Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.511
Filtrar
1.
Virology ; 595: 110090, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38718447

RESUMEN

Nowadays finding the new antimicrobials is necessary due to the emerging of multidrug resistant strains. The present study aimed to isolate and characterize bacteriophages against S. aureus. Strains Huma and Simurgh were the two podovirus morphology phages which isolated and then characterized. Huma and Simurgh had a genome size of 16,853 and 17,245 bp, respectively and both were Rosenblumvirus with G + C content of 29%. No lysogeny-related genes, nor virulence genes were identified in their genomes. They were lytic only against two out of four S. aureus strains. They also were able to inhibit S. aureus for 8 h in-vitro. Both showed a rapid adsorption. Huma and Simurgh had the latent period of 80 and 60 m and the burst sizes of 45 and 40 PFU/ml and also, they showed very low cell toxicity of 1.23%-1.79% on HT-29 cells, respectively. Thus, they can be considered potential candidates for biocontrol applications.


Asunto(s)
Genoma Viral , Fagos de Staphylococcus , Staphylococcus aureus , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/fisiología , Fagos de Staphylococcus/aislamiento & purificación , Staphylococcus aureus/virología , Staphylococcus aureus/genética , Humanos , Composición de Base , Podoviridae/genética , Podoviridae/aislamiento & purificación , Podoviridae/clasificación , Podoviridae/fisiología , Células HT29 , Tamaño del Genoma
2.
Nat Microbiol ; 9(5): 1312-1324, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565896

RESUMEN

Dormant prophages protect lysogenic cells by expressing diverse immune systems, which must avoid targeting their cognate prophages upon activation. Here we report that multiple Staphylococcus aureus prophages encode Tha (tail-activated, HEPN (higher eukaryotes and prokaryotes nucleotide-binding) domain-containing anti-phage system), a defence system activated by structural tail proteins of incoming phages. We demonstrate the function of two Tha systems, Tha-1 and Tha-2, activated by distinct tail proteins. Interestingly, Tha systems can also block reproduction of the induced tha-positive prophages. To prevent autoimmunity after prophage induction, these systems are inhibited by the product of a small overlapping antisense gene previously believed to encode an excisionase. This genetic organization, conserved in S. aureus prophages, allows Tha systems to protect prophages and their bacterial hosts against phage predation and to be turned off during prophage induction, balancing immunity and autoimmunity. Our results show that the fine regulation of these processes is essential for the correct development of prophages' life cycle.


Asunto(s)
Profagos , Staphylococcus aureus , Profagos/genética , Staphylococcus aureus/virología , Staphylococcus aureus/inmunología , Autoinmunidad , Lisogenia , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/inmunología , Fagos de Staphylococcus/fisiología , Proteínas de la Cola de los Virus/genética , Proteínas de la Cola de los Virus/metabolismo , Bacteriófagos/genética , Bacteriófagos/inmunología , Bacteriófagos/fisiología
3.
Sci Rep ; 14(1): 8245, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589670

RESUMEN

The human skin microbiome comprises diverse populations that differ temporally between body sites and individuals. The virome is a less studied component of the skin microbiome and the study of bacteriophages is required to increase knowledge of the modulation and stability of bacterial communities. Staphylococcus species are among the most abundant colonisers of skin and are associated with both health and disease yet the bacteriophages infecting the most abundant species on skin are less well studied. Here, we report the isolation and genome sequencing of 40 bacteriophages from human skin swabs that infect coagulase-negative Staphylococcus (CoNS) species, which extends our knowledge of phage diversity. Six genetic clusters of phages were identified with two clusters representing novel phages, one of which we characterise and name Alsa phage. We identified that Alsa phages have a greater ability to infect the species S. hominis that was otherwise infected less than other CoNS species by the isolated phages, indicating an undescribed barrier to phage infection that could be in part due to numerous restriction-modification systems. The extended diversity of Staphylococcus phages here enables further research to define their contribution to skin microbiome research and the mechanisms that limit phage infection.


Asunto(s)
Bacteriófagos , Humanos , Bacteriófagos/genética , Coagulasa/genética , Genoma Viral , Piel/microbiología , Fagos de Staphylococcus/genética , Staphylococcus/genética
4.
Sci Rep ; 14(1): 9251, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649443

RESUMEN

The increasing prevalence of methicillin-resistant Staphylococcus aureus (MRSA) emphasises the urgent need for novel antimicrobial agents as alternatives to antibiotics. Bacteriophage therapy is one of the most promising antimicrobial strategies. Here, we isolated and comprehensively characterized a novel Staphylococcus phage, vB_SauM_VL10 (VL10), from urban sewage. The VL10 genome displays 141,746 bp of linear double-stranded DNA, containing 193 open reading frames and lacking tRNA, virulence, or antibiotic resistance genes. Phylogenetic analysis categorizes VL10 as a novel species within the Silviavirus genus, Twortvirinae subfamily. VL10 exhibits lytic behaviour characterized by efficient adsorption, a short latent period, and substantial burst size, with environmental stability. It demonstrates lytic activity against 79.06% of tested S. aureus strains, highlighting its species specificity. Additionally, VL10 effectively targets MRSA biofilms, reducing biomass and viable cells. In MRSA-infected G. mellonella larvae, VL10 enhances survival rates, supporting its potential for phage therapy applications. Moreover, the emergence of VL10-resistant S. aureus strains associated with fitness trade-offs, including reduced growth, biofilm formation, and virulence. Altogether, these findings emphasize VL10 as a promising candidate for developing therapeutic agents against MRSA infections, providing insights into phage biology and resistance dynamics.


Asunto(s)
Biopelículas , Genoma Viral , Staphylococcus aureus Resistente a Meticilina , Filogenia , Fagos de Staphylococcus , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/virología , Fagos de Staphylococcus/genética , Biopelículas/efectos de los fármacos , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/terapia , Infecciones Estafilocócicas/tratamiento farmacológico , Terapia de Fagos , Aguas del Alcantarillado/microbiología , Aguas del Alcantarillado/virología , Animales , Humanos , Antibacterianos/farmacología
5.
Int J Food Microbiol ; 416: 110657, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38452659

RESUMEN

Although bacteriophage-based biosensors are promising tools for rapid, convenient, and sensitive detection of Staphylococcus aureus in food products, the effect of biosensors using temperate phages as biorecognition elements to detect viable S. aureus isolates remains unclear. In this study, three temperate S. aureus phages were isolated and their biological features (one-step growth, host range, pH stability, temperature stability, and adsorption rate) were evaluated as the biological element. The selected phage SapYZUs8 was immobilized on the nanozyme Cu-MOF via electrostatic interactions to generate SapYZUs8@Cu-MOF, and its detection performance in real food (skim milk and pork) was then evaluated. Compared with phages SapYZUm7 and SapYZUs16, phage SapYZUs8 exhibited a broader host range, greater pH stability (3-12), and a better absorption rate (92 %, 8 min) suitable for S. aureus detection, which is likely the result of the DNA replication (DNA helicase) and phage tail protein genes in the SapYZUs8 genome. Therefore, phage SapYZUs8 was fixed on Cu-MOF to generate SapYZUs8@Cu-MOF, which exhibited good sensitivity and specificity for rapid colourimetric detection of viable S. aureus. The method took <0.5 h, and the detection limit was 1.09 × 102 CFU/mL. In addition, SapYZUs8@Cu-MOF was successfully employed for the colourimetric detection of S. aureus in food samples without interference from different food additives, NaCl concentrations, or pH values. With these benefits, it allows rapid visual assessment of S. aureus levels.


Asunto(s)
Bacteriófagos , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Colorimetría , Alimentos , Fagos de Staphylococcus/genética
6.
mBio ; 15(4): e0199023, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38470054

RESUMEN

The species- and clone-specific susceptibility of Staphylococcus cells for bacteriophages is governed by the structures and glycosylation patterns of wall teichoic acid (WTA) glycopolymers. The glycosylation-dependent phage-WTA interactions in the opportunistic pathogen Staphylococcus epidermidis and in other coagulase-negative staphylococci (CoNS) have remained unknown. We report a new S. epidermidis WTA glycosyltransferase TagE whose deletion confers resistance to siphoviruses such as ΦE72 but enables binding of otherwise unbound podoviruses. S. epidermidis glycerolphosphate WTA was found to be modified with glucose in a tagE-dependent manner. TagE is encoded together with the enzymes PgcA and GtaB providing uridine diphosphate-activated glucose. ΦE72 transduced several other CoNS species encoding TagE homologs, suggesting that WTA glycosylation via TagE is a frequent trait among CoNS that permits interspecies horizontal gene transfer. Our study unravels a crucial mechanism of phage-Staphylococcus interaction and horizontal gene transfer, and it will help in the design of anti-staphylococcal phage therapies.IMPORTANCEPhages are highly specific for certain bacterial hosts, and some can transduce DNA even across species boundaries. How phages recognize cognate host cells remains incompletely understood. Phages infecting members of the genus Staphylococcus bind to wall teichoic acid (WTA) glycopolymers with highly variable structures and glycosylation patterns. How WTA is glycosylated in the opportunistic pathogen Staphylococcus epidermidis and in other coagulase-negative staphylococci (CoNS) species has remained unknown. We describe that S. epidermidis glycosylates its WTA backbone with glucose, and we identify a cluster of three genes responsible for glucose activation and transfer to WTA. Their inactivation strongly alters phage susceptibility patterns, yielding resistance to siphoviruses but susceptibility to podoviruses. Many different CoNS species with related glycosylation genes can exchange DNA via siphovirus ΦE72, suggesting that glucose-modified WTA is crucial for interspecies horizontal gene transfer. Our finding will help to develop antibacterial phage therapies and unravel routes of genetic exchange.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus epidermidis , Humanos , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/metabolismo , Staphylococcus aureus/genética , Coagulasa/metabolismo , Glucosa/metabolismo , Ácidos Teicoicos/metabolismo , Staphylococcus/metabolismo , Fagos de Staphylococcus/genética , ADN/metabolismo , Pared Celular/metabolismo , Infecciones Estafilocócicas/metabolismo
7.
ACS Appl Mater Interfaces ; 16(14): 17232-17241, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38554078

RESUMEN

The increasing prevalence of bacterial multidrug antibiotic resistance has led to a serious threat to public health, emphasizing the urgent need for alternative antibacterial therapeutics. Lytic phages, a class of viruses that selectively infect and kill bacteria, offer promising potential as alternatives to antibiotics. However, injectable carriers with a desired release profile remain to be developed to deliver them to infection sites. To address this challenge, phage-loaded microparticles (Phage-MPs) have been developed to deliver phages to the infection site and release phages for an optimal therapeutic effect. The Phage-MPs are synthesized by allowing phages to be electrostatically attached onto the porous polyethylenimine-modified silk fibroin microparticles (SF-MPs). The high specific surface area of SF-MPs allows them to efficiently load phages, reaching about 1.25 × 1010 pfu per mg of microparticles. The Phage-MPs could release phages in a controlled manner to achieve potent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Unlike the diffuse biodistribution of free phages post-intraperitoneal injection, Phage-MPs could continuously release phages to effectively boost the local phage concentration at the bacterial infection site after they are intraperitoneally injected into an abdominal MRSA-infected mouse model. In a mouse abdominal MRSA infection model, Phage-MPs significantly reduce the bacterial load in major organs, achieving an efficient therapeutic effect. Furthermore, Phage-MPs demonstrate outstanding biocompatibility both in vitro and in vivo. Overall, our research lays the foundation for a new generation of phage-based therapies to combat antibiotic-resistant bacterial infections.


Asunto(s)
Bacteriófagos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Ratones , Animales , Distribución Tisular , Fagos de Staphylococcus , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
8.
Microb Cell Fact ; 23(1): 89, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528536

RESUMEN

BACKGROUND: Staphylococcus aureus and its single or mixed biofilm infections seriously threaten global public health. Phage therapy, which uses active phage particles or phage-derived endolysins, has emerged as a promising alternative strategy to antibiotic treatment. However, high-efficient phage therapeutic regimens have yet to be established. RESULTS: In this study, we used an enrichment procedure to isolate phages against methicillin-resistant S. aureus (MRSA) XN108. We characterized phage SYL, a new member of the Kayvirus genus, Herelleviridae family. The phage endolysin LysSYL was expressed. LysSYL demonstrated stability under various conditions and exhibited a broader range of efficacy against staphylococcal strains than its parent phage (100% vs. 41.7%). Moreover, dynamic live/dead bacterial observation demonstrated that LysSYL could completely lyse MRSA USA300 within 10 min. Scan and transmission electron microscopy revealed evident bacterial cell perforation and deformation. In addition, LysSYL displayed strong eradication activity against single- and mixed-species biofilms associated with S. aureus. It also had the ability to kill bacterial persisters, and proved highly effective in eliminating persistent S. aureus when combined with vancomycin. Furthermore, LysSYL protected BALB/c mice from lethal S. aureus infections. A single-dose treatment with 50 mg/kg of LysSYL resulted in a dramatic reduction in bacterial loads in the blood, liver, spleen, lungs, and kidneys of a peritonitis mouse model, which resulted in rescuing 100% of mice challenged with 108 colony forming units of S. aureus USA300. CONCLUSIONS: Overall, the data provided in this study highlight the strong therapeutic potential of endolysin LysSYL in combating staphylococcal infections, including mono- and mixed-species biofilms related to S. aureus.


Asunto(s)
Endopeptidasas , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Ratones , Staphylococcus , Staphylococcus aureus , Fagos de Staphylococcus , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Biopelículas
9.
Front Cell Infect Microbiol ; 14: 1336821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38357445

RESUMEN

Drug-resistant Staphylococcus aureus stands as a prominent pathogen in nosocomial and community-acquired infections, capable of inciting various infections at different sites in patients. This includes Staphylococcus aureus bacteremia (SaB), which exhibits a severe infection frequently associated with significant mortality rate of approximately 25%. In the absence of better alternative therapies, antibiotics is still the main approach for treating infections. However, excessive use of antibiotics has, in turn, led to an increase in antimicrobial resistance. Hence, it is imperative that new strategies are developed to control drug-resistant S. aureus infections. Bacteriophages are viruses with the ability to infect bacteria. Bacteriophages, were used to treat bacterial infections before the advent of antibiotics, but were subsequently replaced by antibiotics due to limited theoretical understanding and inefficient preparation processes at the time. Recently, phages have attracted the attention of many researchers again because of the serious problem of antibiotic resistance. This article provides a comprehensive overview of phage biology, animal models, diverse clinical case treatments, and clinical trials in the context of drug-resistant S. aureus phage therapy. It also assesses the strengths and limitations of phage therapy and outlines the future prospects and research directions. This review is expected to offer valuable insights for researchers engaged in phage-based treatments for drug-resistant S. aureus infections.


Asunto(s)
Bacteriófagos , Staphylococcus aureus Resistente a Meticilina , Terapia de Fagos , Infecciones Estafilocócicas , Animales , Humanos , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fagos de Staphylococcus
10.
Curr Opin Microbiol ; 78: 102434, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38364502

RESUMEN

Staphylococcus epidermidis is a common member of the human skin and nose microbiomes and a frequent cause of invasive infections. Transducing phages accomplish the horizontal transfer of resistance and virulence genes by mispackaging of mobile-genetic elements, contributing to severe, therapy-refractory S. epidermidis infections. Lytic phages on the other hand can be interesting candidates for new anti-S. epidermidis phage therapies. Despite the importance of phages, we are only beginning to unravel S. epidermidis phage interactions. Recent studies shed new light on S. epidermidis phage diversity, host range, and receptor specificities. Modulation of cell wall teichoic acids, the major phage receptor structures, along with other phage defense mechanisms, are crucial determinants for S. epidermidis susceptibility to different phage groups.


Asunto(s)
Terapia de Fagos , Infecciones Estafilocócicas , Humanos , Staphylococcus epidermidis/genética , Fagos de Staphylococcus/genética , Especificidad del Huésped , Virulencia , Infecciones Estafilocócicas/terapia
11.
Eur J Orthop Surg Traumatol ; 34(1): 653-657, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37679422

RESUMEN

PURPOSE: To evaluate the stability of a clinically used Staphylococcal bacteriophage with doses of vancomycin that are encountered with local administration of vancomycin for musculoskeletal infections. METHODS: A Staphylococcal bacteriophage was evaluated for stability in different pH ranges. Then that same bacteriophage was evaluated for stability with different concentrations of vancomycin and with vancomycin biodegradable antibiotic beads. RESULTS: The bacteriophage had stability within a pH range of 4-10. There was a statistically significant (P < 0.05) decrease in the amount of bacteriophage over 24 h for vancomycin concentrations of 10 mg/mL and 100 mg/mL compared to lower vancomycin concentrations (1 mg/mL, 0.1 mg/mL and normal saline). However, no statistically significant decrease in the amount of bacteriophage was seen with biodegradable vancomycin beads over 24 h. CONCLUSION: These findings have important clinical ramifications in that they show local administration of bacteriophages with concomitant local vancomycin powder therapy should be avoided. Moreover, these findings should spearhead further research into bacteriophage stability in in vivo environments.


Asunto(s)
Infecciones Estafilocócicas , Vancomicina , Humanos , Fagos de Staphylococcus , Antibacterianos , Infecciones Estafilocócicas/tratamiento farmacológico
12.
J Orthop Res ; 42(3): 555-559, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37971191

RESUMEN

The aim of this study was to assess the viability of four Staphylococcal bacteriophages when exposed to different concentrations of commonly used lavage solutions in the surgical treatment of prosthetic joint infections (PJI). Four tailed Staphylococcal bacteriophages and six different lavage solutions (chlorhexidine 4%, hydrogen peroxide 3%, acetic acid 3%, povidone iodine 10%, sodium hypochlorite 0.5%, and Vashe solution) at 100%, 1%, and 0.01% concentrations were used in this experiment. In addition, the temporal impact of exposing bacteriophages to these lavage solutions was also evaluated at 5-min exposures and 24-h exposures. The results show that the titers of the four bacteriophages were statistically significantly decreased for all lavage solutions (100% and 1%) at 5-min exposures and 24-h exposures. However, with 0.01% concentrations of the lavage solutions, only acetic acid caused a statistically significant decrease in bacteriophage titers compared to normal saline control. Our findings suggest that tailed Staphylococcal bacteriophages do not remain stable in high concentrations of the most commonly used lavage solutions. However, at very dilute concentrations the bacteriophages do remain viable. This has important clinical ramifications in that it shows when using bacteriophage therapy for PJI it is critical to thoroughly wash out any lavage solutions before the introduction of therapeutic bacteriophages especially when acetic acid is used.


Asunto(s)
Bacteriófagos , Infecciones Estafilocócicas , Humanos , Fagos de Staphylococcus , Irrigación Terapéutica/métodos , Povidona Yodada , Clorhexidina , Acetatos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico
13.
J Mol Biol ; 436(4): 168415, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38135177

RESUMEN

Staphylococcus aureus is an important human pathogen, and the prevalence of antibiotic resistance is a major public health concern. The evolution of pathogenicity and resistance in S. aureus often involves acquisition of mobile genetic elements (MGEs). Bacteriophages play an especially important role, since transduction represents the main mechanism for horizontal gene transfer. S. aureus pathogenicity islands (SaPIs), including SaPI1, are MGEs that carry genes encoding virulence factors, and are mobilized at high frequency through interactions with specific "helper" bacteriophages, such as 80α, leading to packaging of the SaPI genomes into virions made from structural proteins supplied by the helper. Among these structural proteins is the portal protein, which forms a ring-like portal at a fivefold vertex of the capsid, through which the DNA is packaged during virion assembly and ejected upon infection of the host. We have used high-resolution cryo-electron microscopy to determine structures of the S. aureus bacteriophage 80α portal itself, produced by overexpression, and in situ in the empty and full SaPI1 virions, and show how the portal interacts with the capsid. These structures provide a basis for understanding portal and capsid assembly and the conformational changes that occur upon DNA packaging and ejection.


Asunto(s)
Islas Genómicas , Fagos de Staphylococcus , Staphylococcus aureus , Humanos , Proteínas de la Cápside/química , Microscopía por Crioelectrón , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/virología , Fagos de Staphylococcus/genética , Factores de Virulencia/genética , Transducción Genética , Empaquetamiento del ADN , Conformación de Ácido Nucleico
14.
Nature ; 623(7989): 1001-1008, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968393

RESUMEN

Cyclic oligonucleotide-based antiphage signalling systems (CBASS) protect prokaryotes from viral (phage) attack through the production of cyclic oligonucleotides, which activate effector proteins that trigger the death of the infected host1,2. How bacterial cyclases recognize phage infection is not known. Here we show that staphylococcal phages produce a structured RNA transcribed from the terminase subunit genes, termed CBASS-activating bacteriophage RNA (cabRNA), which binds to a positively charged surface of the CdnE03 cyclase and promotes the synthesis of the cyclic dinucleotide cGAMP to activate the CBASS immune response. Phages that escape the CBASS defence harbour mutations that lead to the generation of a longer form of the cabRNA that cannot activate CdnE03. As the mammalian cyclase OAS1 also binds viral double-stranded RNA during the interferon response, our results reveal a conserved mechanism for the activation of innate antiviral defence pathways.


Asunto(s)
Bacterias , Nucleotidiltransferasas , ARN Viral , Fagos de Staphylococcus , Animales , 2',5'-Oligoadenilato Sintetasa/metabolismo , Bacterias/enzimología , Bacterias/inmunología , Evolución Molecular , Inmunidad Innata , Nucleotidiltransferasas/metabolismo , Oligonucleótidos/inmunología , Oligonucleótidos/metabolismo , ARN Viral/inmunología , ARN Viral/metabolismo , Transducción de Señal/inmunología , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/inmunología
15.
Sci Rep ; 13(1): 18204, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875544

RESUMEN

S. aureus is a pathogen that frequently causes severe morbidity and phage therapy is being discussed as an alternative to antibiotics for the treatment of S. aureus infections. In this in vitro and animal study, we demonstrated that the activity of anti-staphylococcal phages is severely impaired in 0.5% plasma or synovial fluid. Despite phage replication in these matrices, lysis of the bacteria was slower than phage propagation, and no reduction of the bacterial population was observed. The inhibition of the phages associated with a reduction in phage adsorption, quantified to 99% at 10% plasma. S. aureus is known to bind multiple coagulation factors, resulting in the formation of aggregates and blood clots that might protect the bacterium from the phages. Here, we show that purified fibrinogen at a sub-physiological concentration of 0.4 mg/ml is sufficient to impair phage activity. In contrast, dissolution of the clots by tissue plasminogen activator (tPA) partially restored phage activity. Consistent with these in vitro findings, phage treatment did not reduce bacterial burdens in a neutropenic mouse S. aureus thigh infection model. In summary, phage treatment of S. aureus infections inside the body may be fundamentally challenging, and more investigation is needed prior to proceeding to in-human trials.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Animales , Ratones , Staphylococcus aureus/fisiología , Activador de Tejido Plasminógeno , Líquido Sinovial , Infecciones Estafilocócicas/terapia , Infecciones Estafilocócicas/microbiología , Fagos de Staphylococcus/fisiología , Antibacterianos
16.
Appl Microbiol Biotechnol ; 107(23): 7231-7250, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37741937

RESUMEN

Staphylococcus aureus is one of the most relevant mastitis pathogens in dairy cattle, and the acquisition of antimicrobial resistance genes presents a significant health issue in both veterinary and human fields. Among the different strategies to tackle S. aureus infection in livestock, bacteriophages have been thoroughly investigated in the last decades; however, few specimens of the so-called jumbo phages capable of infecting S. aureus have been described. Herein, we report the biological, genomic, and structural proteomic features of the jumbo phage vB_SauM-UFV_DC4 (DC4). DC4 exhibited a remarkable killing activity against S. aureus isolated from the veterinary environment and stability at alkaline conditions (pH 4 to 12). The complete genome of DC4 is 263,185 bp (GC content: 25%), encodes 263 predicted CDSs (80% without an assigned function), 1 tRNA (Phe-tRNA), multisubunit RNA polymerase, and an RNA-dependent DNA polymerase. Moreover, comparative analysis revealed that DC4 can be considered a new viral species belonging to a new genus DC4 and showed a similar set of lytic proteins and depolymerase activity with closely related jumbo phages. The characterization of a new S. aureus jumbo phage increases our understanding of the diversity of this group and provides insights into the biotechnological potential of these viruses. KEY POINTS: • vB_SauM-UFV_DC4 is a new viral species belonging to a new genus within the class Caudoviricetes. • vB_SauM-UFV_DC4 carries a set of RNA polymerase subunits and an RNA-directed DNA polymerase. • vB_SauM-UFV_DC4 and closely related jumbo phages showed a similar set of lytic proteins.


Asunto(s)
Bacteriófagos , Fagos de Staphylococcus , Animales , Bovinos , Femenino , Humanos , Fagos de Staphylococcus/genética , Staphylococcus aureus/genética , Proteómica , Genoma Viral , Genómica , Bacteriófagos/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN de Transferencia
17.
Cell ; 186(16): 3414-3426.e16, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541198

RESUMEN

Lateral transduction (LT) is the process by which temperate phages mobilize large sections of bacterial genomes. Despite its importance, LT has only been observed during prophage induction. Here, we report that superantigen-carrying staphylococcal pathogenicity islands (SaPIs) employ a related but more versatile and complex mechanism of gene transfer to drive chromosomal hypermobility while self-transferring with additional virulence genes from the host. We found that after phage infection or prophage induction, activated SaPIs form concatamers in the bacterial chromosome by switching between parallel genomic tracks in replication bubbles. This dynamic life cycle enables SaPIbov1 to piggyback its LT of staphylococcal pathogenicity island vSaα, which encodes an array of genes involved in host-pathogen interactions, allowing both islands to be mobilized intact and transferred in a single infective particle. Our findings highlight previously unknown roles of pathogenicity islands in bacterial virulence and show that their evolutionary impact extends beyond the genes they carry.


Asunto(s)
Islas Genómicas , Fagos de Staphylococcus , Staphylococcus , Genoma Bacteriano , Staphylococcus/genética , Staphylococcus/patogenicidad , Virulencia , Transducción Genética
18.
Viruses ; 15(7)2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37515114

RESUMEN

The issue of antibiotic resistance in healthcare worldwide has led to a pressing need to explore and develop alternative approaches to combat infectious diseases. Among these methods, phage therapy has emerged as a potential solution to tackle this growing challenge. Virulent phages of the Herelleviridae family, known for their ability to cause lysis of Staphylococcus aureus, a clinically significant pathogen frequently associated with multidrug resistance, have proven to be one of the most effective viruses utilized in phage therapy. In order to utilize phages for therapeutic purposes effectively, a thorough investigation into their physiology and mechanisms of action on infected cells is essential. The use of omics technologies, particularly total RNA sequencing, is a promising approach for analyzing the interaction between phages and their hosts, allowing for the assessment of both the behavior of the phage during infection and the cell's response. This review aims to provide a comprehensive overview of the physiology of the Herelleviridae family, utilizing existing analyses of their total phage transcriptomes. Additionally, it sheds light on the changes that occur in the metabolism of S. aureus when infected with virulent bacteriophages, contributing to a deeper understanding of the phage-host interaction.


Asunto(s)
Bacteriófagos , Caudovirales , Terapia de Fagos , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/genética , Bacteriófagos/genética , Fagos de Staphylococcus/genética , Infecciones Estafilocócicas/terapia
19.
Protein Sci ; 32(9): e4737, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37497650

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) causes life-threatening human infections. Bacteriophage-encoded endolysins degrade the cell walls of Gram-positive bacteria by selectively hydrolyzing the peptidoglycan layer and thus are promising candidates to combat bacterial infections. PlyGRCS, the S. aureus-specific bacteriophage endolysin, contains a catalytic CHAP domain and a cell-wall binding SH3_5 domain connected by a linker. Here, we show the crystal structure of full-length PlyGRCS refined to 2.1 Å resolution. In addition, a serendipitous finding revealed that PlyGRCS binds to cold-shock protein C (CspC) by interacting with its CHAP and SH3_5 domains. CspC is an RNA chaperone that plays regulatory roles by conferring bacterial adaptability to various stress conditions. PlyGRCS has substantial lytic activity against S. aureus and showed only minimal change in its lytic activity in the presence of CspC. Whereas the PlyGRCS-CspC complex greatly reduced CspC-nucleic acid binding, the aforesaid complex may downregulate the CspC function during bacterial infection. Overall, the crystal structure and biochemical results of PlyGRCS provide a molecular basis for the bacteriolytic activity of PlyGRCS against S. aureus.


Asunto(s)
Proteínas Bacterianas , Proteínas y Péptidos de Choque por Frío , Endopeptidasas , Proteínas de Choque Térmico , Staphylococcus aureus Resistente a Meticilina , Fagos de Staphylococcus , Humanos , Proteínas y Péptidos de Choque por Frío/química , Endopeptidasas/química , Endopeptidasas/genética , Endopeptidasas/metabolismo , Staphylococcus aureus Resistente a Meticilina/virología , Proteínas Bacterianas/química , Proteínas de Choque Térmico/química , Fagos de Staphylococcus/enzimología
20.
Front Cell Infect Microbiol ; 13: 1169135, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293203

RESUMEN

S. epidermidis is an important opportunistic pathogen causing chronic prosthetic joint infections associated with biofilm growth. Increased tolerance to antibiotic therapy often requires prolonged treatment or revision surgery. Phage therapy is currently used as compassionate use therapy and continues to be evaluated for its viability as adjunctive therapy to antibiotic treatment or as an alternative treatment for infections caused by S. epidermidis to prevent relapses. In the present study, we report the isolation and in vitro characterization of three novel lytic S. epidermidis phages. Their genome content analysis indicated the absence of antibiotic resistance genes and virulence factors. Detailed investigation of the phage preparation indicated the absence of any prophage-related contamination and demonstrated the importance of selecting appropriate hosts for phage development from the outset. The isolated phages infect a high proportion of clinically relevant S. epidermidis strains and several other coagulase-negative species growing both in planktonic culture and as a biofilm. Clinical strains differing in their biofilm phenotype and antibiotic resistance profile were selected to further identify possible mechanisms behind increased tolerance to isolated phages.


Asunto(s)
Bacteriófagos , Terapia de Fagos , Infecciones Estafilocócicas , Humanos , Bacteriófagos/genética , Staphylococcus epidermidis , Antibacterianos/farmacología , Biopelículas , Fagos de Staphylococcus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA