Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Development ; 151(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38722098

RESUMEN

During development, the gastrointestinal tract undergoes patterning along its anterior-posterior axis to define regions with distinct organs and functions. A new paper in Development derives human intestinal organoids from an individual with duodenal defects and a compound heterozygous variant in the gene encoding the transcription factor RFX6. By studying these organoids, the authors identify novel roles for RFX6 in intestinal patterning. To learn more about the story behind the paper, we caught up with first author J. Guillermo Sanchez and corresponding author Jim Wells, an endowed professor in the Division of Developmental Biology at Cincinnati Children's Hospital, USA, where he is also the Director for Basic Research in the Division of Endocrinology.


Asunto(s)
Biología Evolutiva , Humanos , Historia del Siglo XXI , Historia del Siglo XX , Biología Evolutiva/historia , Factores de Transcripción del Factor Regulador X/genética , Factores de Transcripción del Factor Regulador X/metabolismo , Organoides/metabolismo , Tipificación del Cuerpo/genética
2.
Development ; 151(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38587174

RESUMEN

The gastrointestinal (GI) tract is complex and consists of multiple organs with unique functions. Rare gene variants can cause congenital malformations of the human GI tract, although the molecular basis of these has been poorly studied. We identified a patient with compound-heterozygous variants in RFX6 presenting with duodenal malrotation and atresia, implicating RFX6 in development of the proximal intestine. To identify how mutations in RFX6 impact intestinal patterning and function, we derived induced pluripotent stem cells from this patient to generate human intestinal organoids (HIOs). We identified that the duodenal HIOs and human tissues had mixed regional identity, with gastric and ileal features. CRISPR-mediated correction of RFX6 restored duodenal identity. We then used gain- and loss-of-function and transcriptomic approaches in HIOs and Xenopus embryos to identify that PDX1 is a downstream transcriptional target of RFX6 required for duodenal development. However, RFX6 had additional PDX1-independent transcriptional targets involving multiple components of signaling pathways that are required for establishing early regional identity in the GI tract. In summary, we have identified RFX6 as a key regulator in intestinal patterning that acts by regulating transcriptional and signaling pathways.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Organoides , Factores de Transcripción del Factor Regulador X , Transactivadores , Humanos , Factores de Transcripción del Factor Regulador X/genética , Factores de Transcripción del Factor Regulador X/metabolismo , Animales , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Transactivadores/metabolismo , Transactivadores/genética , Organoides/metabolismo , Organoides/embriología , Duodeno/metabolismo , Duodeno/embriología , Intestinos/embriología , Atresia Intestinal/genética , Células Madre Pluripotentes Inducidas/metabolismo , Tipificación del Cuerpo/genética , Transducción de Señal/genética , Mutación/genética
3.
Cell Mol Life Sci ; 81(1): 99, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386071

RESUMEN

Proneural genes play a crucial role in neuronal differentiation. However, our understanding of the regulatory mechanisms governing proneural genes during neuronal differentiation remains limited. RFX4, identified as a candidate regulator of proneural genes, has been reported to be associated with the development of neuropsychiatric disorders. To uncover the regulatory relationship, we utilized a combination of multi-omics data, including ATAC-seq, ChIP-seq, Hi-C, and RNA-seq, to identify RFX4 as an upstream regulator of proneural genes. We further validated the role of RFX4 using an in vitro model of neuronal differentiation with RFX4 knock-in and a CRISPR-Cas9 knock-out system. As a result, we found that RFX4 directly interacts with the promoters of POU3F2 and NEUROD1. Transcriptomic analysis revealed a set of genes associated with neuronal development, which are highly implicated in the development of neuropsychiatric disorders, including schizophrenia. Notably, ectopic expression of RFX4 can drive human embryonic stem cells toward a neuronal fate. Our results strongly indicate that RFX4 serves as a direct upstream regulator of proneural genes, a role that is essential for normal neuronal development. Impairments in RFX4 function could potentially be related to the development of various neuropsychiatric disorders. However, understanding the precise mechanisms by which the RFX4 gene influences the onset of neuropsychiatric disorders requires further investigation through human genetic studies.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas de Homeodominio , Neuronas , Factores del Dominio POU , Factores de Transcripción del Factor Regulador X , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Perfilación de la Expresión Génica , Regiones Promotoras Genéticas , RNA-Seq , Diferenciación Celular , Proteínas de Homeodominio/genética , Factores del Dominio POU/genética , Factores de Transcripción del Factor Regulador X/genética
4.
Diabetes ; 73(3): 448-460, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38064570

RESUMEN

Mutations in the gene encoding the transcription factor regulatory factor X-box binding 6 (RFX6) are associated with human diabetes. Within pancreatic islets, RFX6 expression is most abundant in islet α-cells, and α-cell RFX6 expression is altered in diabetes. However, the roles of RFX6 in regulating gene expression, glucagon output, and other crucial human adult α-cell functions are not yet understood. We developed a method for selective genetic targeting of human α-cells and assessed RFX6-dependent α-cell function. RFX6 suppression with RNA interference led to impaired α-cell exocytosis and dysregulated glucagon secretion in vitro and in vivo. By contrast, these phenotypes were not observed with RFX6 suppression across all islet cells. Transcriptomics in α-cells revealed RFX6-dependent expression of genes governing nutrient sensing, hormone processing, and secretion, with some of these exclusively expressed in human α-cells. Mapping of RFX6 DNA-binding sites in primary human islet cells identified a subset of direct RFX6 target genes. Together, these data unveil RFX6-dependent genetic targets and mechanisms crucial for regulating adult human α-cell function.


Asunto(s)
Diabetes Mellitus , Islotes Pancreáticos , Humanos , Glucagón/metabolismo , Factores de Transcripción del Factor Regulador X/genética , Factores de Transcripción del Factor Regulador X/metabolismo , Islotes Pancreáticos/metabolismo , Diabetes Mellitus/metabolismo , Expresión Génica , Insulina/metabolismo
5.
Curr Biol ; 33(17): 3747-3758.e9, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37552984

RESUMEN

Cilia allowed our protistan ancestors to sense and explore their environment, avoid predation, and capture bacterial prey.1,2,3 Regulated ciliogenesis was likely critical for early animal evolution,2,4,5,6 and in modern animals, deploying cilia in the right cells at the right time is crucial for development and physiology. Two transcription factors, RFX and FoxJ1, coordinate ciliogenesis in animals7,8,9 but are absent from the genomes of many other ciliated eukaryotes, raising the question of how the regulation of ciliogenesis in animals evolved.10,11 By comparing the genomes of animals with those of their closest living relatives, the choanoflagellates, we found that the genome of their last common ancestor encoded at least three RFX paralogs and a FoxJ1 homolog. Disruption of the RFX homolog cRFXa in the model choanoflagellate Salpingoeca rosetta resulted in delayed cell proliferation and aberrant ciliogenesis, marked by the collapse and resorption of nascent cilia. In cRFXa mutants, ciliogenesis genes and foxJ1 were significantly downregulated. Moreover, the promoters of S. rosetta ciliary genes are enriched for DNA motifs matching those bound by the cRFXa protein in vitro. These findings suggest that an ancestral cRFXa homolog coordinated ciliogenesis in the progenitors of animals and choanoflagellates and that the selective deployment of the RFX regulatory module may have been necessary to differentiate ciliated from non-ciliated cell types during early animal evolution.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Animales , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción del Factor Regulador X/genética , Factores de Transcripción del Factor Regulador X/metabolismo , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Cilios/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
6.
J Cell Biol ; 222(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36383135

RESUMEN

Astrocytes, often considered as secondary responders to neurodegeneration, are emerging as primary drivers of brain disease. Here we show that mitochondrial DNA depletion in astrocytes affects their primary cilium, the signaling organelle of a cell. The progressive oxidative phosphorylation deficiency in astrocytes induces FOXJ1 and RFX transcription factors, known as master regulators of motile ciliogenesis. Consequently, a robust gene expression program involving motile cilia components and multiciliated cell differentiation factors are induced. While the affected astrocytes still retain a single cilium, these organelles elongate and become remarkably distorted. The data suggest that chronic activation of the mitochondrial integrated stress response (ISRmt) in astrocytes drives anabolic metabolism and promotes ciliary elongation. Collectively, our evidence indicates that an active signaling axis involving mitochondria and primary cilia exists and that ciliary signaling is part of ISRmt in astrocytes. We propose that metabolic ciliopathy is a novel pathomechanism for mitochondria-related neurodegenerative diseases.


Asunto(s)
Astrocitos , Cilios , Mitocondrias , Astrocitos/metabolismo , Cilios/metabolismo , Cilios/patología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Homeostasis , Mitocondrias/metabolismo , Mitocondrias/patología , Ratones , Animales , Factores de Transcripción del Factor Regulador X/genética , Factores de Transcripción del Factor Regulador X/metabolismo , ADN Mitocondrial
7.
Eur J Med Genet ; 66(1): 104657, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36334883

RESUMEN

The RFX7 gene is one of eight genes within the regulatory factor X family. RFX7 is highly expressed in the brain and plays an important role in cell maturation and differentiation. It has only recently been implicated in disease in humans. Reports from 15 individuals have described RFX-associated phenotype as a neurobehavioural disease, manifesting primarily with global developmental delay and intellectual disability. Autism spectrum disorder and attention deficit hyperactivity disorder have also been described in some children. Here we report a case of a 19-month-old with a de novo missense variant in RFX7 resulting in severe global developmental delay including significant speech delay, microcephaly, dyskinetic movements, and failure to thrive. This is the first association between variants in RFX7 and failure to thrive, expanding the phenotype of this newly described gene. In this report we will also show RFX7 associated progressive central nervous system involvement through serial brain imaging.


Asunto(s)
Discapacidad Intelectual , Trastornos del Desarrollo del Lenguaje , Factores de Transcripción del Factor Regulador X , Niño , Humanos , Lactante , Trastorno del Espectro Autista/genética , Insuficiencia de Crecimiento , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Fenotipo , Factores de Transcripción del Factor Regulador X/genética
8.
Eur J Med Res ; 27(1): 164, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36045400

RESUMEN

BACKGROUND: Regulatory factor X (RFX) gene family is a series of encodes transcription factors with a highly conserved DNA binding domain. RFXs played a vital role in the development and progression of cancer. However, the significance of RFXs in stomach adenocarcinoma (STAD) has not been fully clarified. METHODS: Online bioinformatics tools such as GSCALite, Kaplan-Meier Plotter, TIMER, LinkedOmics were used to explore the immunomodulatory function and clinical value of RFXs in STAD. RESULTS: The mRNA level of RFX1, RFX3, RFX4, RFX5, RFX7 and RFX8 was significantly elevated in STAD tissue versus adjacent normal tissue. We also summarize the copy number variation, single nucleotide variants and drug sensitivity of RFXs in STAD. Prognostic analysis indicated that STAD patients with high RFX5 and RFX7 expression had a better overall survival, first progression, and post-progression survival. Moreover, RFX5 expression was significantly associated with the abundance of immune cells, the expression of immune biomarkers and tumor mutational burden score in STAD. Functional enrichment analysis revealed that RFX5 and its related genes were mainly involved in T cell activation, antigen receptor-mediated signaling pathway, cell adhesion molecules, and Th17 cell differentiation. Validation study further verified the expression and prognosis of RFX5 in STAD. Further univariate and multivariate analyses suggested that pathological stage and RFX5 could be a potential independent prognostic factor for STAD. CONCLUSIONS: RFX5 was a candidate prognostic biomarker and associated with immune infiltration in STAD.


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Adenocarcinoma/genética , Adenocarcinoma/patología , Variaciones en el Número de Copia de ADN , Humanos , Pronóstico , Factores de Transcripción del Factor Regulador X/genética , Factor Regulador X1/genética , Estómago/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Crit Rev Eukaryot Gene Expr ; 32(6): 83-95, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35997120

RESUMEN

Gestational diabetes mellitus (GDM) is a worldwide public health problem. MicroRNAs (miRNAs) have been reported to be associated with GDM progression. We intended to figure out the function of miR-342-3p in the insulin resistance (IR) and liver gluconeogenesis in GDM. GDM mouse models were established by intraperitoneal injection of streptozocin. The expression of miR-342-3p and regulatory factor X3 (Rfx3) in placenta and pancreatic tissues of GDM mice were evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). GDM mice were treated with lentivirus-mediated antagomir-miR-342-3p for miR-342-3p downregulation. Enzyme-linked immunosorbent assay, hematoxylin-eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining and periodic acid-Schiff staining were conducted to detect the influence of miR-342-3p knockdown on the levels of blood glucose, insulin, biochemical indices as well as the apoptosis and pathological changes in placenta or pancreatic tissues of GDM mice. The binding between Rfx3 and miR-342-3p was validated by dual luciferase reporter assays. miR-342-3p was upregulated and Rfx3 was downregulated in placenta and pancreatic tissues of GDM mice. Moreover, miR-342-3p bound with Rfx3 3'-UTR and therefore downregulated the expression of Rfx3. miR-342-3p expression was negatively correlated to Rfx3 expression in placenta tissues of GDM mice. In addition, miR-342-3p depletion decreased the levels of blood glucose, insulin, biochemical indices as well as restrained the apoptosis and pathological changes in GDM mouse placenta and pancreatic tissues. Furthermore, Rfx3 silencing countervailed the alleviative influence of miR-342-3p downregulation on IR and liver gluconeogenesis in GDM mice. Collectively, downregulation of miRNA-342-3p inhibits IR and liver gluconeogenesis in GDM by upregulating Rfx3, which may provide novel insight for GDM treatment.


Asunto(s)
Diabetes Gestacional , Resistencia a la Insulina , MicroARNs , Factores de Transcripción del Factor Regulador X , Animales , Glucemia/metabolismo , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Regulación hacia Abajo , Femenino , Gluconeogénesis/genética , Insulina/metabolismo , Resistencia a la Insulina/genética , Hígado/patología , Ratones , MicroARNs/genética , Embarazo , Factores de Transcripción del Factor Regulador X/genética
10.
Front Endocrinol (Lausanne) ; 13: 802351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813646

RESUMEN

Aims/Hypothesis: Caused by biallelic mutations of the gene encoding the transcription factor RFX6, the rare Mitchell-Riley syndrome (MRS) comprises neonatal diabetes, pancreatic hypoplasia, gallbladder agenesis or hypoplasia, duodenal atresia, and severe chronic diarrhea. So far, sixteen cases have been reported, all with a poor prognosis. This study discusses the multidisciplinary intensive clinical management of 4 new cases of MRS that survived over the first 2 years of life. Moreover, it demonstrates how the mutations impair the RFX6 function. Methods: Clinical records were analyzed and described in detail. The functional impact of two RFX6R181W and RFX6V506G variants was assessed by measuring their ability to transactivate insulin transcription and genes that encode the L-type calcium channels required for normal pancreatic beta-cell function. Results: All four patients were small for gestational age (SGA) and prenatally diagnosed with duodenal atresia. They presented with neonatal diabetes early in life and were treated with intravenous insulin therapy before switching to subcutaneous insulin pump therapy. All patients faced recurrent hypoglycemic episodes, exacerbated when parenteral nutrition (PN) was disconnected. A sensor-augmented insulin pump therapy with a predictive low-glucose suspension system was installed with good results. One patient had a homozygous c.1517T>G (p.Val506Gly) mutation, two patients had a homozygous p.Arg181Trp mutation, and one patient presented with new compound heterozygosity. The RFX6V506G and RFX6R181W mutations failed to transactivate the expression of insulin and genes that encode L-type calcium channel subunits required for normal pancreatic beta-cell function. Conclusions/Interpretation: Multidisciplinary and intensive disease management improved the clinical outcomes in four patients with MRS, including adjustment of parenteral/oral nutrition progression and advanced diabetes technologies. A better understanding of RFX6 function, in both intestine and pancreas cells, may break ground in new therapies, particularly regarding the use of drugs that modulate the enteroendocrine system.


Asunto(s)
Diabetes Mellitus , Enfermedades del Recién Nacido , Diabetes Mellitus/diagnóstico , Obstrucción Duodenal , Enfermedades de la Vesícula Biliar , Humanos , Recién Nacido , Insulina/genética , Atresia Intestinal , Mutación , Factores de Transcripción del Factor Regulador X/genética , Factores de Transcripción del Factor Regulador X/metabolismo
11.
J Mol Neurosci ; 72(6): 1195-1207, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35416616

RESUMEN

BACKGROUND: Glioma is classified as one of the most common types of primary brain tumors. The high expression of CircRFX3 has been found in glioma. However, its functional roles in glioma and underlying mechanism remain unknown. PURPOSE: Our study aimed to explore the function and specific mechanism of circRFX3 in glioma. METHODS: RT-qPCR or western blot was applied to examine the expression of RNAs or proteins. Functional assays were carried out to evaluate the influence of circRFX3, RFX3 and PROX1 on glioma cells. In vivo experiments were done to ascertain the impact of circRFX3 on glioma growth. Moreover, mechanism assays were conducted to investigate the molecular relation among circRFX3, RFX3, HNRNPK and PROX1. RESULTS: CircRFX3 was highly expressed in glioma cells. CircRFX3 knockdown led to the suppression of glioma cell and tumor growth. CircRFX3 overexpression resulted in the opposite outcomes. Mechanism analyses suggested that circRFX3 recruited HNRNPK to enhance RFX3 mRNA stability, thereby facilitating glioma cell malignant behaviors. RFX3 was also unveiled to affect glioma cells via stimulating PROX1 transcription. CONCLUSION: CircRFX3, as a tumor promoter, could recruit HNRNPK to stabilize RFX3 mRNA in glioma cells. Additionally, RFX3 could promote PROX1 transcription to promote glioma progression.


Asunto(s)
Glioma , Ribonucleoproteína Heterogénea-Nuclear Grupo K , Proteínas de Homeodominio , ARN Circular , Factores de Transcripción del Factor Regulador X , Proteínas Supresoras de Tumor , Carcinogénesis/genética , Carcinogénesis/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Glioma/genética , Glioma/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Factores de Transcripción del Factor Regulador X/genética , Factores de Transcripción del Factor Regulador X/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Arriba/genética
12.
Bioengineered ; 13(4): 10749-10764, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35475457

RESUMEN

Lung cancer is the most frequent malignancy, and non-small cell lung cancer (NSCLC) is its most common pathological type. Molecular targeted therapy has been testified to be effective in intervening in the occurrence and development of malignancies. This study investigates the effect of lncRNA Regulatory Factor X3- antisense RNA 1 (RFX3-AS1) in NSCLC progression. The RFX3-AS1 profile in NSCLC tissues and cells was measured by quantitative reverse transcription PCR (qRT-PCR). The RFX3-AS1 overexpression model was constructed. The cell counting kit-8 (CCK-8) experiment and cell colony formation assay were adopted to test cell viability. The cell apoptosis was determined by flow cytometry (FCM). Cell migration and invasion were monitored by the Transwell assay, and Western blot was implemented to verify the protein profiles of signal transducer and activator of transcription 3 (STAT3), E-cadherin, Vimentin and N-cadherin. In vivo, we validated the impact of RFX3-AS1 overexpression on the NSCLC xenograft mouse model. The targeting relationships between RFX3-AS1 and miR-577, miR-577 and STAT3 were confirmed by the dual-luciferase reporter assay. The results manifested that overexpressing RFX3-AS1 markedly facilitated NSCLC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT), and suppressed cell apoptosis. In contrast, miR-577, which was a downstream target of RFX3-AS1, dramatically impeded the malignant biological behaviors of NSCLC cells. STAT3 was a direct target of miR-577, and it was negatively regulated by the latter. STAT3 activation reversed miR-577-mediated anti-tumor roles. In brief, RFX3-AS1 aggravated NSCLC progression by regulating the miR-577/STAT3 axis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/patología , Ratones , MicroARNs/genética , MicroARNs/metabolismo , ARN sin Sentido/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción del Factor Regulador X/genética , Factores de Transcripción del Factor Regulador X/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
13.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269888

RESUMEN

X-box binding protein 1 (XBP1) is a member of the CREB/ATF basic region leucine zipper family transcribed as the unspliced isoform (XBP1-u), which, upon exposure to endoplasmic reticulum stress, is spliced into its spliced isoform (XBP1-s). XBP1-s interacts with the cAMP response element of major histocompatibility complex class II gene and plays critical role in unfolded protein response (UPR) by regulating the transcriptional activity of genes involved in UPR. XBP1-s is also involved in other physiological pathways, including lipid metabolism, insulin metabolism, and differentiation of immune cells. Its aberrant expression is closely related to inflammation, neurodegenerative disease, viral infection, and is crucial for promoting tumor progression and drug resistance. Meanwhile, recent studies reported that the function of XBP1-u has been underestimated, as it is not merely a precursor of XBP1-s. Instead, XBP-1u is a critical factor involved in various biological pathways including autophagy and tumorigenesis through post-translational regulation. Herein, we summarize recent research on the biological functions of both XBP1-u and XBP1-s, as well as their relation to diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Estrés del Retículo Endoplásmico/genética , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Transcripción del Factor Regulador X/genética , Factores de Transcripción del Factor Regulador X/metabolismo , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
14.
PLoS Biol ; 20(2): e3001538, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35143476

RESUMEN

Within the immune system, microRNAs (miRNAs) exert key regulatory functions. However, what are the mRNA targets regulated by miRNAs and how miRNAs are transcriptionally regulated themselves remain for the most part unknown. We found that in primary human memory T helper lymphocytes, miR-150 was the most abundantly expressed miRNA, and its expression decreased drastically upon activation, suggesting regulatory roles. Constitutive MIR150 gene expression required the RFX family of transcription factors, and its activation-induced down-regulation was linked to their reduced expression. By performing miRNA pull-down and sequencing experiments, we identified PDGFA-associated protein 1 (PDAP1) as one main target of miR-150 in human T lymphocytes. PDAP1 acted as an RNA-binding protein (RBP), and its CRISPR/Cas-9-mediated deletion revealed that it prominently contributed to the regulation of T-cell proliferation. Overall, using an integrated approach involving quantitative analysis, unbiased genomics, and genome editing, we identified RFX factors, miR-150, and the PDAP1 RBP as the components of a regulatory axis that restrains proliferation of primary human T lymphocytes.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Proliferación Celular/genética , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , MicroARNs/genética , Factores de Transcripción del Factor Regulador X/genética , Regiones no Traducidas 3'/genética , Western Blotting , Linfocitos T CD4-Positivos/citología , Células Cultivadas , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células Jurkat , Activación de Linfocitos/genética , Factores de Transcripción del Factor Regulador X/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética
15.
Gastroenterology ; 162(3): 799-812, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34687740

RESUMEN

BACKGROUND & AIMS: A detailed understanding of antitumor immunity is essential for optimal cancer immune therapy. Although defective mutations in the B2M and HLA-ABC genes, which encode molecules essential for antigen presentation, have been reported in several studies, the effects of these defects on tumor immunity have not been quantitatively evaluated. METHODS: Mutations in HLA-ABC genes were analyzed in 114 microsatellite instability-high colorectal cancers using a long-read sequencer. The data were further analyzed in combination with whole-exome sequencing, transcriptome sequencing, DNA methylation array, and immunohistochemistry data. RESULTS: We detected 101 truncating mutations in 57 tumors (50%) and loss of 61 alleles in 21 tumors (18%). Based on the integrated analysis that enabled the immunologic subclassification of microsatellite instability-high colorectal cancers, we identified a subtype of tumors in which lymphocyte infiltration was reduced, partly due to reduced expression of HLA-ABC genes in the absence of apparent genetic alterations. Survival time of patients with such tumors was shorter than in patients with other tumor types. Paradoxically, tumor mutation burden was highest in the subtype, suggesting that the immunogenic effect of accumulating mutations was counterbalanced by mutations that weakened immunoreactivity. Various genetic and epigenetic alterations, including frameshift mutations in RFX5 and promoter methylation of PSMB8 and HLA-A, converged on reduced expression of HLA-ABC genes. CONCLUSIONS: Our detailed immunogenomic analysis provides information that will facilitate the improvement and development of cancer immunotherapy.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Genes MHC Clase I/genética , Escape del Tumor/genética , Escape del Tumor/inmunología , Microglobulina beta-2/genética , Alelos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Metilación de ADN , Epigénesis Genética , Expresión Génica , Antígenos HLA-A/genética , Antígenos HLA-A/metabolismo , Humanos , Inmunogenética , Linfocitos Infiltrantes de Tumor , Inestabilidad de Microsatélites , Complejo de la Endopetidasa Proteasomal/genética , Factores de Transcripción del Factor Regulador X/genética , Tasa de Supervivencia , Microglobulina beta-2/metabolismo
16.
Biomed Res Int ; 2021: 9121478, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34840985

RESUMEN

Gastric cancer (GC), as an epidemic cancer worldwide, has more than 1 million new cases and an estimated 769,000 deaths worldwide in 2020, ranking fifth and fourth in global morbidity and mortality. In mammals, both miRNAs and transcription factors (TFs) play a partial role in gene expression regulation. The mRNA expression profile and miRNA expression profile of GEO database were screened by GEO2R for differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs). Then, DAVID annotated the functions of DEGs to understand the functions played in biological processes. The prediction of potential target genes of miRNA and key TFs of mRNA was performed by mipathDB V2.0 and CHEA3, respectively, and the gene list comparison was performed to look for overlapping genes coregulated by key TFs and DEMs. Finally, the obtained miRNAs, TF, and overlapping genes were used to construct the miRNA-mRNA-TF regulatory network, which was verified by RT-qPCR. 76 upregulated DEGs, 199 downregulated DEGs, and 3 upregulated miRNAs (miR-199a-3p/miR-199b-3p, miR-125b-5p, and miR-199a-5p) were identified from the expression profiles of mRNA (GSE26899, GSE29998, GSE51575, and GSE13911) and miRNA (GSE93415), respectively. Through database prediction and gene list comparison, it was found that among the 199 downregulated DEGs, 61, 71, and 69 genes were the potential targets of miR-199a-3p/miR-199b-3p, miR-125b-5p, and miR-199a-5p, respectively. 199 downregulated DEGs were used as the gene list for the prediction of key TFs, and the results showed that RFX6 ranked the highest. The potential target overlap genes of miR-199a-3p/miR-199b-3p, miR-125b-5p, and miR-199a-5p were 4 genes (SH3GL2, ATP4B, CTSE, and SORBS2), 7 genes (SLC7A8, RNASE4, ESRRG, PGC, MUC6, Fam3B, and FMO5), and 6 genes (CHGA, PDK4, TMPRSS2, CLIC6, GPX3, and PSCA), respectively. Finally, we constructed a miRNA-mRNA-TF regulatory network based on the above 17 mRNAs, 3 miRNAs, and 1 TF and verified by RT-qPCR and western blot results that the expression of RFX6 was downregulated in GC tissues. These identified miRNAs, mRNAs, and TF have a certain reference value for further exploration of the regulatory mechanism of GC.


Asunto(s)
Redes Reguladoras de Genes , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Factores de Transcripción/genética , Biomarcadores de Tumor/genética , Regulación hacia Abajo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , ARN Mensajero/genética , Factores de Transcripción del Factor Regulador X/genética , Regulación hacia Arriba
17.
J Assist Reprod Genet ; 38(12): 3195-3212, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34762273

RESUMEN

PURPOSE: Genetic etiology of idiopathic male infertility is enigmatic owing to involvement of multiple gene regulatory networks in spermatogenesis process. Any change in optimal function of the transcription factors involved in this process owing to polymorphisms/mutations may increase the risk of infertility. We investigated polymorphisms/mutations of spermatogenic transcription regulators TAF7 and RFX2 and analysed their association with incidence of azoospermia among the men from West Bengal, India. METHODS: Genotyping was carried by Sanger's dideoxy sequencing of 130 azoospermic men who were detected negative in Y chromosome microdeletion screening and 140 healthy controls. Association study was done by suitable statistical methods. In silico analysis was performed to infer the intuitive damaging effects of detected variants at transcripts and protein level. RESULTS: We found significant association of TAF7 C16T (MW827584 G > A), RFX2 562delT (MZ560629delA), rs11547633 A > C, rs17606721 A > G, MW827583 C > T, and MZ379836 C > T variants with the incidence of azoospermia. In silico analysis predicted that the variants either alter the natural splice junctions of the transcript or cause probable damage in the structure of proteins of respective genes. CONCLUSION: Polymorphisms/mutations of TAF7 and RFX2 genes increase risk of male infertility in Bengali population. The novel variants may be used as markers for male infertility screening in ART practise.


Asunto(s)
Azoospermia/genética , Polimorfismo Genético/genética , Factores de Transcripción del Factor Regulador X/genética , Espermatogénesis/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética , Cromosomas Humanos Y/genética , Humanos , India , Infertilidad Masculina/genética , Masculino
18.
Orphanet J Rare Dis ; 16(1): 455, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34715892

RESUMEN

BACKGROUND: Homozygous mutations in the transcription factor RFX6 are the cause of the Mitchell-Riley syndrome (MRS) associating neonatal diabetes, congenital digestive system, such as biliary atresia, pancreatic hypoplasia, duodenal and/or jejunal atresia, intestinal malrotation, gallbladder aplasia, cholestasis. A constitutive inactivation of RFX6 leads also to gastric heterotopia. Application of RNA-seq in human diseases may help to better understand pathogenic mechanism of diseases and to predict the risk of developing chronic disorders and personalizing their prevention and treatment. We evaluated oncogenic patterns and cancer predisposition using the transcriptomic profile in a case of MRS with neonatal diabetes, duodenal atresia, and extensive intestinal tract gastric heterotopia. RESULTS: We signalled the interactors of RFX6 with other up and downregulated genes, that may be interested in severity of diabetic condition, in multi-organs impairment and cancer predisposition. Furthermore, several dysregulated genes are involved in biological processes that can lead to promote cancer including "Evading apoptosis" (BAD, BBC3, EGF, FGFR2, FLT3LG, HMOX1, HRAS, IFNAR2, IGF1R, IL12RB1, IL13RA1, IL15, IL2RB, IL2RG, IL6R, KEAP1, MGST1, PDGFA, PDGFRB, PIK3R3, RALB, RALGDS, RASSF1, SOS1, TGFA, TXNRD3), "Proliferation" (APC, BRAF, CCND2, CCND3, CCNE2, FGFR2, FLT3LG, FZD1, FZD6, HMOX1, HRAS, IGF1R, KEAP1, LRP6, MAPK3, MGST1, PDGFA, PDGFB, PDGFRB, RB1, SOS1, TGFA, TXNRD3, WNT10B), "Sustained angiogenesis" (BRAF, FGFR2, FLT3LG, HRAS, IGF1R, JAG1, MAPK3, NOTCH2, PDGFA, PDGFB, PDGFRB, SOS1, TGFA, TGFB1), "Genomic instability" (BAD, BBC3) and "Insensitivity to anti-growth signals" (SMAD2, TGFB1). We also inspected the signalings and their related genes in cancer, such as "PI3K signaling", "ERK signaling", "JAK-STAT signaling", "Calcium signaling", "Other RAS signaling", "WNT signaling". CONCLUSIONS: In our MRS patient, we signaled the interactors of RFX6 with other up- and downregulated genes that may be related to severe diabetic condition, multi-organ impairment, and cancer predisposition. Notably, many dysregulated genes may lead to triggering carcinogenesis. The possibility of the patient developing cancer degeneration in heterotopic gastric mucosa and/or additional long-term tumoral sequelae is not excluded. Personalized prevention and treatment strategies should be proposed.


Asunto(s)
Diabetes Mellitus , Atresia Intestinal , Neoplasias , Carcinogénesis , Obstrucción Duodenal , Enfermedades de la Vesícula Biliar , Mucosa Gástrica/metabolismo , Humanos , Recién Nacido , Atresia Intestinal/genética , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Fosfatidilinositol 3-Quinasas , Factores de Transcripción del Factor Regulador X/genética , Factores de Transcripción del Factor Regulador X/metabolismo , Transcriptoma
19.
J Pediatr Endocrinol Metab ; 34(12): 1619-1622, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34416793

RESUMEN

OBJECTIVES: Monogenic diabetes mellitus (DM) is a single gene disorder, primarily characterized by impairment in the development or function of pancreatic beta cells. CASE PRESENTATION: A 14-year-old girl was initially diagnosed with type 2 DM. The patient did not have any anti-islet autoantibody and showed acanthosis nigricans. She was managed with long-acting insulin and oral hypoglycemic agent, but HbA1c was still 9.3% after 1 year of management. Her mother already had type 2 DM at 46-year-old and was on medication. Under the possibility of familial monogenic DM, targeted exome sequencing was performed which included 29 genes associated with monogenic DM. Nonsense mutation of the gene RFX6 (c.2661T>A, p.Tyr887∗) was found. After adding Glucagon-like peptide-1 (GLP-1) receptor agonist, HbA1c improved from 8.8 to 6.8% and body mass index (BMI) also improved from 31.0 to 29.2 kg/m2. CONCLUSIONS: It may be worth investigating genetic etiology in early-onset autoantibody-negative DM for specific genetic diagnosis and better management.


Asunto(s)
Codón sin Sentido , Diabetes Mellitus Tipo 2/patología , Factores de Transcripción del Factor Regulador X/genética , Adolescente , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/genética , Femenino , Humanos , Hipoglucemiantes/uso terapéutico , Persona de Mediana Edad , Pronóstico
20.
Sci Rep ; 11(1): 7841, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837283

RESUMEN

Type 1 narcolepsy is strongly (98%) associated with human leukocyte antigen (HLA) class II DQA1*01:02/DQB1*06:02 (DQ0602) and highly associated with T cell receptor (TCR) alpha locus polymorphism as well as other immune regulatory loci. Increased incidence of narcolepsy was detected following the 2009 H1N1 pandemic and linked to Pandemrix vaccination, strongly supporting that narcolepsy is an autoimmune disorder. Although recent results suggest CD4+ T cell reactivity to neuropeptide hypocretin/orexin and cross-reactive flu peptide is involved, identification of other autoantigens has remained elusive. Here we study whether autoimmunity directed against Regulatory Factor X4 (RFX4), a protein co-localized with hypocretin, is involved in some cases of narcolepsy. Studying human serum, we found that autoantibodies against RFX4 were rare. Using RFX4 peptides bound to DQ0602 tetramers, antigen RFX4-86, -95, and -60 specific human CD4+ T cells were detected in 4/10 patients and 2 unaffected siblings, but not in others. Following culture with each cognate peptide, enriched autoreactive TCRαß clones were isolated by single-cell sorting and TCR sequenced. Homologous clones bearing TRBV4-2 and recognizing RFX4-86 in patients and one twin control of patient were identified. These results suggest the involvement of RFX4 CD4+ T cell autoreactivity in some cases of narcolepsy, but also in healthy donors.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Autoinmunidad , Linfocitos T CD4-Positivos/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Narcolepsia/inmunología , Factores de Transcripción del Factor Regulador X/inmunología , Vacunación/métodos , Adolescente , Adulto , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Autoantígenos/sangre , Autoantígenos/inmunología , Enfermedades Autoinmunes/sangre , Estudios de Casos y Controles , Niño , Reacciones Cruzadas , Femenino , Células HEK293 , Humanos , Gripe Humana/virología , Masculino , Narcolepsia/sangre , Orexinas/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Factores de Transcripción del Factor Regulador X/genética , Transfección , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA