bmal1) participates in regulating the metabolism of various endocrine hormones. However, the regulation of Bmal1 on HPG and female fertility is unclear. This study aims to explore the regulation of female reproduction by Bmal1 via the HPG axis in mice. Bmal1-knockout (Ko) mice were generated using the CRISPR/Cas9 technology. The structure, function, and estrous cycle of ovarian in Bmal1 Ko female mice were measured. The key genes and proteins of the HPG axis involved in regulating female reproduction were examined through transcriptome analysis and then verified by RT-PCR, immunohistochemistry, and western blot. Furthermore, the fertility of female mice was detected after intervening prolactin (PRL) and progesterone (Pg) in Bmal1 ko mice. The number of offspring and ovarian weight were significantly lower in Bmal1-Ko mice than in wild-type (Wt) mice. In Bmal1-Ko mice, ovarian cells were arranged loosely and irregularly, and the total number of follicles was significantly reduced. No corpus luteum was found in the ovaries. Vaginal smears revealed that Bmal1-Ko mice had an irregular estrus cycle. In Bmal1-Ko mice, Star expression was decreased, PRL and luteinizing hormone (LH) levels were increased, and dopamine (DA) and Pg levels were decreased. Inhibition of PRL partially recovered the estrous cycle, corpus luteum formation, and Star expression in the ovaries. Pg supplementation promoted embryo implantation in Bmal1-Ko female mice. Bmal1 Ko increases serum PRL levels in female mice likely by reducing DA levels, thus affecting luteal formation, resulting in decreased Star expression and Pg production, hindering female reproduction. Inhibition of PRL or restoration of Pg can partially restore reproductive capacity in female Bmal1-Ko mice. Thus, Bmal1 may regulate female reproduction via the HPG axis in mice, suggesting that Bmal1 is a potential target to treat female infertility.


Asunto(s)
Factores de Transcripción ARNTL , Ciclo Estral , Sistema Hipotálamo-Hipofisario , Ratones Noqueados , Ovario , Reproducción , Animales , Femenino , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Ratones , Ovario/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiología , Reproducción/fisiología , Ciclo Estral/fisiología , Prolactina/metabolismo , Progesterona/metabolismo , Fertilidad/fisiología , Ratones Endogámicos C57BL
4.
FASEB J ; 38(11): e23719, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38837828

RESUMEN

Chronic disruption of circadian rhythms by night shift work is associated with an increased breast cancer risk. However, little is known about the impact of night shift on peripheral circadian genes (CGs) and circadian-controlled genes (CCGs) associated with breast cancer. Hence, we assessed central clock markers (melatonin and cortisol) in plasma, and peripheral CGs (PER1, PER2, PER3, and BMAL1) and CCGs (ESR1 and ESR2) in peripheral blood mononuclear cells (PBMCs). In day shift nurses (n = 12), 24-h rhythms of cortisol and melatonin were aligned with day shift-oriented light/dark schedules. The mRNA expression of PER2, PER3, BMAL1, and ESR2 showed 24-h rhythms with peak values in the morning. In contrast, night shift nurses (n = 10) lost 24-h rhythmicity of cortisol with a suppressed morning surge but retained normal rhythmic patterns of melatonin, leading to misalignment between cortisol and melatonin. Moreover, night shift nurses showed disruption of rhythmic expressions of PER2, PER3, BMAL1, and ESR2 genes, resulting in an impaired inverse correlation between PER2 and BMAL1 compared to day shift nurses. The observed trends of disrupted circadian markers were recapitulated in additional day (n = 20) and night (n = 19) shift nurses by measurement at early night and midnight time points. Taken together, this study demonstrated the misalignment of cortisol and melatonin, associated disruption of PER2 and ESR2 circadian expressions, and internal misalignment in peripheral circadian network in night shift nurses. Morning plasma cortisol and PER2, BMAL1, and ESR2 expressions in PBMCs may therefore be useful biomarkers of circadian disruption in shift workers.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Hidrocortisona , Melatonina , Horario de Trabajo por Turnos , Humanos , Femenino , Melatonina/metabolismo , Melatonina/sangre , Adulto , Horario de Trabajo por Turnos/efectos adversos , Relojes Circadianos/genética , Hidrocortisona/sangre , Hidrocortisona/metabolismo , Ritmo Circadiano/fisiología , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Enfermeras y Enfermeros , Leucocitos Mononucleares/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Tolerancia al Trabajo Programado/fisiología , Condiciones de Trabajo
5.
J Cancer Res Clin Oncol ; 150(5): 231, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703241

RESUMEN

PURPOSE: Acute myeloid leukemia (AML) is a refractory hematologic malignancy that poses a serious threat to human health. Exploring alternative therapeutic strategies capable of inducing alternative modes of cell death, such as ferroptosis, holds great promise as a viable and effective intervention. METHODS: We analyzed online database data and collected clinical samples to verify the expression and function of BMAL1 in AML. We conducted experiments on AML cell proliferation, cell cycle, ferroptosis, and chemotherapy resistance by overexpressing/knocking down BMAL1 and using assays such as MDA detection and BODIPY 581/591 C11 staining. We validated the transcriptional regulation of HMGB1 by BMAL1 through ChIP assay, luciferase assay, RNA level detection, and western blotting. Finally, we confirmed the results of our cell experiments at the animal level. RESULTS: BMAL1 up-regulation is an observed phenomenon in AML patients. Furthermore, there existed a strong correlation between elevated levels of BMAL1 expression and inferior prognosis in individuals with AML. We found that knocking down BMAL1 inhibited AML cell growth by blocking the cell cycle. Conversely, overexpressing BMAL1 promoted AML cell proliferation. Moreover, our research results revealed that BMAL1 inhibited ferroptosis in AML cells through BMAL1-HMGB1-GPX4 pathway. Finally, knocking down BMAL1 can enhance the efficacy of certain first-line cancer therapeutic drugs, including venetoclax, dasatinib, and sorafenib. CONCLUSION: Our research results suggest that BMAL1 plays a crucial regulatory role in AML cell proliferation, drug resistance, and ferroptosis. BMAL1 could be a potential important therapeutic target for AML.


Asunto(s)
Factores de Transcripción ARNTL , Resistencia a Antineoplásicos , Ferroptosis , Proteína HMGB1 , Leucemia Mieloide Aguda , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Transducción de Señal , Animales , Femenino , Humanos , Masculino , Ratones , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/genética , Ratones Desnudos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Pronóstico , Sulfonamidas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Exp Eye Res ; 244: 109943, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797259

RESUMEN

Orexin A and B (OXA and OXB) and their receptors are expressed in the majority of retinal neurons in humans, rats, and mice. Orexins modulate signal transmission between the different layers of the retina. The suprachiasmatic nucleus (SCN) and the retina are central and peripheral components of the body's biological clocks; respectively. The SCN receives photic information from the retina through the retinohypothalamic tract (RHT) to synchronize bodily functions with environmental changes. In present study, we aimed to investigate the impact of inhibiting retinal orexin receptors on the expression of retinal Bmal1 and c-fos, as well as hypothalamic c-fos, Bmal1, Vip, and PACAP at four different time-points (Zeitgeber time; ZT 3, 6, 11, and ZT-0). The intravitreal injection (IVI) of OX1R antagonist (SB-334867) and OX2R antagonist (JNJ-10397049) significantly up-regulated c-fos expression in the retina. Additionally, compared to the control group, the combined injection of SB-334867 and JNJ-10397049 showed a greater increase in retinal expression of this gene. Moreover, the expression of hypothalamic Vip and PACAP was significantly up-regulated in both the SB-334867 and JNJ-10397049 groups. In contrast, the expression of Bmal1 was down-regulated. Furthermore, the expression of hypothalamic c-fos was down-regulated in all groups treated with SB-334867 and JNJ-10397049. Additionally, the study demonstrated that blocking these receptors in the retina resulted in alterations in circadian rhythm parameters such as mesor, amplitude, and acrophase. Finally, it affected the phase of gene expression rhythms in both the retina and hypothalamus, as identified through cosinor analysis and the zero-amplitude test. This study represents the initial exploration of how retinal orexin receptors influence expression of rhythmic genes in the retina and hypothalamus. These findings could provide new insights into how the retina regulates the circadian rhythm in both regions and illuminate the role of the orexinergic system expression within the retina.


Asunto(s)
Hipotálamo , Receptores de Orexina , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Proteínas Proto-Oncogénicas c-fos , Ratas Wistar , Retina , Péptido Intestinal Vasoactivo , Animales , Masculino , Ratas , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Hipotálamo/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Receptores de Orexina/metabolismo , Receptores de Orexina/genética , Retina/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Naftiridinas , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Regulación de la Expresión Génica , Antagonistas de los Receptores de Orexina/farmacología , Benzoxazoles/farmacología , Urea/análogos & derivados , Urea/farmacología , Ritmo Circadiano/fisiología , Núcleo Supraquiasmático/metabolismo , Dioxanos , Isoquinolinas , Compuestos de Fenilurea , Piridinas
7.
Science ; 384(6695): 563-572, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38696572

RESUMEN

A molecular clock network is crucial for daily physiology and maintaining organismal health. We examined the interactions and importance of intratissue clock networks in muscle tissue maintenance. In arrhythmic mice showing premature aging, we created a basic clock module involving a central and a peripheral (muscle) clock. Reconstituting the brain-muscle clock network is sufficient to preserve fundamental daily homeostatic functions and prevent premature muscle aging. However, achieving whole muscle physiology requires contributions from other peripheral clocks. Mechanistically, the muscle peripheral clock acts as a gatekeeper, selectively suppressing detrimental signals from the central clock while integrating important muscle homeostatic functions. Our research reveals the interplay between the central and peripheral clocks in daily muscle function and underscores the impact of eating patterns on these interactions.


Asunto(s)
Envejecimiento Prematuro , Envejecimiento , Encéfalo , Ritmo Circadiano , Músculo Esquelético , Animales , Masculino , Ratones , Envejecimiento/genética , Envejecimiento/fisiología , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/prevención & control , Encéfalo/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Homeostasis , Músculo Esquelético/fisiología , Ratones Noqueados , Factores de Transcripción ARNTL/genética
8.
Fluids Barriers CNS ; 21(1): 46, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802875

RESUMEN

Choroid plexus (ChP), the brain structure primarily responsible for cerebrospinal fluid production, contains a robust circadian clock, whose role remains to be elucidated. The aim of our study was to [1] identify rhythmically controlled cellular processes in the mouse ChP and [2] assess the role and nature of signals derived from the master clock in the suprachiasmatic nuclei (SCN) that control ChP rhythms. To accomplish this goal, we used various mouse models (WT, mPer2Luc, ChP-specific Bmal1 knockout) and combined multiple experimental approaches, including surgical lesion of the SCN (SCNx), time-resolved transcriptomics, and single cell luminescence microscopy. In ChP of control (Ctrl) mice collected every 4 h over 2 circadian cycles in darkness, we found that the ChP clock regulates many processes, including the cerebrospinal fluid circadian secretome, precisely times endoplasmic reticulum stress response, and controls genes involved in neurodegenerative diseases (Alzheimer's disease, Huntington's disease, and frontotemporal dementia). In ChP of SCNx mice, the rhythmicity detected in vivo and ex vivo was severely dampened to a comparable extent as in mice with ChP-specific Bmal1 knockout, and the dampened cellular rhythms were restored by daily injections of dexamethasone in mice. Our data demonstrate that the ChP clock controls tissue-specific gene expression and is strongly dependent on the presence of a functional connection with the SCN. The results may contribute to the search for a novel link between ChP clock disruption and impaired brain health.


Asunto(s)
Plexo Coroideo , Relojes Circadianos , Núcleo Supraquiasmático , Animales , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiología , Plexo Coroideo/metabolismo , Plexo Coroideo/fisiología , Relojes Circadianos/fisiología , Ratones , Ratones Endogámicos C57BL , Ritmo Circadiano/fisiología , Masculino , Ratones Noqueados , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética
9.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 190-196, 2024 Feb 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38755715

RESUMEN

One of the most common and significant symptoms for skin disorders is pruritus. Additionally, it serves as a significant catalyst for the exacerbation or reoccurrence of skin diseases. Pruritus seriously affects patients' physical and mental health, and even the quality of life. It brings a heavy burden to the patients, the families, even the whole society. The pathogenesis and regulation mechanisms for pruritus are complicated and have not yet been elucidated. Previous clinical studies have shown that itch worsens at night in scabies, chronic pruritus, atopic dermatitis, and psoriasis, suggesting that skin pruritus may change with circadian rhythm. Cortisol, melatonin, core temperature, cytokines, and prostaglandins are the main regulatory factors of the circadian rhythm of pruritus. Recent studies have shown that some CLOCK genes, such as BMAL1, CLOCK, PER, and CRY, play an important role in the regulation of the circadian rhythm of pruritus by regulating the Janus tyrosine kinase (JAK)-signal transducer and activator of transcription (STAT) and nuclear factor kappa-B (NF-κB) signaling pathways. However, the mechanisms for circadian clock genes in regulation of circadian rhythm of pruritus have not been fully elucidated. Further studies on the mechanism of circadian clock genes in the regulation of circadian rhythm of pruritus will lay a foundation for elucidating the regulatory mechanisms for pruritus, and also provide new ideas for the control of pruritus and the alleviation of skin diseases.


Asunto(s)
Ritmo Circadiano , Prurito , Prurito/fisiopatología , Prurito/etiología , Humanos , Ritmo Circadiano/fisiología , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Transducción de Señal , Melatonina/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , FN-kappa B/metabolismo , Relojes Circadianos/genética , Relojes Circadianos/fisiología
10.
Phytomedicine ; 129: 155613, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703659

RESUMEN

BACKGROUND: Psychological stress is associated with various diseases including liver dysfunction, yet effective intervention strategies remain lacking due to the unrevealed pathogenesis mechanism. PURPOSE: This study aims to explore the relevance between BMAL1-controlled circadian rhythms and lipoxygenase 15 (ALOX15)-mediated phospholipids peroxidation in psychological stress-induced liver injury, and to investigate whether hepatocyte phospholipid peroxidation signaling is involved in the hepatoprotective effects of a Chinese patent medicine, Pien Tze Huang (PZH). METHODS: Restraint stress models were established to investigate the underlying molecular mechanisms of psychological stress-induced liver injury and the hepatoprotective effects of PZH. Redox lipidomics based on liquid chromatography-tandem mass spectrometry was applied for lipid profiling. RESULTS: The present study discovered that acute restraint stress could induce liver injury. Notably, lipidomic analysis confirmed that phospholipid peroxidation was accumulated in the livers of stressed mice. Additionally, the essential core circadian clock gene Brain and Muscle Arnt-like Protein-1 (Bmal1) was altered in stressed mice. Circadian disruption in mice, as well as BMAL1-overexpression in human HepaRG cells, also appeared to have a significant increase in phospholipid peroxidation, suggesting that stress-induced liver injury is closely related to circadian rhythm and phospholipid peroxidation. Subsequently, arachidonate 15-lipoxygenase (ALOX15), a critical enzyme that contributed to phospholipid peroxidation, was screened as a potential regulatory target of BMAL1. Mechanistically, BMAL1 promoted ALOX15 expression via direct binding to an E-box-like motif in the promoter. Finally, this study revealed that PZH treatment significantly relieved pathological symptoms of psychological stress-induced liver injury with a potential mechanism of alleviating ALOX15-mediated phospholipid peroxidation. CONCLUSION: Our findings illustrate the critical role of BMAL1-triggered phospholipid peroxidation in psychological stress-induced liver injury and provide new insight into treating psychological stress-associated liver diseases by TCM intervention.


Asunto(s)
Medicamentos Herbarios Chinos , Hepatocitos , Peroxidación de Lípido , Fosfolípidos , Estrés Psicológico , Animales , Medicamentos Herbarios Chinos/farmacología , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Masculino , Estrés Psicológico/tratamiento farmacológico , Ratones , Peroxidación de Lípido/efectos de los fármacos , Fosfolípidos/metabolismo , Humanos , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Araquidonato 15-Lipooxigenasa/metabolismo , Factores de Transcripción ARNTL/metabolismo , Ritmo Circadiano/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos
11.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732079

RESUMEN

Long-term spaceflight is known to induce disruptions in circadian rhythms, which are driven by a central pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, but the underlying molecular mechanisms remain unclear. Here, we developed a rat model that simulated microgravity and isolation environments through tail suspension and isolation (TSI). We found that the TSI environment imposed circadian disruptions to the core body temperature, heart rate, and locomotor-activity rhythms of rats, especially in the amplitude of these rhythms. In TSI model rats' SCNs, the core circadian gene NR1D1 showed higher protein but not mRNA levels along with decreased BMAL1 levels, which indicated that NR1D1 could be regulated through post-translational regulation. The autophagosome marker LC3 could directly bind to NR1D1 via the LC3-interacting region (LIR) motifs and induce the degradation of NR1D1 in a mitophagy-dependent manner. Defects in mitophagy led to the reversal of NR1D1 degradation, thereby suppressing the expression of BMAL1. Mitophagy deficiency and subsequent mitochondrial dysfunction were observed in the SCN of TSI models. Urolithin A (UA), a mitophagy activator, demonstrated an ability to enhance the amplitude of core body temperature, heart rate, and locomotor-activity rhythms by prompting mitophagy induction to degrade NR1D1. Cumulatively, our results demonstrate that mitophagy exerts circadian control by regulating NR1D1 degradation, revealing mitophagy as a potential target for long-term spaceflight as well as diseases with SCN circadian disruption.


Asunto(s)
Factores de Transcripción ARNTL , Ritmo Circadiano , Mitofagia , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Animales , Ratas , Ritmo Circadiano/fisiología , Masculino , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Simulación de Ingravidez , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Temperatura Corporal , Frecuencia Cardíaca , Ratas Sprague-Dawley , Proteolisis
12.
Int Immunopharmacol ; 134: 112187, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38733825

RESUMEN

OBJECTIVE: Glioblastoma (GBM) has poor clinical prognosis due to limited treatment options. In addition, the current treatment regimens for GBM may only slightly prolong patient survival. The aim of this study was to assess the role of BMAL1 in the immune microenvironment and drug resistance of GBM. METHODS: GBM cell lines with stable BMAL1 knockdown or LDHA overexpression were constructed, and functionally characterized by the CCK8, EdU incorporation, and transwell assays. In vivo GBM model was established in C57BL/6J mice. Flow cytometry, ELISA, immunofluorescence, and RT-qPCR were performed to detect macrophage polarization. Lactate production, pathological changes, and the expression of glycolytic proteins were analyzed by HE staining, immunohistochemistry, biochemical assays, and Western blotting. RESULTS: BMAL1 silencing inhibited the malignant characteristics, lactate production, and expression of glycolytic proteins in GBM cells, and these changes were abrogated by overexpression of LDHA or exogenous lactate supplementation. Furthermore, BMAL1 knockdown induced M1 polarization of macrophages, and inhibited M2 polarization and angiogenesis in GBM cells in conditioned media. Overexpression of LDHA or presence of exogenous lactate inhibited BMAL1-induced M1 polarization and angiogenesis. Finally, BMAL1 silencing and bevacizumab synergistically inhibited glycolysis, angiogenesis and M2 polarization, and promoted M1 polarization in vivo, thereby suppressing GBM growth. CONCLUSION: BMAL1 silencing can sensitize GBM cells to bevacizumab by promoting M1/M2 polarization through the LDHA/lactate axis.


Asunto(s)
Factores de Transcripción ARNTL , Bevacizumab , Glioblastoma , Ácido Láctico , Ratones Endogámicos C57BL , Animales , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Glioblastoma/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Línea Celular Tumoral , Bevacizumab/uso terapéutico , Bevacizumab/farmacología , Ratones , Ácido Láctico/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Resistencia a Antineoplásicos/genética , Microambiente Tumoral/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Glucólisis/efectos de los fármacos , Antineoplásicos Inmunológicos/uso terapéutico , Antineoplásicos Inmunológicos/farmacología , Neovascularización Patológica/genética , Neovascularización Patológica/tratamiento farmacológico , Silenciador del Gen , L-Lactato Deshidrogenasa
13.
Proc Natl Acad Sci U S A ; 121(23): e2316858121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805270

RESUMEN

In mammals, CLOCK and BMAL1 proteins form a heterodimer that binds to E-box sequences and activates transcription of target genes, including Period (Per). Translated PER proteins then bind to the CLOCK-BMAL1 complex to inhibit its transcriptional activity. However, the molecular mechanism and the impact of this PER-dependent inhibition on the circadian clock oscillation remain elusive. We previously identified Ser38 and Ser42 in a DNA-binding domain of CLOCK as phosphorylation sites at the PER-dependent inhibition phase. In this study, knockout rescue experiments showed that nonphosphorylatable (Ala) mutations at these sites shortened circadian period, whereas their constitutive-phospho-mimetic (Asp) mutations completely abolished the circadian rhythms. Similarly, we found that nonphosphorylatable (Ala) and constitutive-phospho-mimetic (Glu) mutations at Ser78 in a DNA-binding domain of BMAL1 also shortened the circadian period and abolished the rhythms, respectively. The mathematical modeling predicted that these constitutive-phospho-mimetic mutations weaken the DNA binding of the CLOCK-BMAL1 complex and that the nonphosphorylatable mutations inhibit the PER-dependent displacement (reduction of DNA-binding ability) of the CLOCK-BMAL1 complex from DNA. Biochemical experiments supported the importance of these phosphorylation sites for displacement of the complex in the PER2-dependent inhibition. Our results provide direct evidence that phosphorylation of CLOCK-Ser38/Ser42 and BMAL1-Ser78 plays a crucial role in the PER-dependent inhibition and the determination of the circadian period.


Asunto(s)
Factores de Transcripción ARNTL , Proteínas CLOCK , Relojes Circadianos , Proteínas Circadianas Period , Animales , Humanos , Ratones , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/química , Relojes Circadianos/genética , Ritmo Circadiano/fisiología , Ritmo Circadiano/genética , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , ADN/metabolismo , Células HEK293 , Mutación , Células 3T3 NIH , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Fosforilación , Unión Proteica , Dominios Proteicos
14.
Int Immunopharmacol ; 133: 112111, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678672

RESUMEN

BACKGROUND: Brain and muscle arnt-like protein-1 (BMAL1) deficiency is associated with myocardial dysfunction and suppressed sirtuin 1 (SIRT1). However, whether BMAL1 promotes mitophagy via SIRT1 to alleviate myocardial injury in sepsis remains unknown. METHODS: An in vitro myocardial injury model was established using lipopolysaccharide (LPS)-treated H9C2 cells. Knockdown or overexpression of genes was performed using plasmid transfection. Gene and protein expression was assessed by qRT-PCR and Western blot, respectively. Cell proliferation was evaluated using cell counting kit-8, and cellular apoptosis and reactive oxygen species (ROS) levels were analyzed using flow cytometry. An in vivo myocardial injury model of sepsis was established by cecal ligation and puncture in rats. Myocardial function was characterized by analyzing the damage-associated proteins, inflammatory factors, ejection fraction, and fraction shortening. RESULTS: sgBMAL1 significantly decreased BMAL1 levels and remarkably increased the sensitivity of H9C2 cells to LPS stimulation, consequently enhancing LPS-induced apoptosis, inflammation, and ROS levels. These effects were further attenuated by BMAL1 overexpression. BMAL1 knockdown inhibited the expression of SIRT1 and mitophagy-associated proteins. SIRT1 overexpression reversed the enhancement of shBMAL1 on cell proliferation and inflammation. In the rat model of sepsis, BMAL1 overexpression decreased the myocardial injury-associated proteins to recover the myocardial function and suppressed inflammatory activities by promoting mitophagy via SIRT1. CONCLUSION: BMAL1 enhances mitophagy dependent on SIRT1, thereby alleviating myocardial injury in sepsis.


Asunto(s)
Factores de Transcripción ARNTL , Mitofagia , Sepsis , Transducción de Señal , Sirtuina 1 , Animales , Masculino , Ratas , Apoptosis , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Autofagia , Línea Celular , Modelos Animales de Enfermedad , Lipopolisacáridos , Mitocondrias/metabolismo , Miocardio/patología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Sepsis/metabolismo , Sirtuina 1/metabolismo , Sirtuina 1/genética
15.
Oral Oncol ; 152: 106798, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615583

RESUMEN

Acquired radio-resistance is thought to be one of the main causes of recurrent metastasis after failure of nasopharyngeal carcinoma (NPC) radiotherapy, which may be related to X-ray-induced epithelial-mesenchymal transition (EMT) activation. The circadian clock gene, BMAL1, has been shown to correlate with the sensitivity of NPCs to radiotherapy, but the specific mechanism has not been reported. NPC cells were irradiated by conventional fractionation to generate radiotherapy-resistant cells. NPC cells with BMAL1 gene stabilization/overexpression and interference were obtained by lentiviral transfection. Western blotting, colony formation analysis, cell counting kit-8 assays, wound-healing tests, Transwell assays, flow cytometry, the EDU method, nuclear plasma separation experiments, HE staining, immunohistochemical staining and TUNEL staining were performed to explore the influence and molecular mechanism of the circadian clock gene, BMAL1, on NPC-acquired radio-resistance and EMT through in vitro and in vivo experiments. The results indicated that there was a gradual downregulation of BMAL1 gene protein expression during the routine dose induction of radio-resistance in NPC cells. EMT activation was present in the radiation-resistant cell line 5-8FR, and was accompanied by the significant enhancement of proliferation, migration and invasion. The BMAL1 gene significantly increased the radiosensitivity of the radiation-resistant cell line 5-8FR and reversed the acquired radio-resistance of NPCs, which was accomplished by inhibiting the TGF-ß1/Smads/Snail1 axis-mediated EMT.


Asunto(s)
Factores de Transcripción ARNTL , Transición Epitelial-Mesenquimal , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Tolerancia a Radiación , Factores de Transcripción de la Familia Snail , Factor de Crecimiento Transformador beta1 , Humanos , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Factor de Crecimiento Transformador beta1/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/genética , Línea Celular Tumoral , Animales , Ratones , Proteínas Smad/metabolismo , Ratones Desnudos , Relojes Circadianos , Masculino
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 402-408, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660843

RESUMEN

OBJECTIVE: To explore the expression of basic helix-loop-helix ARNT like 2 (BMAL2) in acute myeloid leukemia (AML) patients and its correlation with prognosis, and analyze its effects on the aerobic glycolysis and proliferation of AML cells. METHODS: The expressions of BMAL2 in bone marrow mononuclear cells (BMMCs) of AML patients and normal control group were detected by RT-qPCR. The correlation of BMAL2 expression with prognosis of AML patients was analyzed using public database of National Center for Biotechnology Information (NCBI). The interfering in BMAL2 expression of HL-60 and Kasumi-1 cells was performed using lentiviral vector-mediated shRNA. Cell glucose metabolism and proliferation were detected by using glucose uptake experiment, lactate content test, CCK-8 assay and cell colony formation test. RESULTS: The expression level of BMAL2 mRNA in BMMCs of AML patients was significantly higher than normal control group (P < 0.01). The overall survival time of AML patients with high expression of BMAL2 was significantly shorter than those with low expression of BMAL2 (P < 0.05). Knockdown of BMAL2 significantly reduced glucose uptake and lactate production in AML cell line HL-60 and Kasumi-1 cells. The results of RT-PCR and Western blot showed that BMAL2 promoted aerobic glycolysis by enhancing the expression of HIF1A in AML cells, thereby promoting cell proliferation. CONCLUSION: BMAL2 is highly expressed in AML patients, and promotes aerobic glycolysis by enhancing the expression of HIF1A, thereby promoting cell proliferation.


Asunto(s)
Factores de Transcripción ARNTL , Glucólisis , Leucemia Mieloide Aguda , Humanos , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Células de la Médula Ósea/metabolismo , Línea Celular Tumoral , Proliferación Celular , Células HL-60 , Leucemia Mieloide Aguda/metabolismo , Pronóstico
17.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612648

RESUMEN

Obesity and overweight are common and complex conditions influenced by multiple genetic and environmental factors. Several genetic variants located in the genes involved in clock systems and fat taste perception can affect metabolic health. In particular, the polymorphisms in CLOCK and BMAL1 genes were reported to be significantly related to cardiovascular disease, metabolic syndrome, sleep reduction, and evening preference. Moreover, genetic variants in the CD36 gene have been shown to be involved in lipid metabolism, regulation of fat intake, and body weight regulation. The aim of this study is to evaluate, for the first time, the association between variants in some candidate genes (namely, BMAL1 rs7950226 (G>A), CLOCK rs1801260 (A>G), CLOCK rs4864548 (G>A), CLOCK rs3736544 (G>A), CD36 rs1984112 (A>G), CD36 rs1761667 (G>A)) and overweight/obesity (OB) in pregnant women. A total of 163 normal-weight (NW) and 128 OB participants were included. A significant correlation was observed between A-allele in CLOCK rs4864548 and an increased risk of obesity (OR: 1.97; 95% CI 1.22-3.10, p = 0.005). In addition, we found that subjects carrying the haplotype of rs1801260-A, rs4864548-A, and rs3736544-G are likely to be overweight or obese (OR 1.47, 95% CI 1.03-2.09, p = 0.030), compared with those with other haplotypes. Moreover, a significant relation was observed between third-trimester lipid parameters and genetic variants-namely, CD36 rs1984112, CD36 rs1761667, BMAL1 rs7950226, and CLOCK rs1801260. A multivariate logistic regression model revealed that CLOCK rs4864548 A-allele carriage was a strong risk factor for obesity (OR 2.05, 95% CI 1.07-3.93, p = 0.029); on the other hand, greater adherence to Mediterranean diet (OR 0.80, 95% CI 0.65-0.98, p = 0.038) and higher HDL levels (OR 0.96, 95% CI 0.94-0.99, p = 0.021) were related to a reduced risk of obesity. Interestingly, an association between maternal CLOCK rs4864548 and neonatal birthweight was detected (p = 0.025). These data suggest a potential role of the polymorphisms in clock systems and in fat taste perception in both susceptibility to overweight/obesity and influencing the related metabolic traits in pregnant women.


Asunto(s)
Factores de Transcripción ARNTL , Sobrepeso , Embarazo , Recién Nacido , Femenino , Humanos , Sobrepeso/genética , Factores de Transcripción ARNTL/genética , Mujeres Embarazadas , Obesidad/genética , Alelos , Antígenos CD36/genética
18.
Sci Rep ; 14(1): 8128, 2024 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-38584196

RESUMEN

Fat loss predicts adverse outcomes in advanced heart failure (HF). Disrupted circadian clocks are a primary cause of lipid metabolic issues, but it's unclear if this disruption affects fat expenditure in HF. To address this issue, we investigated the effects of disruption of the BMAL1/REV-ERBα circadian rhythmic loop on adipose tissue metabolism in HF.50 Wistar rats were initially divided into control (n = 10) and model (n = 40) groups. The model rats were induced with HF via monocrotaline (MCT) injections, while the control group received equivalent solvent injections. After establishing the HF model, the model group was further subdivided into four groups: normal rhythm (LD), inverted rhythm (DL), lentivirus vector carrying Bmal1 short hairpin RNA (LV-Bmal1 shRNA), and empty lentivirus vector control (LV-Control shRNA) groups, each with 10 rats. The DL subgroup was exposed to a reversed light-dark cycle of 8 h: 16 h (dark: light), while the rest adhered to normal light-dark conditions (light: dark 12 h: 12 h). Histological analyses were conducted using H&E, Oil Red O, and Picrosirius red stains to examine adipose and liver tissues. Immunohistochemical staining, RT-qPCR, and Western blotting were performed to detect markers of lipolysis, lipogenesis, and beiging of white adipose tissue (WAT), while thermogenesis indicators were detected in brown adipose tissue (BAT). The LD group rats exhibited decreased levels of BMAL1 protein, increased levels of REV-ERBα protein, and disrupted circadian circuits in adipose tissue compared to controls. Additionally, HF rats showed reduced adipose mass and increased ectopic lipid deposition, along with smaller adipocytes containing lower lipid content and fibrotic adipose tissue. In the LD group WAT, expression of ATGL, HSL, PKA, and p-PKA proteins increased, alongside elevated mRNA levels of lipase genes (Hsl, Atgl, Peripilin) and FFA ß-oxidation genes (Cpt1, acyl-CoA). Conversely, lipogenic gene expression (Scd1, Fas, Mgat, Dgat2) decreased, while beige adipocyte markers (Cd137, Tbx-1, Ucp-1, Zic-1) and UCP-1 protein expression increased. In BAT, HF rats exhibited elevated levels of PKA, p-PKA, and UCP-1 proteins, along with increased expression of thermogenic genes (Ucp-1, Pparγ, Pgc-1α) and lipid transportation genes (Cd36, Fatp-1, Cpt-1). Plasma NT-proBNP levels were higher in LD rats, accompanied by elevated NE and IL-6 levels in adipose tissue. Remarkably, morphologically, the adipocytes in the DL and LV-Bmal1 shRNA groups showed reduced size and lower lipid content, while lipid deposition in the liver was more pronounced in these groups compared to the LD group. At the gene/protein level, the BMAL1/REV-ERBα circadian loop exhibited severe disruption in LV-Bmal1 shRNA rats compared to LD rats. Additionally, there was increased expression of lipase genes, FFA ß oxidation genes, and beige adipocyte markers in WAT, as well as higher expression of thermogenic genes and lipid transportation genes in BAT. Furthermore, plasma NT-proBNP levels and adipose tissue levels of NE and IL-6 were elevated in LV-Bmal1 shRNA rats compared with LD rats. The present study demonstrates that disruption of the BMAL1/REV-ERBα circadian rhythmic loop is associated with fat expenditure in HF. This result suggests that restoring circadian rhythms in adipose tissue may help counteract disorders of adipose metabolism and reduce fat loss in HF.


Asunto(s)
Factores de Transcripción ARNTL , Insuficiencia Cardíaca , Ratas , Animales , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Monocrotalina , Gastos en Salud , Interleucina-6/metabolismo , Ratas Wistar , Ritmo Circadiano/genética , Tejido Adiposo Pardo/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Lipasa/metabolismo , ARN Interferente Pequeño/metabolismo , Lípidos
19.
Proc Natl Acad Sci U S A ; 121(17): e2316646121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625943

RESUMEN

Circadian regulation and temperature dependency are important orchestrators of molecular pathways. How the integration between these two drivers is achieved, is not understood. We monitored circadian- and temperature-dependent effects on transcription dynamics of cold-response protein RNA Binding Motif 3 (Rbm3). Temperature changes in the mammalian master circadian pacemaker, the suprachiasmatic nucleus (SCN), induced Rbm3 transcription and regulated its circadian periodicity, whereas the core clock gene Per2 was unaffected. Rbm3 induction depended on a full Brain And Muscle ARNT-Like Protein 1 (Bmal1) complement: reduced Bmal1 erased Rbm3 responses and weakened SCN circuit resilience to temperature changes. By focusing on circadian and temperature dependency, we highlight weakened transmission between core clock and downstream pathways as a potential route for reduced circadian resilience.


Asunto(s)
Ritmo Circadiano , Proteínas Circadianas Period , Animales , Ritmo Circadiano/fisiología , Temperatura , Proteínas Circadianas Period/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , ARN/metabolismo , Núcleo Supraquiasmático/metabolismo , Mamíferos/genética
20.
Am J Pathol ; 194(7): 1197-1217, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38537935

RESUMEN

Unexplained recurrent spontaneous abortion (URSA) is a serious reproductive issue that affects women of childbearing age. Studies have shown a close association between disrupted circadian rhythm and impaired epithelial-mesenchymal transition (EMT) in trophoblasts during URSA, although the underlying mechanism is not known. The current study investigated the regulatory relationship between circadian rhythm gene cryptochrome 2 (CRY2) and ferroptosis on the migratory ability of trophoblast cells. Cell proliferation experiments, wound-healing assays, and expression of related markers were conducted to study EMT. Trophoblastic ferroptosis was confirmed by the expressions of malondialdehyde, glutathione, mitochondrial membrane potential, divalent iron ions, and related genes. The results showed significant increased expression of CRY2 and decreased expression of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) in the URSA villous tissues, accompanied by iron-dependent oxidative changes and abnormal expression of ferroptosis-related proteins. CRY2 and BMAL1 were co-localized and functioned as a feedback loop, which regulated the dynamic changes of EMT-related markers in trophoblast cells. CRY2 promoted trophoblastic ferroptosis, whereas BMAL1 had the opposite effect. Particularly, the ferroptosis inhibitor (ferrostatin-1) effectively reversed the trophoblastic ferroptosis and EMT inhibition caused by CRY2 overexpression. Collectively, these results suggest that CRY2 regulates trophoblastic ferroptosis and hinders cellular EMT and migratory ability by suppressing BMAL1 expression.


Asunto(s)
Criptocromos , Transición Epitelial-Mesenquimal , Ferroptosis , Trofoblastos , Ferroptosis/fisiología , Humanos , Femenino , Criptocromos/metabolismo , Criptocromos/genética , Trofoblastos/metabolismo , Trofoblastos/patología , Embarazo , Adulto , Aborto Habitual/metabolismo , Aborto Habitual/patología , Proliferación Celular , Movimiento Celular , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA