Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 937: 173321, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38782287

RESUMEN

The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.


Asunto(s)
Cambio Climático , Sequías , Fagus , Fagus/crecimiento & desarrollo , Fagus/fisiología , Bosques , Árboles/crecimiento & desarrollo , Árboles/fisiología
2.
Tree Physiol ; 44(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38769932

RESUMEN

Forest trees adopt effective strategies to optimize nitrogen (N) use through internal N recycling. In the context of more recurrent environmental stresses due to climate change, the question remains of whether increased frequency of drought or defoliation threatens this internal N recycling strategy. We submitted 8-year-old beech trees to 2 years of either severe drought (Dro) or manual defoliation (Def) to create a state of N starvation. At the end of the second year before leaf senescence, we labeled the foliage of the Dro and Def trees, as well as that of control (Co) trees, with 15N-urea. Leaf N resorption, winter tree N storage (total N, 15N, amino acids, soluble proteins) and N remobilization in spring were evaluated for the three treatments. Defoliation and drought did not significantly impact foliar N resorption or N concentrations in organs in winter. Total N amounts in Def tree remained close to those in Co tree, but winter N was stored more in the branches than in the trunk and roots. Total N amount in Dro trees was drastically reduced (-55%), especially at the trunk level, but soluble protein concentrations increased in the trunk and fine roots compared with Co trees. During spring, 15N was mobilized from the trunk, branches and twigs of both Co and Def trees to support leaf growth. It was only provided through twig 15N remobilization in the Dro trees, thus resulting in extremely reduced Dro leaf N amounts. Our results suggest that stress-induced changes occur in N metabolism but with varying severity depending on the constraints: within-tree 15N transport and storage strategy changed in response to defoliation, whereas a soil water deficit induced a drastic reduction of the N amounts in all the tree organs. Consequently, N dysfunction could be involved in drought-induced beech tree mortality under the future climate.


Asunto(s)
Sequías , Fagus , Hojas de la Planta , Estaciones del Año , Árboles , Fagus/fisiología , Fagus/metabolismo , Fagus/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Árboles/fisiología , Árboles/metabolismo , Nitrógeno/metabolismo , Ciclo del Nitrógeno
3.
Physiol Plant ; 176(3): e14334, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38705836

RESUMEN

European beech is negatively affected by climate change and a further growth decline is predicted for large parts of its distribution range. Despite the importance of this species, little is known about its genetic adaptation and especially the genetic basis of its physiological traits. Here, we used genotyping by sequencing to identify SNPs in 43 German European beech populations growing under different environmental conditions. In total, 28 of these populations were located along a precipitation and temperature gradient in northern Germany, and single tree-based hydraulic and morphological traits were available. We obtained a set of 13,493 high-quality SNPs that were used for environmental and SNP-trait association analysis. In total, 22 SNPs were identified that were significantly associated with environmental variables or specific leaf area (SLA). Several SNPs were located in genes related to stress response. The majority of the significant SNPs were located in non-coding (intergenic and intronic) regions. These may be in linkage disequilibrium with the causative coding or regulatory regions. Our study gives insights into the genetic basis of abiotic adaptation in European beech, and provides genetic resources that can be used in future studies on this species. Besides clear patterns of local adaptation to environmental conditions of the investigated populations, the analyzed morphological and hydraulic traits explained most of the explainable genetic variation. Thus, they could successfully be altered in tree breeding programs, which may help to increase the adaptation of European beech to changing environmental conditions in the future.


Asunto(s)
Fagus , Estudio de Asociación del Genoma Completo , Hojas de la Planta , Polimorfismo de Nucleótido Simple , Fagus/genética , Fagus/fisiología , Polimorfismo de Nucleótido Simple/genética , Hojas de la Planta/genética , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Desequilibrio de Ligamiento/genética , Ambiente , Fenotipo , Genotipo , Alemania
4.
Glob Chang Biol ; 30(5): e17307, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709196

RESUMEN

Climate change effects on tree reproduction are poorly understood, even though the resilience of populations relies on sufficient regeneration to balance increasing rates of mortality. Forest-forming tree species often mast, i.e. reproduce through synchronised year-to-year variation in seed production, which improves pollination and reduces seed predation. Recent observations in European beech show, however, that current climate change can dampen interannual variation and synchrony of seed production and that this masting breakdown drastically reduces the viability of seed crops. Importantly, it is unclear under which conditions masting breakdown occurs and how widespread breakdown is in this pan-European species. Here, we analysed 50 long-term datasets of population-level seed production, sampled across the distribution of European beech, and identified increasing summer temperatures as the general driver of masting breakdown. Specifically, increases in site-specific mean maximum temperatures during June and July were observed across most of the species range, while the interannual variability of population-level seed production (CVp) decreased. The declines in CVp were greatest, where temperatures increased most rapidly. Additionally, the occurrence of crop failures and low seed years has decreased during the last four decades, signalling altered starvation effects of masting on seed predators. Notably, CVp did not vary among sites according to site mean summer temperature. Instead, masting breakdown occurs in response to warming local temperatures (i.e. increasing relative temperatures), such that the risk is not restricted to populations growing in warm average conditions. As lowered CVp can reduce viable seed production despite the overall increase in seed count, our results warn that a covert mechanism is underway that may hinder the regeneration potential of European beech under climate change, with great potential to alter forest functioning and community dynamics.


Asunto(s)
Cambio Climático , Fagus , Estaciones del Año , Temperatura , Fagus/crecimiento & desarrollo , Fagus/fisiología , Europa (Continente) , Semillas/crecimiento & desarrollo , Semillas/fisiología , Reproducción , Árboles/crecimiento & desarrollo , Árboles/fisiología , Polinización
5.
New Phytol ; 242(6): 2495-2509, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641748

RESUMEN

Extreme droughts can have long-lasting effects on forest community dynamics and species interactions. Yet, our understanding of how drought legacy modulates ecological relationships is just unfolding. We tested the hypothesis that leaf chemistry and herbivory show long-term responses to premature defoliation caused by an extreme drought event in European beech (Fagus sylvatica L.). For two consecutive years after the extreme European summer drought in 2018, we collected leaves from the upper and lower canopy of adjacently growing drought-stressed and unstressed trees. Leaf chemistry was analyzed and leaf damage by different herbivore-feeding guilds was quantified. We found that drought had lasting impacts on leaf nutrients and on specialized metabolomic profiles. However, drought did not affect the primary metabolome. Drought-related phytochemical changes affected damage of leaf-chewing herbivores whereas damage caused by other herbivore-feeding guilds was largely unaffected. Drought legacy effects on phytochemistry and herbivory were often weaker than between-year or between-canopy strata variability. Our findings suggest that a single extreme drought event bears the potential to long-lastingly affect tree-herbivore interactions. Drought legacy effects likely become more important in modulating tree-herbivore interactions since drought frequency and severity are projected to globally increase in the coming decades.


Asunto(s)
Sequías , Fagus , Herbivoria , Fitoquímicos , Hojas de la Planta , Fagus/fisiología , Herbivoria/fisiología , Hojas de la Planta/fisiología , Animales , Metaboloma
6.
Am J Bot ; 111(5): e16322, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641895

RESUMEN

PREMISE: Functional traits reflect species' responses to environmental variation and the breadth of their ecological niches. Fagus grandifolia and Oreomunnea mexicana have restricted distribution in upper montane cloud forests (1700-2000 m a.s.l.) in Mexico. These species were introduced into plantings at lower elevations (1200-1600 m a.s.l.) that have climates predicted for montane forests in 2050 and 2070. The aim was to relate morphological leaf traits to the ecological niche structure of each species. METHODS: Leaf functional traits (leaf area, specific leaf area [SLA], thickness, and toughness) were analyzed in forests and plantings. Atmospheric circulation models and representative concentration pathways (RCPs: 2.6, 4.5, 8.5) were used to assess future climate conditions. Trait-niche relationships were analyzed by measuring the Mahalanobis distance (MD) from the forests and the plantings to the ecological niche centroid (ENC). RESULTS: For both species, leaf area and SLA were higher and toughness lower in plantings at lower elevation relative to those in higher-elevation forests, and thickness was similar. Leaf traits varied with distance from sites to the ENC. Forests and plantings have different environmental locations regarding the ENC, but forests are closer (MD 0.34-0.58) than plantings (MD 0.50-0.70) for both species. CONCLUSIONS: Elevation as a proxy for expected future climate conditions influenced the functional traits of both species, and trait patterns related to the structure of their ecological niches were consistent. The use of distances to the ENC is a promising approach to explore variability in species' functional traits and phenotypic responses in optimal versus marginal environmental conditions.


Asunto(s)
Cambio Climático , Fagus , Bosques , Hojas de la Planta , Hojas de la Planta/fisiología , Hojas de la Planta/anatomía & histología , Fagus/fisiología , Fagus/anatomía & histología , México , Ecosistema
7.
Tree Physiol ; 44(5)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38662576

RESUMEN

To increase the resilience of forests to drought and other hazards, foresters are increasingly planting mixed stands. This requires knowledge about the drought response of tree species in pure and mixed-culture neighborhoods. In addition, drought frequently interacts with continued atmospheric nitrogen (N) deposition. To disentangle these factors for European beech, Norway spruce and Douglas fir, we conducted a replicated 3-factorial sapling growth experiment with three moisture levels, (high, medium, and low), two N levels (high and ambient), and pure and mixed-culture neighborhoods. We measured biomass, stomatal conductance (GS), shoot water potential (at predawn: ΨPD, midday, and turgor loss point: ΨTLP), branch xylem embolism resistance (Ψ50) and minimum epidermal conductance (Gmin). The three species differed most with respect to Gmin (10-fold higher in beech than in the conifers), hydroscape area (larger in beech), and the time elapsed to reach stomatal closure (TΨGS90) and ΨTLP (TTLP; shorter in beech), while Ψ50 and ΨTLP were remarkably similar. Neighborhood (pure vs mixed-culture) influenced biomass production, water status and hydraulic traits, notably GS (higher in Douglas fir, but lower in spruce and beech, in mixtures than pure culture), hydraulic safety margin (smaller for beech in mixtures), and TΨGS90 and TTLP (shorter for spruce in mixture). High N generally increased GS, but no consistent N effects on leaf water status and hydraulic traits were detected, suggesting that neighbor identity had a larger effect on plant water relations than N availability. We conclude that both tree neighborhood and N availability modulate the drought response of beech, spruce, and Douglas fir. Species mixing can alleviate the drought stress of some species, but often by disadvantaging other species. Thus, our study suggests that stabilizing and building resilience of production forests against a drier and warmer climate may depend primarily on the right species choice; species mixing can support the agenda.


Asunto(s)
Sequías , Fagus , Nitrógeno , Picea , Pseudotsuga , Árboles , Agua , Picea/fisiología , Picea/crecimiento & desarrollo , Fagus/fisiología , Fagus/crecimiento & desarrollo , Nitrógeno/metabolismo , Agua/metabolismo , Pseudotsuga/fisiología , Pseudotsuga/crecimiento & desarrollo , Árboles/fisiología , Árboles/crecimiento & desarrollo , Resistencia a la Sequía
8.
Nat Plants ; 10(3): 367-373, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38459130

RESUMEN

High interannual variation in seed production in perennial plants can be synchronized at subcontinental scales with wide consequences for ecosystem functioning, but how such synchrony is generated is unclear1-3. We investigated the factors contributing to masting synchrony in European beech (Fagus sylvatica), which extends to a geographic range of 2,000 km. Maximizing masting synchrony via spatial weather coordination, known as the Moran effect, requires a simultaneous response to weather conditions across distant populations. A celestial cue that occurs simultaneously across the entire hemisphere is the longest day (the summer solstice). We show that European beech abruptly opens its temperature-sensing window on the solstice, and hence widely separated populations all start responding to weather signals in the same week. This celestial 'starting gun' generates ecological events with high spatial synchrony across the continent.


Asunto(s)
Ecosistema , Fagus , Estaciones del Año , Tiempo (Meteorología) , Semillas/fisiología , Fagus/fisiología
9.
Sci Total Environ ; 919: 170726, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38331275

RESUMEN

The fraction of photosynthetically assimilated carbon that trees allocate to long-lasting woody biomass pools (biomass production efficiency - BPE), is a key metric of the forest carbon balance. Its apparent simplicity belies the complex interplay between underlying processes of photosynthesis, respiration, litter and fruit production, and tree growth that respond differently to climate variability. Whereas the magnitude of BPE has been routinely quantified in ecological studies, its temporal dynamics and responses to extreme events such as drought remain less well understood. Here, we combine long-term records of aboveground carbon increment (ACI) obtained from tree rings with stand-level gross primary productivity (GPP) from eddy covariance (EC) records to empirically quantify aboveground BPE (= ACI/GPP) and its interannual variability in two European beech forests (Hainich, DE-Hai, Germany; Sorø, DK-Sor, Denmark). We found significant negative correlations between BPE and a daily-resolved drought index at both sites, indicating that woody growth is de-prioritized under water limitation. During identified extreme years, early-season drought reduced same-year BPE by 29 % (Hainich, 2011), 31 % (Sorø, 2006), and 14 % (Sorø, 2013). By contrast, the 2003 late-summer drought resulted in a 17 % reduction of post-drought year BPE at Hainich. Across the entire EC period, the daily-to-seasonal drought response of BPE resembled that of ACI, rather than that of GPP. This indicates that BPE follows sink dynamics more closely than source dynamics, which appear to be decoupled given the distinctive climate response patterns of GPP and ACI. Based on our observations, we caution against estimating the magnitude and variability of the carbon sink in European beech (and likely other temperate forests) based on carbon fluxes alone. We also encourage comparable studies at other long-term EC measurement sites from different ecosystems to further constrain the BPE response to rare climatic events.


Asunto(s)
Ecosistema , Fagus , Biomasa , Fagus/fisiología , Sequías , Bosques , Carbono , Cambio Climático
10.
Sci Total Environ ; 912: 169068, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38049004

RESUMEN

The record-breaking drought in 2018 caused premature leaf discoloration and shedding (early browning) in many beech (Fagus sylvatica L.) dominated forests in Central Europe. However, a high degree of variability in drought response among individual beech trees was observed. While some trees were severely impacted by the prolonged water deficits and high temperatures, others remained vital with no or only minor signs of crown vitality loss. Why some beech trees were more susceptible to drought-induced crown damage than others and whether growth recovery is possible are poorly understood. Here, we aimed to identify growth characteristics associated with the variability in drought response between individual beech trees based on a sample of 470 trees in northern Switzerland. By combining tree growth measurements and crown condition assessments, we also investigated the possible link between crown dieback and growth recovery after drought. Beech trees with early browning exhibited an overall lower growth vigor before the 2018 drought than co-occurring vital beech trees. This lower vigor is mainly indicated by lower overall growth rates, stronger growth declines in the past decades, and higher growth-climate sensitivity. Particularly, warm previous year summer conditions negatively affected current growth of the early-browning trees. These findings suggest that the affected trees had less access to critical resources and were physiologically limited in their growth predisposing them to early browning. Following the 2018 drought, observed growth recovery potential corresponded to the amount of crown dieback and the local climatic water balance. Overall, our findings emphasize that beech-dominated forests in Central Europe are under increasing pressure from severe droughts, ultimately reducing the competitive ability of this species, especially on lowland sites with shallow soils and low water holding capacity.


Asunto(s)
Fagus , Fagus/fisiología , Sequías , Bosques , Estaciones del Año , Árboles , Agua
11.
Tree Physiol ; 44(1)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38070177

RESUMEN

Beneficial and negative effects of species interactions can strongly influence water fluxes in forest ecosystems. However, little is known about how trees dynamically adjust their water use when growing with interspecific neighbours. Therefore, we investigated the interaction effects between Fagus sylvatica (European beech) and Picea abies (Norway spruce) on water-use strategies and aboveground structural characteristics. We used continuous in situ isotope spectroscopy of xylem and soil water to investigate source water dynamics and root water uptake depths. Picea abies exhibited a reduced sun-exposed crown area in equally mixed compared with spruce-dominated sites, which was further correlated to a reduction in sap flow of -14.5 ± 8.2%. Contrarily, F. sylvatica trees showed +13.3 ± 33.3% higher water fluxes in equally mixed compared with beech-dominated forest sites. Although a significantly higher crown interference by neighbouring trees was observed, no correlation of water fluxes and crown structure was found. High time-resolved xylem δ2H values showed a large plasticity of tree water use (-74.1 to -28.5‰), reflecting the δ2H dynamics of soil and especially precipitation water sources. Fagus sylvatica in equally mixed sites shifted water uptake to deeper soil layers, while uptake of fresh precipitation was faster in beech-dominated sites. Our continuous in situ water stable isotope measurements traced root water uptake dynamics at unprecedented temporal resolution, indicating highly dynamic use of water sources in response to precipitation and to neighbouring species competition. Understanding this plasticity may be highly relevant in the context of increasing water scarcity and precipitation variability under climate change.


Asunto(s)
Fagus , Picea , Picea/fisiología , Fagus/fisiología , Ecosistema , Agua , Bosques , Árboles/fisiología , Suelo/química , Isótopos
12.
Plant Physiol ; 194(2): 741-757, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37874743

RESUMEN

Progressively warmer and drier climatic conditions impact tree phenology and carbon cycling with large consequences for forest carbon balance. However, it remains unclear how individual impacts of warming and drier soils differ from their combined effects and how species interactions modulate tree responses. Using mesocosms, we assessed the multiyear impact of continuous air warming and lower soil moisture alone or in combination on phenology, leaf-level photosynthesis, nonstructural carbohydrate concentrations, and aboveground growth of young European beech (Fagus sylvatica L.) and Downy oak (Quercus pubescens Willd.) trees. We further tested how species interactions (in monocultures and in mixtures) modulated these effects. Warming prolonged the growing season of both species but reduced growth in oak. In contrast, lower moisture did not impact phenology but reduced carbon assimilation and growth in both species. Combined impacts of warming and drier soils did not differ from their single effects. Under warmer and drier conditions, performances of both species were enhanced in mixtures compared to monocultures. Our work revealed that higher temperature and lower soil moisture have contrasting impacts on phenology vs. leaf-level assimilation and growth, with the former being driven by temperature and the latter by moisture. Furthermore, we showed a compensation in the negative impacts of chronic heat and drought by tree species interactions.


Asunto(s)
Fagus , Quercus , Estaciones del Año , Suelo/química , Carbono , Fagus/fisiología , Quercus/fisiología , Árboles
13.
Tree Physiol ; 43(10): 1718-1730, 2023 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-37364048

RESUMEN

The current state of knowledge on bud dormancy is limited. However, expanding such knowledge is crucial in order to properly model forest responses and feedback to future climate. Recent studies have shown that warming can decrease chilling accumulation and increase dormancy depth, thereby inducing delayed budburst in European beech (Fagus sylvatica L). Whether fall warming can advance spring phenology is unclear. To investigate the effect of warming on endodormancy of deciduous trees, we tested the impact of mild elevated temperature (+2.5-3.5 °C; temperature, on average, kept at 10 °C) in mid and late autumn on the bud dormancy depth and spring phenology of beech. We studied saplings by inducing periods of warming in greenhouses over a 2-year period. Even though warming reduced chilling accumulation in both years, we observed that the response of dormancy depth and spring budburst were year-specific. We found that warming during endodormancy peak could decrease the bud dormancy depth and therefore advance spring budburst. This effect appears to be modulated by factors such as the date of senescence onset and forcing intensity during endodormancy. Results from this study suggest that not only chilling but also forcing controls bud development during endodormancy and that extra forcing in autumn can offset reduced chilling.


Asunto(s)
Fagus , Fagus/fisiología , Estaciones del Año , Temperatura , Clima , Árboles/fisiología
14.
Sci Total Environ ; 891: 164398, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37244616

RESUMEN

Ozone (O3) is an air pollutant that is toxic to trees. O3 reduces steady-state net photosynthetic rate (A), and the adverse effects of O3 are mitigated under elevated CO2 condition. However, the combined effects of O3 and elevated CO2 on dynamic photosynthesis under variable light conditions have not yet been clarified. In this study, we investigated the effects of O3 and elevated CO2 on dynamic photosynthesis in the leaves of Fagus crenata seedlings under variable light conditions. The seedlings were grown under four gas treatments comprising two levels of O3 concentration (lower and two times higher than the ambient O3 concentration) and two levels of CO2 concentration (ambient and 700 ppm). Although O3 significantly decreased steady-state A under ambient CO2 concentrations, no significant decrease was observed under elevated CO2 concentrations, indicating the mitigating effect of elevated CO2 on O3-induced adverse effects on steady-state A. During photosynthetic induction, the response of A to the change in photosynthetic photon flux density (PPFD) from 50 (low light) to 1000 µmol m-2 s-1 (high light) showed that the increase in A was slowed by O3 and accelerated by elevated CO2. Under fluctuating light condition of repeating low light for 4 min and high light for 1 min, A at end of each high light period gradually decreased in all treatments, and O3 and elevated CO2 accelerated the reduction of A. In contrast to steady-state A, no mitigating effect of elevated CO2 was observed for any parameters related to dynamic photosynthesis. We conclude that the combined effects of O3 and elevated CO2 on A of F. crenata are different under steady-state and variable light conditions, and the O3-induced decrease in leaf A may not be mitigated by elevated CO2 in the field under variable light conditions.


Asunto(s)
Fagus , Ozono , Dióxido de Carbono/toxicidad , Fagus/fisiología , Plantones , Ozono/toxicidad , Fotosíntesis , Hojas de la Planta/fisiología
15.
Glob Chang Biol ; 29(16): 4595-4604, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37177909

RESUMEN

Climate warming increases tree mortality which will require sufficient reproduction to ensure population viability. However, the response of tree reproduction to climate change remains poorly understood. Warming can reduce synchrony and interannual variability of seed production ("masting breakdown") which can increase seed predation and decrease pollination efficiency in trees. Here, using 40 years of observations of individual seed production in European beech (Fagus sylvatica), we showed that masting breakdown results in declining viable seed production over time, in contrast to the positive trend apparent in raw seed count data. Furthermore, tree size modulates the consequences of masting breakdown on viable seed production. While seed predation increased over time mainly in small trees, pollination efficiency disproportionately decreased in larger individuals. Consequently, fecundity declined over time across all size classes, but the overall effect was greatest in large trees. Our study showed that a fundamental biological relationship-correlation between tree size and viable seed production-has been reversed as the climate has warmed. That reversal has diverse consequences for forest dynamics; including for stand- and biogeographical-level dynamics of forest regeneration. The tree size effects suggest management options to increase forest resilience under changing climates.


Asunto(s)
Fagus , Árboles , Humanos , Árboles/fisiología , Polinización , Fagus/fisiología , Reproducción , Bosques , Semillas
16.
Sci Total Environ ; 880: 163114, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37011694

RESUMEN

Prolonged drought and susceptibility to biotic stressors induced an extensive calamity in Norway spruce (Picea abies (L.) Karst.) and widespread crown defoliation in European beech (Fagus sylvatica L.) in Central Europe. For future management decisions, it is crucial to link changes in canopy cover to site conditions. However, current knowledge on the role of soil properties for drought-induced forest disturbance is limited due to the scarcity and low spatial resolution of soil information. We present a fine-scale assessment on the role of soil properties for forest disturbance in Norway spruce and European beech derived from optical remote sensing. A forest disturbance modeling framework based on Sentinel-2 time series was applied on 340 km2 in low mountain ranges of Central Germany. Spatio-temporal information on forest disturbance was calculated at 10 m spatial resolution in the period 2019-2021 and intersected with high-resolution soil information (1:10,000) based on roughly 2850 soil profiles. We found distinct differences in disturbed area, depending on soil type, texture, stoniness, effective rooting depth and available water capacity (AWC). For spruce, we found a polynomial relationship between AWC (R2 = 0.7) and disturbance, with highest disturbed area (65 %) for AWC between 90 and 160 mm. Interestingly, we found no evidence for generally higher disturbance on shallow soils, although stands on the deepest soils were significantly less affected. Noteworthy, sites affected first did not necessarily exhibit highest proportions of disturbed area post-drought, indicating recovery or adaptation. We conclude that site- and species-specific understanding of drought impacts benefits from a combination of remote sensing and fine-scale soil information. Since our approach revealed which sites were affected first and most, it qualifies for prioritizing in situ monitoring activities to most vulnerable stands in acute drought conditions as well as for developing long-term strategies for reforestation and site-specific risk assessment for precision forestry.


Asunto(s)
Fagus , Picea , Agricultura Forestal , Sequías , Suelo , Tecnología de Sensores Remotos , Europa (Continente) , Picea/fisiología , Fagus/fisiología , Agua , Árboles/fisiología
17.
Sci Total Environ ; 873: 162266, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36822431

RESUMEN

Mixed forest stands tend to be more resistant to drought than species-specific stands partially due to complementarity in root ecology and physiology. We asked whether complementary differences in the drought resistance of soil microbiomes might contribute to this phenomenon. We experimented on the effects of reduced soil moisture on bacterial and fungal community composition in species-specific (single species) and mixed-species root zones of Norway spruce and European beech forests in a 5-year-old throughfall-exclusion experiment and across seasonal (spring-summer-fall) and latitudinal moisture gradients. Bacteria were most responsive to changes in soil moisture, especially members of Rhizobiales, while fungi were largely unaffected, including ectomycorrhizal fungi (EMF). Community resistance was higher in spruce relative to beech root zones, corresponding with the proportions of drought-favored (more in spruce) and drought-sensitive bacterial taxa (more in beech). The spruce soil microbiome also exhibited greater resistance to seasonal changes between spring (wettest) and fall (driest). Mixed-species root zones contained a hybrid of beech- and spruce-associated microbiomes. Several bacterial populations exhibited either enhanced resistance or greater susceptibility to drought in mixed root zones. Overall, patterns in the relative abundances of soil bacteria closely tracked moisture in seasonal and latitudinal precipitation gradients and were more predictive of soil water content than other environmental variables. We conclude that complementary differences in the drought resistance of soil microbiomes can occur and the likeliest form of complementarity in mixed-root zones coincides with the enrichment of drought-tolerant bacteria associated with spruce and the sustenance of EMF by beech.


Asunto(s)
Fagus , Micorrizas , Picea , Suelo , Bosques , Estaciones del Año , Fagus/fisiología , Bacterias , Árboles/fisiología , Picea/fisiología
18.
Sci Total Environ ; 868: 161601, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36646222

RESUMEN

Against the backdrop of global change, the intensity, duration, and frequency of droughts are projected to increase and threaten forest ecosystems worldwide. Tree responses to drought are complex and likely to vary among species, drought characteristics, and site conditions. Here, we examined the drought response patterns of three major temperate tree species, s. fir (Abies alba), E. beech (Fagus sylvatica), and N. spruce (Picea abies), along an ecological gradient in the South - Central - East part of Germany that included a total of 37 sites with varying climatic and soil conditions. We relied on annual tree-ring data to assess the influence of different drought characteristics and (micro-) site conditions on components of tree resilience and to detect associated temporal changes. Our study revealed that nutrient regime, drought frequency, and hydraulic conditions in the previous and subsequent years were the main determinants of drought responses, with pronounced differences among species. Specifically, we found that (a) higher drought frequency was associated with higher resistance and resilience for N. spruce and E. beech; (b) more favorable climatic conditions in the two preceding and following years increased drought resilience and determined recovery potential of E. beech after extreme drought; (c) a site's nutrient regime, rather than micro-site differences in water availability, determined drought responses, with trees growing on sites with a balanced nutrient regime having a higher capacity to withstand extreme drought stress; (d) E. beech and N. spruce experienced a long-term decline in resilience. Our results indicate that trees under extreme drought stress benefit from a balanced nutrient supply and highlight the relevance of water availability immediately after droughts. Observed long-term trends confirm that N. spruce is suffering from persistent climatic changes, while s. fir is coping better. These findings might be especially relevant for monitoring, scenario analyses, and forest ecosystem management.


Asunto(s)
Fagus , Picea , Árboles/fisiología , Ecosistema , Sequías , Cambio Climático , Bosques , Picea/fisiología , Fagus/fisiología , Agua
19.
Sci Total Environ ; 867: 161554, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36640874

RESUMEN

Determining the age of landslide events is crucial for determining landslide risk, triggers, and also for predicting future landslide occurrence. Currently, the most accurate method for dating historical landslide events is dendrogeomorphic analysis. Unfortunately, the standard use of macroscopic growth responses of damaged trees for dating landslide activity suffers from many shortcomings. Thus, the aim of this study is to analyze in detail the growth response of trees to landslide movements at the anatomical level, a completely groundbreaking methodological approach. Ten specimens of European beech (Fagus sylvatica L.) were analyzed at two sampling heights, growing in two morphologically contrasting zones of the landslide area. Detailed anatomical analysis was focused on changes in morphometric parameters of the vessels and in the number of radial rays. The period (2008-2012) with the occurrence of the largest landslide movement (2010) recorded by long-term monitoring was analyzed. The results obtained revealed different anatomical responses in trees growing in different morphological zones of landslide. The tree responses on the ridge corresponded to the manifestations of tension wood formation, which corresponded to the stem tilting due to the landslide block movement. In the case of the trees in the trenches, root damage due to the subsidence of the landslide block blocked the flux of phytohormones, and their accumulation caused a significant reduction in the parameters of vessels and an increase in the number of rays. The study also includes recommendations in the future application of anatomical analyses in landslide research resulting from the obtained results. Thus, the obtained findings will improve the acquisition of chronological data for the purpose of landslide risk assessment.


Asunto(s)
Fagus , Deslizamientos de Tierra , Fagus/fisiología , Árboles , Madera
20.
Ecol Appl ; 33(2): e2786, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36477972

RESUMEN

Recent ecological research suggests that, in general, mixtures are more resistant to insect herbivores and pathogens than monocultures. However, we know little about mixtures with non-native trees, where enemy release could lead to patterns that differ from commonly observed relationships among native species. This becomes particularly relevant when considering that adaptation strategies to climate change increasingly promote a larger share of non-native tree species, such as North American Douglas fir in Central Europe. We studied leaf damage on European beech (Fagus sylvatica) saplings and mature trees across a wide range of site conditions in monocultures and mixtures with phylogenetically distant conifers native Norway spruce (Picea abies) and non-native Douglas fir (Pseudotsuga menziesii). We analyzed leaf herbivory and pathogen damage in relation to tree diversity and composition effects, as well as effects of environmental factors and plant characteristics. We observed lower sapling herbivory and tree sucking damage on beech in non-native Douglas fir mixtures than in beech monocultures, probably due to a lower herbivore diversity on Douglas fir trees, and higher pathogen damage on beech saplings in Norway spruce than Douglas fir mixtures, possibly because of higher canopy openness. Our findings suggest that for low diversity gradients, tree diversity effects on leaf damage can strongly depend on tree species composition, in addition to modifications caused by feeding guild and tree ontogeny. Moreover, we found that nutrient capacity modulated the effects of tree diversity, composition, and environmental factors, with different responses in sites with low or high nutrient capacity. The existence of contrasting diversity effects based on tree species composition provides important information on our understanding of the relationships between tree diversity and plant-herbivore interactions in light of non-native tree species introductions. Especially with recent Norway spruce die-off, the planting of Douglas fir as replacement is likely to strongly increase in Central Europe. Our findings suggest that mixtures with Douglas fir could benefit the survival or growth rates of beech saplings and mature trees due to lower leaf damage, emphasizing the need to clearly identify and compare the potential benefits and ecological trade-offs of non-native tree species in forest management under ongoing environmental change.


Asunto(s)
Fagus , Picea , Pseudotsuga , Árboles/fisiología , Fagus/fisiología , Pseudotsuga/fisiología , Bosques , Picea/fisiología , Hojas de la Planta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...