Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.995
Filtrar
1.
J Med Chem ; 67(9): 6952-6986, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38649304

RESUMEN

The transcriptional coactivator cAMP response element binding protein (CREB)-binding protein (CBP) and its homologue p300 have emerged as attractive therapeutic targets for human cancers such as acute myeloid leukemia (AML). Herein, we report the design, synthesis, and biological evaluation of a series of cereblon (CRBN)-recruiting CBP/p300 proteolysis targeting chimeras (PROTACs) based on the inhibitor CCS1477. The representative compounds 14g (XYD190) and 14h (XYD198) potently inhibited the growth of AML cells with low nanomolar IC50 values and effectively degraded CBP and p300 proteins in a concentration- and time-dependent manner. Mechanistic studies confirmed that 14g and 14h can selectively bind to CBP/p300 bromodomains and induce CBP and p300 degradation in bromodomain family proteins in a CRBN- and proteasome-dependent manner. 14g and 14h displayed remarkable antitumor efficacy in the MV4;11 xenograft model (TGI = 88% and 93%, respectively). Our findings demonstrated that 14g and 14h are useful lead compounds and deserve further optimization and activity evaluation for the treatment of human cancers.


Asunto(s)
Antineoplásicos , Proteolisis , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Animales , Ratones , Proteolisis/efectos de los fármacos , Línea Celular Tumoral , Proteína p300 Asociada a E1A/metabolismo , Proteína p300 Asociada a E1A/antagonistas & inhibidores , Proteína de Unión a CREB/metabolismo , Proteína de Unión a CREB/antagonistas & inhibidores , Descubrimiento de Drogas , Ensayos Antitumor por Modelo de Xenoinjerto , Relación Estructura-Actividad , Factores de Transcripción p300-CBP/metabolismo , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones Desnudos
2.
Br J Cancer ; 130(10): 1621-1634, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38575732

RESUMEN

BACKGROUND: DNA double-strand break (DSB) induction and repair are important events for determining cell survival and the outcome of cancer radiotherapy. The DNA-dependent protein kinase (DNA-PK) complex functions at the apex of DSBs repair, and its assembly and activity are strictly regulated by post-translation modifications (PTMs)-associated interactions. However, the PTMs of the catalytic subunit DNA-PKcs and how they affect DNA-PKcs's functions are not fully understood. METHODS: Mass spectrometry analyses were performed to identify the crotonylation sites of DNA-PKcs in response to γ-ray irradiation. Co-immunoprecipitation (Co-IP), western blotting, in vitro crotonylation assays, laser microirradiation assays, in vitro DNA binding assays, in vitro DNA-PK assembly assays and IF assays were employed to confirm the crotonylation, identify the crotonylase and decrotonylase, and elucidate how crotonylation regulates the activity and function of DNA-PKcs. Subcutaneous xenografts of human HeLa GCN5 WT or HeLa GCN5 siRNA cells in BALB/c nude mice were generated and utilized to assess tumor proliferation in vivo after radiotherapy. RESULTS: Here, we reveal that K525 is an important site of DNA-PKcs for crotonylation, and whose level is sharply increased by irradiation. The histone acetyltransferase GCN5 functions as the crotonylase for K525-Kcr, while HDAC3 serves as its dedicated decrotonylase. K525 crotonylation enhances DNA binding activity of DNA-PKcs, and facilitates assembly of the DNA-PK complex. Furthermore, GCN5-mediated K525 crotonylation is indispensable for DNA-PKcs autophosphorylation and the repair of double-strand breaks in the NHEJ pathway. GCN5 suppression significantly sensitizes xenograft tumors of mice to radiotherapy. CONCLUSIONS: Our study defines K525 crotonylation of DNA-PKcs is important for the DNA-PK complex assembly and DSBs repair activity via NHEJ pathway. Targeting GCN5-mediated K525 Kcr of DNA-PKcs may be a promising therapeutic strategy for improving the outcome of cancer radiotherapy.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Proteína Quinasa Activada por ADN , Ratones Endogámicos BALB C , Tolerancia a Radiación , Factores de Transcripción p300-CBP , Humanos , Animales , Proteína Quinasa Activada por ADN/metabolismo , Ratones , Factores de Transcripción p300-CBP/metabolismo , Células HeLa , Ratones Desnudos , Femenino , Procesamiento Proteico-Postraduccional , Neoplasias/radioterapia , Neoplasias/metabolismo , Neoplasias/genética , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Bioorg Med Chem Lett ; 104: 129742, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604299

RESUMEN

P300 and CBP are two closely related histone acetyltransferases that are important transcriptional coactivators of many cellular processes. Inhibition of the transcriptional regulator p300/CBP is a promising therapeutic approach in oncology. However, there are no reported single selective p300 or CBP inhibitors to date. In this study, we designed and optimized a series of lysine acetyltransferase p300 selective inhibitors bearing a nucleoside scaffold. Most compounds showed excellent inhibitory activity against p300 with IC50 ranging from 0.18 to 9.90 µM, except for J16, J29, J40, and J48. None of the compounds showed inhibitory activity against CBP (inhibition rate < 50 % at 10 µM). Then the cytotoxicity of the compounds against a series of cancer cells were evaluated. Compounds J31 and J32 showed excellent proliferation inhibitory activity on cancer cells T47D and H520 with desirable selectivity profile of p300 over CBP. These compounds could be promising lead compounds for the development of novel epigenetic inhibitors as antitumor agents.


Asunto(s)
Antineoplásicos , Lisina Acetiltransferasas , Neoplasias , Factores de Transcripción p300-CBP , Nucleósidos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Factores de Transcripción , Histona Acetiltransferasas/uso terapéutico , Neoplasias/tratamiento farmacológico
4.
Nat Commun ; 15(1): 3580, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678032

RESUMEN

The lethality, chemoresistance and metastatic characteristics of cancers are associated with phenotypically plastic cancer stem cells (CSCs). How the non-cell autonomous signalling pathways and cell-autonomous transcriptional machinery orchestrate the stem cell-like characteristics of CSCs is still poorly understood. Here we use a quantitative proteomic approach for identifying secreted proteins of CSCs in pancreatic cancer. We uncover that the cell-autonomous E2F1/4-pRb/RBL2 axis balances non-cell-autonomous signalling in healthy ductal cells but becomes deregulated upon KRAS mutation. E2F1 and E2F4 induce whereas pRb/RBL2 reduce WNT ligand expression (e.g. WNT7A, WNT7B, WNT10A, WNT4) thereby regulating self-renewal, chemoresistance and invasiveness of CSCs in both PDAC and breast cancer, and fibroblast proliferation. Screening for epigenetic enzymes identifies GCN5 as a regulator of CSCs that deposits H3K9ac onto WNT promoters and enhancers. Collectively, paracrine signalling pathways are controlled by the E2F-GCN5-RB axis in diverse cancers and this could be a therapeutic target for eliminating CSCs.


Asunto(s)
Factor de Transcripción E2F1 , Factor de Transcripción E2F4 , Células Madre Neoplásicas , Neoplasias Pancreáticas , Comunicación Paracrina , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Línea Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Factor de Transcripción E2F4/metabolismo , Factor de Transcripción E2F4/genética , Animales , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Proteína de Retinoblastoma/metabolismo , Proteína de Retinoblastoma/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Factores de Transcripción p300-CBP/metabolismo , Factores de Transcripción p300-CBP/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Femenino , Proliferación Celular , Ratones , Transducción de Señal , Resistencia a Antineoplásicos/genética
5.
J Exp Clin Cancer Res ; 43(1): 117, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641672

RESUMEN

BACKGROUND: Cholangiocarcinoma (CCA) is a highly malignant cancer of the biliary tract with poor prognosis. Further mechanistic insights into the molecular mechanisms of CCA are needed to develop more effective target therapy. METHODS: The expression of the histone lysine acetyltransferase KAT2B in human CCA was analyzed in human CCA tissues. CCA xenograft was developed by inoculation of human CCA cells with or without KAT2B overexpression into SCID mice. Western blotting, ChIP-qPCR, qRT-PCR, protein immunoprecipitation, GST pull-down and RNA-seq were performed to delineate KAT2B mechanisms of action in CCA. RESULTS: We identified KAT2B as a frequently downregulated histone acetyltransferase in human CCA. Downregulation of KAT2B was significantly associated with CCA disease progression and poor prognosis of CCA patients. The reduction of KAT2B expression in human CCA was attributed to gene copy number loss. In experimental systems, we demonstrated that overexpression of KAT2B suppressed CCA cell proliferation and colony formation in vitro and inhibits CCA growth in mice. Mechanistically, forced overexpression of KAT2B enhanced the expression of the tumor suppressor gene NF2, which is independent of its histone acetyltransferase activity. We showed that KAT2B was recruited to the promoter region of the NF2 gene via interaction with the transcription factor SP1, which led to enhanced transcription of the NF2 gene. KAT2B-induced NF2 resulted in subsequent inhibition of YAP activity, as reflected by reduced nuclear accumulation of oncogenic YAP and inhibition of YAP downstream genes. Depletion of NF2 was able to reverse KAT2B-induced reduction of nuclear YAP and subvert KAT2B-induced inhibition of CCA cell growth. CONCLUSIONS: This study provides the first evidence for an important tumor inhibitory effect of KAT2B in CCA through regulation of NF2-YAP signaling and suggests that this signaling cascade may be therapeutically targeted for CCA treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Animales , Humanos , Ratones , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos/metabolismo , Línea Celular Tumoral , Proliferación Celular , Colangiocarcinoma/patología , Regulación Neoplásica de la Expresión Génica , Genes de la Neurofibromatosis 2 , Histonas/metabolismo , Lisina/metabolismo , Ratones SCID , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
6.
Pharmacol Ther ; 257: 108636, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521246

RESUMEN

Due to the contribution of highly homologous acetyltransferases CBP and p300 to transcription elevation of oncogenes and other cancer promoting factors, these enzymes emerge as possible epigenetic targets of anticancer therapy. Extensive efforts in search for small molecule inhibitors led to development of compounds targeting histone acetyltransferase catalytic domain or chromatin-interacting bromodomain of CBP/p300, as well as dual BET and CBP/p300 inhibitors. The promising anticancer efficacy in in vitro and mice models led CCS1477 and NEO2734 to clinical trials. However, none of the described inhibitors is perfectly specific to CBP/p300 since they share similarity of a key functional domains with other enzymes, which are critically associated with cancer progression and their antagonists demonstrate remarkable clinical efficacy in cancer therapy. Therefore, we revise the possible and clinically relevant off-targets of CBP/p300 inhibitors that can be blocked simultaneously with CBP/p300 thereby improving the anticancer potential of CBP/p300 inhibitors and pharmacokinetic predicting data such as absorption, distribution, metabolism, excretion (ADME) and toxicity.


Asunto(s)
Histona Acetiltransferasas , Neoplasias , Ratones , Animales , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/uso terapéutico , Dominios Proteicos , Neoplasias/tratamiento farmacológico , Factores de Transcripción p300-CBP/metabolismo
7.
Br J Pharmacol ; 181(12): 1843-1856, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38378175

RESUMEN

BACKGROUND AND PURPOSE: Our previous studies have found that andrographolide (AGP) alleviates calcific aortic valve disease (CAVD), but the underlying mechanism is unclear. This study explores the molecular target and signal mechanisms of AGP in inhibiting CAVD. EXPERIMENTAL APPROACH: The anti-calcification effects of the aortic valve with AGP treatment were evaluated by alizarin red staining in vitro and ultrasound and histopathological assessment of a high-fat (HF)-fed ApoE-/- mouse valve calcification model. A correlation between the H3 histone lactylation (H3Kla) and calcification was detected. Molecular docking and surface plasmon resonance (SPR) experiments were further used to confirm p300 as a target for AGP. Overexpression (oe) and silencing (si) of p300 were used to verify the inhibitory effect of AGP targeting p300 on the H3Kla in vitro and ex vivo. KEY RESULTS: AGP significantly inhibited calcium deposition in valve interstitial cells (VICs) and ameliorated aortic valve calcification. The multi-omics analysis revealed the glycolysis pathway involved in CAVD, indicating that AGP interfered with lactate production by regulating lactate dehydrogenase A (LDHA). In addition, lactylation, a new post-translational modification, was shown to have a role in promoting aortic valve calcification. Furthermore, H3Kla and H3K9la site were shown to correlate with Runx2 expression inhibition by AGP treatment. Importantly, we found that p300 transferase was the molecular target of AGP in inhibiting H3Kla. CONCLUSIONS AND IMPLICATIONS: Our findings, for the first time, demonstrated that AGP alleviates calcification by interfering with H3Kla via p300, which might be a powerful drug to prevent CAVD.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Calcinosis , Diterpenos , Histonas , Animales , Humanos , Masculino , Ratones , Válvula Aórtica/patología , Válvula Aórtica/metabolismo , Válvula Aórtica/efectos de los fármacos , Estenosis de la Válvula Aórtica/tratamiento farmacológico , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/patología , Calcinosis/metabolismo , Calcinosis/tratamiento farmacológico , Calcinosis/patología , Diterpenos/farmacología , Diterpenos/química , Proteína p300 Asociada a E1A/metabolismo , Proteína p300 Asociada a E1A/antagonistas & inhibidores , Histonas/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Factores de Transcripción p300-CBP/antagonistas & inhibidores
8.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38397020

RESUMEN

Anserine, an imidazole dipeptide, is present in the muscles of birds and fish and has various bioactivities, such as anti-inflammatory and anti-fatigue effects. However, the effect of anserine on the development of heart failure remains unknown. We cultured primary cardiomyocytes with 0.03 mM to 10 mM anserine and stimulated them with phenylephrine for 48 h. Anserine significantly suppressed the phenylephrine-induced increases in cardiomyocyte hypertrophy, ANF and BNP mRNA levels, and histone H3K9 acetylation. An in vitro histone acetyltransferase (HAT) assay showed that anserine directly suppressed p300-HAT activity with an IC50 of 1.87 mM. Subsequently, 8-week-old male C57BL/6J mice were subjected to transverse aortic constriction (TAC) and were randomly assigned to receive daily oral treatment with anserine-containing material, Marine Active® (60 or 200 mg/kg anserine) or vehicle for 8 weeks. Echocardiography revealed that anserine 200 mg/kg significantly prevented the TAC-induced increase in left ventricular posterior wall thickness and the decrease in left ventricular fractional shortening. Moreover, anserine significantly suppressed the TAC-induced acetylation of histone H3K9. These results indicate that anserine suppresses TAC-induced systolic dysfunction, at least in part, by inhibiting p300-HAT activity. Anserine may be used as a pharmacological agent for human heart failure therapy.


Asunto(s)
Anserina , Cardiomiopatías , Insuficiencia Cardíaca , Miocitos Cardíacos , Factores de Transcripción p300-CBP , Animales , Humanos , Masculino , Ratones , Acetilación , Anserina/farmacología , Cardiomegalia/genética , Cardiomiopatías/metabolismo , Inhibidores Enzimáticos/farmacología , Insuficiencia Cardíaca/metabolismo , Histonas/metabolismo , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fenilefrina/farmacología , Factores de Transcripción p300-CBP/antagonistas & inhibidores
9.
J Med Chem ; 67(4): 2466-2486, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38316017

RESUMEN

Adenoviral E1A binding protein 300 kDa (p300) and its closely related paralog CREB binding protein (CBP) are promising therapeutic targets for human cancer. Here, we report the first discovery of novel potent small-molecule PROTAC degraders of p300/CBP against hepatocellular carcinoma (HCC), one of the most common solid tumors. Based upon the clinical p300/CBP bromodomain inhibitor CCS1477, a conformational restriction strategy was used to optimize the linker to generate a series of PROTACs, culminating in the identification of QC-182. This compound effectively induces p300/CBP degradation in the SK-HEP-1 HCC cells in a dose-, time-, and ubiquitin-proteasome system-dependent manner. QC-182 significantly downregulates p300/CBP-associated transcriptome in HCC cells, leading to more potent cell growth inhibition compared to the parental inhibitors and the reported degrader dCBP-1. Notably, QC-182 potently depletes p300/CBP proteins in mouse SK-HEP-1 xenograft tumor tissue. QC-182 is a promising lead compound toward the development of p300/CBP-targeted HCC therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Proteína de Unión a CREB/química , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Dominios Proteicos , Factores de Transcripción p300-CBP/metabolismo
10.
Genomics ; 116(1): 110759, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072145

RESUMEN

OBJECTIVE: Our study explored the function of DOT1L in osteoporosis (OP) via the microRNA (miR)-181/KAT2B/SRSF1 axis. METHODS: Osteoclast (OC) number was evaluated via TRAP staining, and serum CTXI, PINP, and ALP contents were tested by ELISA. Following identification of bone marrow mesenchymal stem cells (BMSCs), OC differentiation was induced by M-CSF and RANKL, followed by the detection of OC differentiation and the expression of bone resorption-related genes, DOT1L, miR-181, KAT2B, and SRSF1. RESULTS: Overexpressed DOT1L or miR-181 stimulated calcified nodule formation and increased alkaline phosphatase activity and osteogenic marker gene expression. KAT2B knockdown enhanced the osteogenic differentiation of BMSCs by reducing SRSF1 acetylation. The enhancement of OC differentiation induced by overexpressed SRSF1 was inhibited by simultaneous DOT1L or miR-181 overexpression. DOT1L suppressed OP development in vivo via the miR-181/KAT2B/SRSF1 axis. CONCLUSION: DOT1L overexpression slowed down bone loss and promoted bone formation via the miR-181/KAT2B/SRSF1 axis, thereby alleviating OP development.


Asunto(s)
MicroARNs , Osteoporosis , Humanos , Osteogénesis/genética , MicroARNs/metabolismo , Osteoporosis/genética , Diferenciación Celular/genética , Células Cultivadas , N-Metiltransferasa de Histona-Lisina , Factores de Empalme Serina-Arginina/genética , Factores de Transcripción p300-CBP/metabolismo
11.
Am J Respir Cell Mol Biol ; 70(2): 110-118, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37874694

RESUMEN

Obstructive sleep apnea (OSA), a widespread breathing disorder, leads to intermittent hypoxia (IH). Patients with OSA and IH-treated rodents exhibit heightened sympathetic nerve activity and hypertension. Previous studies reported transcriptional activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox) by HIF-1 (hypoxia-inducible factor-1) contribute to autonomic dysfunction in IH-treated rodents. Lysine acetylation, regulated by KATs (lysine acetyltransferases) and KDACs (lysine deacetylases), activates gene transcription and plays an important role in several physiological and pathological processes. This study tested the hypothesis that acetylation of HIF-1α by p300/CBP (CREB-binding protein) (KAT) activates Nox transcription, leading to sympathetic activation and hypertension. Experiments were performed on pheochromocytoma-12 cells and rats treated with IH. IH increased KAT activity, p300/CBP protein, HIF-1α lysine acetylation, HIF-1 transcription, and HIF-1 binding to the Nox4 gene promoter in pheochromocytoma-12 cells, and these responses were blocked by CTK7A, a selective p300/CBP inhibitor. Plasma norepinephrine (index of sympathetic activation) and blood pressures were elevated in IH-treated rats. These responses were associated with elevated p300/CBP protein, HIF-1α stabilization, transcriptional activation of Nox2 and Nox4 genes, and reactive oxygen species, and all these responses were absent in CTK7A-treated IH rats. These findings suggest lysine acetylation of HIF-1α by p300/CBP is an important contributor to sympathetic excitation and hypertension by IH.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Hipertensión , Feocromocitoma , Apnea Obstructiva del Sueño , Animales , Ratas , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia , Lisina , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo , Apnea Obstructiva del Sueño/complicaciones
12.
J Bone Miner Res ; 38(12): 1885-1899, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37850815

RESUMEN

CREB-binding protein (CBP) (CREBBP) and p300 (EP300) are multifunctional histone acetyltransferases (HATs) with extensive homology. Germline mutations of CBP or p300 cause skeletal abnormalities in humans and mice. However, the precise roles of CBP/p300 in bone homeostasis remain elusive. Here, we report that conditional knockout of CBP or p300 in osteoblasts results in reduced bone mass and strength due to suppressed bone formation. The HAT activity is further confirmed to be responsible for CBP/p300-mediated osteogenesis using A-485, a selective inhibitor of CBP/p300 HAT. Mechanistically, CBP/p300 HAT governs osteogenic gene expression in part through transcriptional activation of ß-catenin and inhibition of Stat1. Furthermore, acetylation of histone H3K27 and the transcription factor Foxo1 are demonstrated to be involved in CBP/p300 HAT-regulated ß-catenin and Stat1 transcription, respectively. Taken together, these data identify acetyltransferases CBP/p300 as critical regulators that promote osteoblast differentiation and reveal an epigenetic mechanism responsible for maintaining bone homeostasis. © 2023 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Proteína de Unión a CREB , Factores de Transcripción p300-CBP , Animales , Humanos , Ratones , Acetilación , beta Catenina/metabolismo , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Osteogénesis/genética , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo , Factor de Transcripción STAT1/metabolismo
13.
Sci Rep ; 13(1): 17112, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816914

RESUMEN

The activation of stress response pathways in synovial fibroblasts (SF) is a hallmark of rheumatoid arthritis (RA). CBP and p300 are two highly homologous histone acetyl transferases and writers of activating histone 3 lysine 27 acetylation (H3K27ac) marks. Furthermore, they serve as co-factors for transcription factors and acetylate many non-histone proteins. Here we showed that p300 but not CBP protein expression was down regulated by TNF and 4-hydroxynonenal, two factors that mimic inflammation and oxidative stress in the synovial microenvironment. We used existing RNA-sequencing data sets as a basis for a further in-depth investigation of individual functions of CBP and p300 in regulating different stress response pathways in SF. Pathway enrichment analysis pointed to a profound role of CBP and/ or p300 in regulating stress response-related gene expression, with an enrichment of pathways associated with oxidative stress, hypoxia, autophagy and proteasome function. We silenced CBP or p300, and performed confirmatory experiments on transcriptome, protein and functional levels. We have identified some overlap of CBP and p300 target genes in the oxidative stress response pathway, however, with several genes being regulated in opposite directions. The majority of stress response genes was regulated by p300, with a specific function of p300 in regulating hypoxia response genes and genes encoding proteasome subunits. Silencing of p300 suppressed proteasome enzymatic activities. CBP and p300 regulated autophagy on transcriptome and functional levels. Whereas CBP was indispensable for autophagy synthesis, silencing of p300 affected late-stage autophagy. In line with impaired autophagy and proteasome function, poly-ubiquitinated proteins accumulated after silencing of p300.


Asunto(s)
Proteína de Unión a CREB , Factores de Transcripción p300-CBP , Humanos , Acetilación , Proteína de Unión a CREB/metabolismo , Fibroblastos/metabolismo , Hipoxia , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
14.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37511059

RESUMEN

Prostate cancer is one of the most common malignant diseases in men, and it contributes significantly to the increased mortality rate in men worldwide. This study aimed to review the roles of p300 and TMPRSS2 (transmembrane protease, serine 2) in the AR (androgen receptor) pathway as they are closely related to the development and progression of prostate cancer. This paper represents a library-based study conducted by selecting the most suitable, up-to-date scientific published articles from online journals. We focused on articles that use similar techniques, particularly those that use prostate cancer cell lines and immunohistochemical staining to study the molecular impact of p300 and TMPRSS2 in prostate cancer specimens. The TMPRSS2:ERG fusion is considered relevant to prostate cancer, but its association with the development and progression as well as its clinical significance have not been fully elucidated. On the other hand, high p300 levels in prostate cancer biopsies predict larger tumor volumes, extraprostatic extension of disease, and seminal vesicle involvement at prostatectomy, and may be associated with prostate cancer progression after surgery. The inhibition of p300 has been shown to reduce the proliferation of prostate cancer cells with TMPRSS2:ETS (E26 transformation-specific) fusions, and combining p300 inhibitors with other targeted therapies may increase their efficacy. Overall, the interplay between the p300 and TMPRSS2 pathways is an active area of research.


Asunto(s)
Neoplasias de la Próstata , Serina Endopeptidasas , Factores de Transcripción p300-CBP , Humanos , Masculino , Biopsia , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/metabolismo , Serina Endopeptidasas/metabolismo , Regulador Transcripcional ERG , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Factores de Transcripción p300-CBP/metabolismo
15.
Nat Commun ; 14(1): 4103, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460559

RESUMEN

Histone acetylation is important for the activation of gene transcription but little is known about its direct read/write mechanisms. Here, we report cryogenic electron microscopy structures in which a p300/CREB-binding protein (CBP) multidomain monomer recognizes histone H4 N-terminal tail (NT) acetylation (ac) in a nucleosome and acetylates non-H4 histone NTs within the same nucleosome. p300/CBP not only recognized H4NTac via the bromodomain pocket responsible for reading, but also interacted with the DNA minor grooves via the outside of that pocket. This directed the catalytic center of p300/CBP to one of the non-H4 histone NTs. The primary target that p300 writes by reading H4NTac was H2BNT, and H2BNTac promoted H2A-H2B dissociation from the nucleosome. We propose a model in which p300/CBP replicates histone N-terminal tail acetylation within the H3-H4 tetramer to inherit epigenetic storage, and transcribes it from the H3-H4 tetramer to the H2B-H2A dimers to activate context-dependent gene transcription through local nucleosome destabilization.


Asunto(s)
Histonas , Nucleosomas , Histonas/metabolismo , Proteína de Unión a CREB/genética , Acetilación , Epigénesis Genética , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
16.
Oncotarget ; 14: 738-746, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37477521

RESUMEN

Reduced SIRT2 deacetylation and increased p300 acetylation activity leads to a concerted mechanism of hyperacetylation at specific histone lysine sites (H3K9, H3K14, and H3K18) in castration-resistant prostate cancer (CRPC). We examined whether circulating tumor cells (CTCs) identify patients with altered p300/CBP acetylation. CTCs were isolated from 13 advanced PC patients using Exclusion-based Sample Preparation (ESP) technology. Bound cells underwent immunofluorescent staining for histone modifying enzymes (HMEs) of interest and image capture with NIS-Elements software. Using the cBioPortal PCF/SU2C dataset, the response of CRPC to androgen receptor signaling inhibitors (ARSI) was analyzed in 50 subjects. Staining optimization and specificity revealed clear expression of acetyl-p300, acetyl-H3K18, and SIRT2 on CTCs (CK positive, CD45 negative cells). Exposure to A-485, a selective p300/CBP catalytic inhibitor, reduced p300 and H3K18 acetylation. In CRPC patients, a-p300 strongly correlated with its target acetylated H3k18 (Pearson's R = 0.61), and SIRT2 expression showed robust negative correlation with a-H3k18 (R = -0.60). A subgroup of CRPC patients (6/11; 55%) demonstrated consistent upregulation of acetylation based on these markers. To examine the clinical impact of upregulation of the CBP/p300 axis, CRPC patients with reduced deacetylase SIRT2 expression demonstrate shorter response times to ARSI therapy (5.9 vs. 12 mo; p = 0.03). A subset of CRPC patients demonstrate increased p300/CBP activity based on a novel CTC biomarker assay. With further development, this biomarker suite may be used to identify candidates for CBP/p300 acetylation inhibitors in clinical development.


Asunto(s)
Células Neoplásicas Circulantes , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Histonas/metabolismo , Sirtuina 2 , Factores de Transcripción p300-CBP/metabolismo , Acetilación
17.
Stem Cell Reports ; 18(6): 1274-1283, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37315521

RESUMEN

Cardiac transcription factors (TFs) directly reprogram fibroblasts into induced cardiomyocytes (iCMs), where MEF2C acts as a pioneer factor with GATA4 and TBX5 (GT). However, the generation of functional and mature iCMs is inefficient, and the molecular mechanisms underlying this process remain largely unknown. Here, we found that the overexpression of transcriptionally activated MEF2C via fusion of the powerful MYOD transactivation domain combined with GT increased the generation of beating iCMs by 30-fold. Activated MEF2C with GT generated iCMs that were transcriptionally, structurally, and functionally more mature than those generated by native MEF2C with GT. Mechanistically, activated MEF2C recruited p300 and multiple cardiogenic TFs to cardiac loci to induce chromatin remodeling. In contrast, p300 inhibition suppressed cardiac gene expression, inhibited iCM maturation, and decreased the beating iCM numbers. Splicing isoforms of MEF2C with similar transcriptional activities did not promote functional iCM generation. Thus, MEF2C/p300-mediated epigenetic remodeling promotes iCM maturation.


Asunto(s)
Ensamble y Desensamble de Cromatina , Factores de Transcripción MEF2 , Miocitos Cardíacos , Factores de Transcripción p300-CBP , Epigénesis Genética , Epigenómica , Fibroblastos , Factores de Transcripción MEF2/genética , Factores de Transcripción p300-CBP/genética
18.
Bioorg Chem ; 138: 106597, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37245245

RESUMEN

The protein p300 is a positive regulator of cancer progression and is related to many human pathological conditions. To find effective p300/CBP HAT inhibitors, we screened an internal compound library and identified berberine as a lead compound. Next, we designed, synthesized, and screened a series of novel berberine analogs, and discovered that analog 5d was a potent and highly selective p300/CBP HAT inhibitor with IC50 values of 0.070 µM and 1.755 µM for p300 and CBP, respectively. Western blotting further proved that 5d specifically decreased H3K18Ac and interfere with the function of histone acetyltransferase. Although 5d had only a moderate inhibitory effect on the MDA-MB-231 cell line, 5d suppressed the growth of 4T1 tumor growth in mice with a tumor weight inhibition ratio (TWI) of 39.7%. Further, liposomes-encapsulated 5d increased its inhibition of tumor growth to 57.8 % TWI. In addition, 5d has no obvious toxicity to the main organ of mice and the pharmacokinetic study confirmed that 5d has good absorption properties in vivo.


Asunto(s)
Berberina , Neoplasias , Humanos , Factores de Transcripción p300-CBP/metabolismo , Berberina/farmacología , Berberina/uso terapéutico , Histona Acetiltransferasas/metabolismo , Acetilación
19.
Nat Chem Biol ; 19(10): 1215-1222, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37127754

RESUMEN

Histone acetyltransferases (HATs) are implicated as both oncogene and nononcogene dependencies in diverse human cancers. Acetyl-CoA-competitive HAT inhibitors have emerged as potential cancer therapeutics and the first clinical trial for this class of drugs is ongoing (NCT04606446). Despite these developments, the potential mechanisms of therapeutic response and evolved drug resistance remain poorly understood. Having discovered that multiple regulators of de novo coenzyme A (CoA) biosynthesis can modulate sensitivity to CBP/p300 HAT inhibition (PANK3, PANK4 and SLC5A6), we determined that elevated acetyl-CoA concentrations can outcompete drug-target engagement to elicit acquired drug resistance. This not only affects structurally diverse CBP/p300 HAT inhibitors, but also agents related to an investigational KAT6A/B HAT inhibitor that is currently in Phase 1 clinical trials. Altogether, this work uncovers CoA metabolism as an unexpected liability of anticancer HAT inhibitors and will therefore buoy future efforts to optimize the efficacy of this new form of targeted therapy.


Asunto(s)
Histona Acetiltransferasas , Neoplasias , Humanos , Histona Acetiltransferasas/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilcoenzima A/metabolismo , Unión Proteica
20.
Sci Adv ; 9(16): eadf2687, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37083536

RESUMEN

Zygotic genome activation (ZGA) is a crucial step of embryonic development. So far, little is known about the role of chromatin factors during this process. Here, we used an in vivo RNA interference reverse genetic screen to identify chromatin factors necessary for embryonic development in Drosophila melanogaster. Our screen reveals that histone acetyltransferases (HATs) and histone deacetylases are crucial ZGA regulators. We demonstrate that Nejire (CBP/EP300 ortholog) is essential for the acetylation of histone H3 lysine-18 and lysine-27, whereas Gcn5 (GCN5/PCAF ortholog) for lysine-9 of H3 at ZGA, with these marks being enriched at all actively transcribed genes. Nonetheless, these HATs activate distinct sets of genes. Unexpectedly, individual catalytic dead mutants of either Nejire or Gcn5 can activate zygotic transcription (ZGA) and transactivate a reporter gene in vitro. Together, our data identify Nejire and Gcn5 as key regulators of ZGA.


Asunto(s)
Drosophila melanogaster , Factores de Transcripción p300-CBP , Animales , Acetilación , Cromatina , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Histona Acetiltransferasas/genética , Lisina/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA