Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 498
Filtrar
1.
Commun Biol ; 7(1): 991, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143151

RESUMEN

Liver fibrosis progressing to cirrhosis is a major risk factor for liver cancer, impacting surgical treatment and survival. Our study focuses on the role of extracellular nicotinamide adenine dinucleotide (eNAD+) in liver fibrosis, analyzing liver disease patients undergoing surgery. Additionally, we explore NAD+'s therapeutic potential in a mouse model of extended liver resection and in vitro using 3D hepatocyte spheroids. eNAD+ correlated with aspartate transaminase (AST) and bilirubin after liver resection (AST: r = 0.2828, p = 0.0087; Bilirubin: r = 0.2584, p = 0.0176). Concordantly, post-hepatectomy liver failure (PHLF) was associated with higher eNAD+ peaks (n = 10; p = 0.0063). Post-operative eNAD+ levels decreased significantly (p < 0.05), but in advanced stages of liver fibrosis or cirrhosis, this decline not only diminished but actually showed a trend towards an increase. The expression of NAD+ biosynthesis rate-limiting enzymes, nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide mononucleotide adenylyltransferase 3 (NMNAT3), were upregulated significantly in the liver tissue of patients with higher liver fibrosis stages (p < 0.0001). Finally, the administration of NAD+ in a 3D hepatocyte spheroid model rescued hepatocytes from TNFalpha-induced cell death and improved viability (p < 0.0001). In a mouse model of extended liver resection, NAD+ treatment significantly improved survival (p = 0.0158) and liver regeneration (p = 0.0186). Our findings reveal that eNAD+ was upregulated in PHLF, and rate-limiting enzymes of NAD+ biosynthesis demonstrated higher expressions under liver fibrosis. Further, eNAD+ administration improved survival after extended liver resection in mice and enhanced hepatocyte viability in vitro. These insights may offer a potential target for future therapies.


Asunto(s)
Hepatectomía , Fallo Hepático , NAD , NAD/metabolismo , Animales , Humanos , Ratones , Fallo Hepático/etiología , Fallo Hepático/metabolismo , Fallo Hepático/patología , Fallo Hepático/cirugía , Masculino , Hepatocitos/metabolismo , Persona de Mediana Edad , Femenino , Ratones Endogámicos C57BL , Cirrosis Hepática/metabolismo , Cirrosis Hepática/cirugía , Modelos Animales de Enfermedad , Anciano
2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000266

RESUMEN

Liver resection (LR) is the primary treatment for hepatic tumors, yet posthepatectomy liver failure (PHLF) remains a significant concern. While the precise etiology of PHLF remains elusive, dysregulated inflammatory processes are pivotal. Therefore, we explored the theragnostic potential of extracellular high-mobility-group-box protein 1 (HMGB1), a key damage-associated molecular pattern (DAMP) released by hepatocytes, in liver recovery post LR in patients and animal models. Plasma from 96 LR patients and liver tissues from a subset of 24 LR patients were analyzed for HMGB1 levels, and associations with PHLF and liver injury markers were assessed. In a murine LR model, the HMGB1 inhibitor glycyrrhizin, was administered to assess its impact on liver regeneration. Furthermore, plasma levels of keratin-18 (K18) and cleaved cytokeratin-18 (ccK18) were quantified to assess suitability as predictive biomarkers for PHLF. Patients experiencing PHLF exhibited elevated levels of intrahepatic and circulating HMGB1, correlating with markers of liver injury. In a murine LR model, inhibition of HMGB1 improved liver function, reduced steatosis, enhanced regeneration and decreased hepatic cell death. Elevated levels of hepatic cell death markers K18 and ccK18 were detected in patients with PHLF and correlations with levels of circulating HMGB1 was observed. Our study underscores the therapeutic and predictive potential of HMGB1 in PHLF mitigation. Elevated HMGB1, K18, and ccK18 levels correlate with patient outcomes, highlighting their predictive significance. Targeting HMGB1 enhances liver regeneration in murine LR models, emphasizing its role in potential intervention and prediction strategies for liver surgery.


Asunto(s)
Proteína HMGB1 , Hepatectomía , Fallo Hepático , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Biomarcadores , Muerte Celular , Modelos Animales de Enfermedad , Ácido Glicirrínico/farmacología , Hepatectomía/efectos adversos , Hepatocitos/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/sangre , Queratina-18/metabolismo , Queratina-18/sangre , Hígado/metabolismo , Hígado/patología , Fallo Hepático/etiología , Fallo Hepático/metabolismo , Fallo Hepático/patología , Regeneración Hepática , Ratones Endogámicos C57BL
3.
Cell Stem Cell ; 31(4): 484-498.e5, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38458193

RESUMEN

Alginate-encapsulated hepatocyte transplantation is a promising strategy to treat liver failure. However, its clinical application was impeded by the lack of primary human hepatocytes and difficulty in controlling their quality. We previously reported proliferating human hepatocytes (ProliHHs). Here, quality-controlled ProliHHs were produced in mass and engineered as liver organoids to improve their maturity. Encapsulated ProliHHs liver organoids (eLO) were intraperitoneally transplanted to treat liver failure animals. Notably, eLO treatment increased the survival of mice with post-hepatectomy liver failure (PHLF) and ameliorated hyperammonemia and hypoglycemia by providing liver functions. Additionally, eLO treatment protected the gut from PHLF-augmented permeability and normalized the increased serum endotoxin and inflammatory response, which facilitated liver regeneration. The therapeutic effect of eLO was additionally proved in acetaminophen-induced liver failure. Furthermore, we performed assessments of toxicity and biodistribution, demonstrating that eLO had no adverse effects on animals and remained non-tumorigenic.


Asunto(s)
Fallo Hepático Agudo , Fallo Hepático , Humanos , Ratones , Animales , Fallo Hepático Agudo/terapia , Fallo Hepático Agudo/inducido químicamente , Distribución Tisular , Células Cultivadas , Hepatocitos , Hígado , Fallo Hepático/terapia , Fallo Hepático/metabolismo , Organoides/metabolismo
4.
Adv Sci (Weinh) ; 11(16): e2305715, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417117

RESUMEN

Drug-induced liver injury (DILI) is a significant global health issue that poses high mortality and morbidity risks. One commonly observed cause of DILI is acetaminophen (APAP) overdose. GSDME is an effector protein that induces non-canonical pyroptosis. In this study, the activation of GSDME, but not GSDMD, in the liver tissue of mice and patients with APAP-DILI is reported. Knockout of GSDME, rather than GSDMD, in mice protected them from APAP-DILI. Mice with hepatocyte-specific rescue of GSDME reproduced APAP-induced liver injury. Furthermore, alterations in the immune cell pools observed in APAP-induced DILI, such as the replacement of TIM4+ resident Kupffer cells (KCs) by monocyte-derived KCs, Ly6C+ monocyte infiltration, MerTk+ macrophages depletion, and neutrophil increase, reappeared in mice with hepatocyte-specific rescue of GSDME. Mechanistically, APAP exposure led to a substantial loss of interferon-stimulated gene 15 (ISG15), resulting in deISGylation of carbamoyl phosphate synthetase-1 (CPS1), promoted its degradation via K48-linked ubiquitination, causing ammonia clearance dysfunction. GSDME deletion prevented these effects. Delayed administration of dimethyl-fumarate inhibited GSDME cleavage and alleviated ammonia accumulation, mitigating liver injury. This findings demonstrated a previously uncharacterized role of GSDME in APAP-DILI by promoting pyroptosis and CPS1 deISGylation, suggesting that inhibiting GSDME can be a promising therapeutic option for APAP-DILI.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Gasderminas , Piroptosis , Animales , Humanos , Masculino , Ratones , Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Modelos Animales de Enfermedad , Fallo Hepático/metabolismo , Fallo Hepático/inducido químicamente , Ratones Endogámicos C57BL , Ratones Noqueados , Piroptosis/efectos de los fármacos
5.
Redox Biol ; 69: 103019, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38163420

RESUMEN

Hepatic encephalopathy (HE) is often associated with endogenous serotonin (5-HT) disorders. However, the reason for elevated brain 5-HT levels due to liver failure remains unclear. This study aimed to investigate the mechanism by which liver failure increases brain 5-HT levels and the role in behavioral abnormalities in HE. Using bile duct ligation (BDL) rats as a HE model, we verified the elevated 5-HT levels in the cortex but not in the hippocampus and striatum, and found that this cortical 5-HT overload may be caused by BDL-mediated inhibition of UDP-glucuronosyltransferase 1A6 (UGT1A6) expression and activity in the cortex. The intraventricular injection of the UGT1A6 inhibitor diclofenac into rats demonstrated that the inhibition of brain UGT1A6 activity significantly increased cerebral 5-HT levels and induced HE-like behaviors. Co-immunofluorescence experiments demonstrated that UGT1A6 is primarily expressed in astrocytes. In vitro studies confirmed that NH4Cl activates the ROS-ERK pathway to downregulate UGT1A6 activity and expression in U251 cells, which can be reversed by the oxidative stress antagonist N-acetyl-l-cysteine and the ERK inhibitor U0126. Silencing Hepatocyte Nuclear Factor 4α (HNF4α) suppressed UGT1A6 expression whilst overexpressing HNF4α increased Ugt1a6 promotor activity. Meanwhile, both NH4Cl and the ERK activator TBHQ downregulated HNF4α and UGT1A6 expression. In the cortex of hyperammonemic rats, we also found activation of the ROS-ERK pathway, decreases in HNF4α and UGT1A6 expression, and increases in brain 5-HT content. These results prove that the ammonia-mediated ROS-ERK pathway activation inhibits HNF4α expression to downregulate UGT1A6 expression and activity, thereby increasing cerebral 5-HT content and inducing manic-like HE symptoms. This is the first study to reveal the mechanism of elevated cortical 5-HT concentration in a state of liver failure and elucidate its association with manic-like behaviors in HE.


Asunto(s)
Fallo Hepático , Serotonina , Animales , Ratas , Amoníaco/metabolismo , Conductos Biliares/cirugía , Conductos Biliares/metabolismo , Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Fallo Hepático/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serotonina/metabolismo
6.
Cell Mol Gastroenterol Hepatol ; 17(3): 453-479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37993018

RESUMEN

BACKGROUND & AIMS: HNF4α, a master regulator of liver development and the mature hepatocyte phenotype, is down-regulated in chronic and inflammatory liver disease. We used contemporary transcriptomics and epigenomics to study the cause and effects of this down-regulation and characterized a multicellular etiology. METHODS: Progressive changes in the rat carbon tetrachloride model were studied by deep RNA sequencing and genome-wide chromatin immunoprecipitation sequencing analysis of transcription factor (TF) binding and chromatin modification. Studies compared decompensated cirrhosis with liver failure after 26 weeks of treatment with earlier compensated cirrhosis and with additional rat models of chronic fibrosis. Finally, to resolve cell-specific responses and intercellular signaling, we compared transcriptomes of liver, nonparenchymal, and inflammatory cells. RESULTS: HNF4α was significantly lower in 26-week cirrhosis, part of a general reduction of TFs that regulate metabolism. Nevertheless, increased binding of HNF4α contributed to strong activation of major phenotypic genes, whereas reduced binding to other genes had a moderate phenotypic effect. Decreased Hnf4a expression was the combined effect of STAT3 and nuclear factor kappa B (NFκB) activation, which similarly reduced expression of other metabolic TFs. STAT/NFκB also induced de novo expression of Osmr by hepatocytes to complement induced expression of Osm by nonparenchymal cells. CONCLUSIONS: Liver decompensation by inflammatory STAT3 and NFκB signaling was not a direct consequence of progressive cirrhosis. Despite significant reduction of Hnf4a expression, residual levels of this abundant TF still stimulated strong new gene expression. Reduction of HNF4α was part of a broad hepatocyte transcriptional response to inflammation.


Asunto(s)
Factor Nuclear 4 del Hepatocito , Fallo Hepático , Animales , Ratas , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , Cirrosis Hepática/patología , Fallo Hepático/metabolismo
7.
In Vitro Cell Dev Biol Anim ; 59(10): 747-763, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38110841

RESUMEN

The present study aimed to develop viable liver organoids using decellularized native liver scaffolds and evaluate the efficacy of human liver organoid transplantation in a rabbit model of cirrhosis. Liver organoids were formed by coculture of hepatocyte-like cells derived from the human-induced pluripotent stem cells with three other cell types. Twelve 3-mo-old New Zealand White Rabbits underwent a sham operation, bile duct ligation, or biliary duct ligation followed by liver organoid transplantation. Liver organoid structure and function before and after transplantation were evaluated using histological and molecular analyses. A survival analysis using the Kaplan-Meier method was performed to determine the cumulative probability of survival according to liver organoid transplantation with significantly greater overall survival observed in rabbits that underwent liver organoid transplantation (P = 0.003, log-rank test). The short-term group had higher hepatic expression levels of ALB and CYP3A mRNA and lower expression levels of AST mRNA compared to the long-term group. The short-term group also had lower collagen deposition in liver tissues. Transplantation of human liver organoids cocultured in decellularized native liver scaffold into rabbits that had undergone bile duct ligation improved short-term survival and hepatic function. The results of the present study highlight the potential of liver organoid transplantation as a bridging therapy in liver failure; however, rejection and poor liver organoid function may limit the long-term efficacy of this therapeutic approach.


Asunto(s)
Fallo Hepático , Hígado , Conejos , Humanos , Animales , Técnicas de Cocultivo , Fallo Hepático/metabolismo , Organoides , ARN Mensajero/metabolismo
8.
Inflammation ; 46(5): 1602-1611, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37490221

RESUMEN

Liver injury is a common pathological basis for various liver diseases. Chronic liver injury is often an important initiating factor in liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Currently, hepatitis A and E infections are the most common causes of acute liver injury worldwide, whereas drug toxicity (paracetamol overdose) in the USA and part of Western Europe. In recent years, chronic liver injury has become a common disease that harms human health. Meanwhile, the main causes of chronic liver injury are viral hepatitis (B, C) and long-term alcohol consumption worldwide. During the process of liver injury, massive inflammatory cytokines are stimulated by these hazardous factors, leading to a systemic inflammatory response syndrome, followed by a compensatory anti-inflammatory response, which causes immune cell dysfunction and sepsis, subsequent multi-organ failure. Cytokine release and immune cell infiltration-mediated aseptic inflammation are the most important features of the pathobiology of liver failure. From this perspective, diminishing the onset and progression of liver inflammation is of clinical importance in the treatment of liver injury. Although many studies have hinted at the critical role of nerves in regulating inflammation, there largely remains undetermined how hepatic nerves mediate immune inflammation and how the inflammatory factors released by these nerves are involved in the process of liver injury. Therefore, the purpose of this article is to summarize previous studies in the field related to hepatic nerve and inflammation as well as future perspectives on the aforementioned questions. Our findings were presented in three aspects: types of nerve distribution in the liver, how these nerves regulate immunity, and the role of liver nerves in hepatitis and liver failure.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis , Fallo Hepático , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Hígado/metabolismo , Hepatitis/metabolismo , Cirrosis Hepática/complicaciones , Inflamación/metabolismo , Fallo Hepático/complicaciones , Fallo Hepático/metabolismo , Fallo Hepático/patología , Citocinas/metabolismo
9.
Lasers Surg Med ; 55(7): 690-701, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37300892

RESUMEN

OBJECTIVES: Currently, one of the most pressing issues for surgeons in the treatment of obstructive jaundice is the ability to assess the functional state of the liver and to detect and determine the degree of liver failure in a timely manner with simple and objective techniques. In this regard, the use of fluorescence spectroscopy method can be considered as one of the ways to improve the informativity of existing diagnostic algorithms in clinical practice and to introduce new diagnostic tools. Thus, the aim of the work was to study in vivo the functional state of liver parenchyma by the method of fluorescence spectroscopy implemented through a needle probe and assess the contribution of the main tissue fluorophores to reveal new diagnostic criteria. MATERIALS AND METHODS: We compared data from 20 patients diagnosed with obstructive jaundice and 11 patients without this syndrome. Measurements were performed using a fluorescence spectroscopy method at excitation wavelengths of 365 and 450 nm. Data were collected using a 1 mm fiber optic needle probe. The analysis was based on the comparison of the results of deconvolution with the combinations of Gaussian curves reflecting the contribution of the pure fluorophores in the liver tissues. RESULTS: The results showed a statistically significant increase in the contribution of curves reflecting NAD(P)H fluorescence, bilirubin, and flavins in the group of patients with obstructive jaundice. This and the calculated redox ratio values indicated that the energy metabolism of the hepatocytes may have shifted to glycolysis due to hypoxia. An increase in vitamin A fluorescence was also observed. It may also serve as a marker of liver damage, indicating impaired vitamin A mobilization from the liver due to cholestasis. CONCLUSIONS: The results obtained reflect changes associated with shifts in the content of the main fluorophores characterizing hepatocyte dysfunction caused by accumulation of bilirubin and bile acids and after disturbance of oxygen utilization. The contributions of NAD(P)H, flavins, and bilirubin as well as vitamin A can be used for further studies as promising diagnostic and prognostic markers for the course of liver failure. Further work will include collecting fluorescence spectroscopy data in patients with different clinical effects of obstructive jaundice on postoperative clinical outcome after biliary decompression.


Asunto(s)
Ictericia Obstructiva , Fallo Hepático , Humanos , Ictericia Obstructiva/etiología , Ictericia Obstructiva/metabolismo , Fluorescencia , Vitamina A/metabolismo , NAD/metabolismo , Hígado/diagnóstico por imagen , Bilirrubina/metabolismo , Fallo Hepático/complicaciones , Fallo Hepático/metabolismo , Flavinas/metabolismo
10.
Minerva Anestesiol ; 89(7-8): 690-706, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37079286

RESUMEN

Liver failure includes distinct subgroups of diseases: Acute liver failure (ALF) without preexisting cirrhosis, acute-on-chronic liver failure (ACLF) (severe form of cirrhosis associated with organ failures and excess mortality), and liver fibrosis (LF). Inflammation plays a key role in ALF, LF, and more specifically in ACLF for which we have currently no treatment other than liver transplantation (LT). The increasing incidence of marginal liver grafts and the shortage of liver grafts require us to consider strategies to increase the quantity and quality of available liver grafts. Mesenchymal stromal cells (MSCs) have shown beneficial pleiotropic properties with limited translational potential due to the pitfalls associated with their cellular nature. MSC-derived extracellular vesicles (MSC-EVs) are innovative cell-free therapeutics for immunomodulation and regenerative purposes. MSC-EVs encompass further advantages: pleiotropic effects, low immunogenicity, storage stability, good safety profile, and possibility of bioengineering. Currently, no human studies explored the impact of MSC-EVs on liver disease, but several preclinical studies highlighted their beneficial effects. In ALF and ACLF, data showed that MSC-EVs attenuate hepatic stellate cells activation, exert antioxidant, anti-inflammatory, anti-apoptosis, anti-ferroptosis properties, and promote regeneration of the liver, autophagy, and improve metabolism through mitochondrial function recovery. In LF, MSC-EVs demonstrated anti-fibrotic properties associated with liver tissue regeneration. Normothermic-machine perfusion (NMP) combined with MSC-EVs represents an attractive therapy to improve liver regeneration before LT. Our review suggests a growing interest in MSC-EVs in liver failure and gives an appealing insight into their development to rehabilitate marginal liver grafts through NMP.


Asunto(s)
Vesículas Extracelulares , Fallo Hepático , Trasplante de Hígado , Células Madre Mesenquimatosas , Humanos , Fallo Hepático/metabolismo , Cirrosis Hepática , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Células Madre Mesenquimatosas/metabolismo
11.
J Thromb Haemost ; 21(9): 2430-2440, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37054919

RESUMEN

BACKGROUND: Patients with acetaminophen (APAP)-induced acute liver failure (ALF) display both hyper- and hypocoagulable changes not necessarily recapitulated by standard hepatotoxic doses of APAP used in mice (eg, 300 mg/kg). OBJECTIVES: We sought to examine coagulation activation in vivo and plasma coagulation potential ex vivo in experimental settings of APAP-induced hepatotoxicity and repair (300-450 mg/kg) and APAP-induced ALF (600 mg/kg) in mice. RESULTS: APAP-induced ALF was associated with increased plasma thrombin-antithrombin complexes, decreased plasma prothrombin, and a dramatic reduction in plasma fibrinogen compared with lower APAP doses. Hepatic fibrin(ogen) deposits increased independent of APAP dose, whereas plasma fibrin(ogen) degradation products markedly increased in mice with experimental ALF. Early pharmacologic anticoagulation (+2 hours after 600 mg/kg APAP) limited coagulation activation and reduced hepatic necrosis. The marked coagulation activation evident in mice with APAP-induced ALF was associated with a coagulopathy detectable ex vivo in plasma. Specifically, prolongation of the prothrombin time and inhibition of tissue factor-initiated clot formation were evident even after restoration of physiological fibrinogen concentrations. Plasma endogenous thrombin potential was similarly reduced at all APAP doses. Interestingly, in the presence of ample fibrinogen, ∼10 times more thrombin was required to clot plasma from mice with APAP-induced ALF compared with plasma from mice with simple hepatotoxicity. CONCLUSION: The results indicate that robust pathologic coagulation cascade activation in vivo and suppressed coagulation ex vivo are evident in mice with APAP-induced ALF. This unique experimental setting may fill an unmet need as a model to uncover mechanistic aspects of the complex coagulopathy of ALF.


Asunto(s)
Trastornos de la Coagulación Sanguínea , Enfermedad Hepática Inducida por Sustancias y Drogas , Fallo Hepático , Ratones , Animales , Acetaminofén/metabolismo , Trombina/metabolismo , Fallo Hepático/metabolismo , Fallo Hepático/patología , Hígado/metabolismo , Fibrina/metabolismo , Trastornos de la Coagulación Sanguínea/inducido químicamente , Trastornos de la Coagulación Sanguínea/metabolismo , Fibrinógeno/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Ratones Endogámicos C57BL
12.
Cancer Biol Ther ; 24(1): 2184150, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36919480

RESUMEN

Daucosterol is a phytosterol glycoside with hepatoprotective properties. The objective of the present study was to confirm the role of daucosterol in liver failure. Exosomes were isolated from primary mouse umbilical cord mesenchymal stem cells (UCMSCs). A liver failure mouse model was generated by injecting lipopolysaccharide/D-galactosamine. Mice were treated with exosomes alone or in combination with daucosterol (5, 10, or 20 mg/kg). Liver tissue damage was examined by hematoxylin-eosin, Masson's trichrome, and TUNEL staining. The levels of genes, proteins, and inflammatory factors were determined using real-time qPCR, western blotting, and enzyme-linked immunosorbent assay, respectively. Compared with normal mice, we noted severe damage, fibrosis, and apoptosis in the liver tissues of liver failure-induced mice. UCMSC-derived exosomes effectively alleviated hepatic damage in the mouse model. Compared with exosome treatment alone, exosomes combined with daucosterol significantly and dose-dependently reduced pathological changes in model mice. Exosome treatment alone or combined with daucosterol also markedly decreased the liver index and reduced levels of alanine aminotransferase, aspartate aminotransferase, tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6 in model mice. Exosome treatment alone or combined with daucosterol suppressed mRNA expression levels of IL-6 and signal transducer and activator of transcription (STAT3) and STAT3 protein expression in model mice. Our findings revealed that treatment with daucosterol combined with UCMSC-derived exosomes was superior to exosomes alone for alleviating hepatic damage in mice with liver failure by regulating the IL-6/STAT3 signaling pathway. Accordingly, daucosterol combined with UCMSC-derived exosomes may be a prospective treatment strategy for liver failure.


Asunto(s)
Exosomas , Fallo Hepático , Células Madre Mesenquimatosas , Ratones , Animales , Interleucina-6/genética , Interleucina-6/metabolismo , Exosomas/metabolismo , Fallo Hepático/metabolismo , Transducción de Señal , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical/metabolismo
13.
Br J Pharmacol ; 180(13): 1690-1709, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36692417

RESUMEN

BACKGROUND AND PURPOSE: Liver failure is associated with psychiatric alterations, partly resulting from the increased brain dopamine levels. We investigated the relationship between increased dopamine levels and mental abnormalities using bile duct ligation (BDL) rats and the mechanism by which liver failure increased dopamine levels in SH-SY5Y cells. Behavioural tests were carried out on day 13 and 27 following BDL, along with measurements of dopamine and metabolites, expressions of enzymes and transporters related to dopamine metabolism, and its transport into the cortex and the hippocampus. SH-SY5Y cells were used to investigate whether NH4 Cl, bile acids and bilirubin affected expression of tyrosine hydroxylase or not. Tyrosine hydroxylase (TH) expression in SH-SY5Y cells co-incubated with bilirubin and signal pathway inhibitors was measured. KEY RESULTS: Open-field test results demonstrated BDL rats showed anxiety-like behaviour, accompanied by increased dopamine levels and expression of TH protein in the cortex. Membrane bound long form (MB)-COMT, slightly but significantly decreased. SH-SY5Y cells indicated that increased bilirubin levels was a factor in inducing TH expression. Both inhibitor of NF-κB pathway BAY 11-7082 and silencing NF-κB p65 reversed bilirubin-induced upregulation of TH protein. NF-κB activator TNF-α increased expression of TH protein. Roles of bilirubin in increases of TH protein expressions and dopamine levels were measured using hyperbilirubinemia rats. Anxiety-like behaviour, was associated with increased dopamine levels and TH protein expressions in hyperbilirubinemia rats. CONCLUSION AND IMPLICATIONS: BDL significantly increased dopamine levels in rat cortex partly due to bilirubin-mediated TH induction. Increased bilirubin induced TH expression via activating NF-κB signalling pathway.


Asunto(s)
Fallo Hepático , Neuroblastoma , Ratas , Humanos , Animales , Tirosina 3-Monooxigenasa/metabolismo , Dopamina/metabolismo , FN-kappa B/metabolismo , Neuroblastoma/metabolismo , Conductos Biliares/cirugía , Fallo Hepático/metabolismo , Hiperbilirrubinemia/metabolismo , Bilirrubina/metabolismo , Bilirrubina/farmacología , Ligadura , Corteza Cerebral/metabolismo , Hígado/metabolismo
14.
Hepatology ; 77(5): 1580-1592, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36129070

RESUMEN

BACKGROUND AND AIMS: Insufficient liver regeneration causes post-hepatectomy liver failure and small-for-size syndrome. Identifying therapeutic targets to enhance hepatic regenerative capacity remains urgent. Recently, increased IL-33 was observed in patients undergoing liver resection and in mice after partial hepatectomy (PHx). The present study aims to investigate the role of IL-33 in liver regeneration after PHx and to elucidate its underlying mechanisms. APPROACH AND RESULTS: We performed PHx in IL-33 -/- , suppression of tumorigenicity 2 (ST2) -/- , and wild-type control mice, and found deficiency of IL-33 or its receptor ST2 delayed liver regeneration. The insufficient liver regeneration could be normalized in IL-33 -/- but not ST2 -/- mice by recombinant murine IL-33 administration. Furthermore, we observed an increased level of serotonin in portal blood from wild-type mice, but not IL-33 -/- or ST2 -/- mice, after PHx. ST2 deficiency specifically in enterochromaffin cells recapitulated the phenotype of delayed liver regeneration observed in ST2 -/- mice. Moreover, the impeded liver regeneration in IL-33 -/- and ST2 -/- mice was restored to normal levels by the treatment with (±)-2,5-dimethoxy-4-iodoamphetamine, which is an agonist of the 5-hydroxytrytamine receptor (HTR)2A. Notably, in vitro experiments demonstrated that serotonin/HTR2A-induced hepatocyte proliferation is dependent on p70S6K activation. CONCLUSIONS: Our study identified that IL-33 is pro-regenerative in a noninjurious model of liver resection. The underlying mechanism involved IL-33/ST2-induced increase of serotonin release from enterochromaffin cells to portal blood and subsequent HTR2A/p70S6K activation in hepatocytes by serotonin. The findings implicate the potential of targeting the IL-33/ST2/serotonin pathway to reduce the risk of post-hepatectomy liver failure and small-for-size syndrome.


Asunto(s)
Fallo Hepático , Regeneración Hepática , Animales , Ratones , Proliferación Celular , Hepatectomía , Hepatocitos/metabolismo , Interleucina-33/metabolismo , Hígado/metabolismo , Fallo Hepático/metabolismo , Regeneración Hepática/fisiología , Ratones Endogámicos C57BL , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serotonina , Tracto Gastrointestinal/metabolismo
15.
Mol Biol Rep ; 49(11): 10315-10325, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36097106

RESUMEN

BACKGROUND: Common treatments of liver disease failed to meet all the needs in this important medical field. It results in an urgent need for proper some new adjuvant therapies. Mesenchymal stem cells (MSCs) and their derivatives are promising tools in this regard. We aimed to compare the Silymarin, as traditional treatment with mesenchymal stem cell conditioned medium (MSC-CM), as a novel strategy, both with therapeutic potentialities in term of liver failure (LF) treatment. METHODS AND RESULTS: Mice models with liver failure were induced with CCl4 and were treated in the groups as follows: normal mice receiving DMEM-LG medium as control, LF-mice receiving DMEM-LG medium as sham, LF-mice receiving Silymarin as LF-SM, and LF-mice receiving MSC sphere CM as LF-MSC-CM. Biochemical, histopathological, molecular and protein level parameters were evaluated using blood and liver samples. Liver enzymes, MicroRNA-122 values as well as necrotic score were significantly lower in the LF-SM and LF-MSC-CM groups compared to sham. LF-SM showed significantly higher level of total antioxidant capacity and malondialdehyde than that of LF-MSC-CM groups. Sph-MSC-CM not only induced more down-regulated expression of fibrinogen-like protein 1 and receptor interacting protein kinases1 but also led to higher expression level of keratinocyte growth factor. LF-MSC-CM showed less mortality rate compared to other groups. CONCLUSIONS: Hepato-protective potentialities of Sph-MSC-CM are comparable to those of Silymarin. More inhibition of necroptosis/ necrosis and inflammation might result in rapid liver repair in case of MSC-CM administration.


Asunto(s)
Fallo Hepático , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Silimarina , Animales , Ratones , Medios de Cultivo Condicionados/farmacología , Fallo Hepático/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Silimarina/farmacología
16.
Biomed Res Int ; 2022: 1846558, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909484

RESUMEN

Paracetamol is a commonly used analgesic/antipyretic whose long-term intake or overdose is associated with renal and hepatic injuries. The aim of this study was to determine the hepatonephroprotective mechanisms of the aqueous extract of Amblygonocarpus andongensis stem bark (AEAASB) on renal and hepatic failure resulting from paracetamol overdose. Forty-five rats were divided into nine groups (n = 5); these were treated once daily for 8 days with 5 ml/kg distilled water (normal, negative, and satellite controls); 0.9% normal saline and 140 mg/kg N-acetyl-cysteine (positive controls); 125, 250, and 500 mg/kg AEAASB (test groups); and 500 mg/kg AEAASB (satellite test). On day 8 after different treatments, hepatonephrotoxicity was induced in all the groups except the normal group by oral administration of a single dose of paracetamol (1000 mg/kg). Urinary, hematological, serum, and oxidative stress parameters and in vitro antioxidant activity of AEAASB were evaluated. Histological sections of the liver and kidney were performed. AEAASB significantly decreased urea, creatinine, transaminases, alkaline phosphatase, and bilirubin (p < 0.001) at 500 mg/kg compared to the negative control. Significant decreases in hepatic (p < 0.01) and renal (p < 0.001) malondialdehyde levels were associated with increases in superoxide dismutase, catalase, and reduced glutathione levels in 500 mg/kg AEAASB compared with the negative control. Histological analysis showed that AEAASB prevented paracetamol-induced renal and liver tissue damage. Furthermore, AEAASB revealed a very strong antioxidant activity (inhibitory concentration 50 = 180 µg/ml, antioxidant activity index = 5.55) with an ability to scavenge 63.03% 2,2-diphenyl-2-picrylhy-drazyl radical and reduced ferric iron by 52.68 mgEqVitC/100 g DM. The hepatonephroprotective effect of AEAASB might result from its ability to improve the antioxidant status through the stimulation of antioxidant factors and the scavenging of free radicals. This property could be ascribed to the presence of some classes of bioactive compounds such as phenolic compounds in great amounts.


Asunto(s)
Antioxidantes , Fallo Hepático , Acetaminofén/farmacología , Animales , Antioxidantes/metabolismo , Riñón/patología , Hígado/patología , Fallo Hepático/metabolismo , Estrés Oxidativo , Corteza de la Planta/metabolismo , Extractos Vegetales/uso terapéutico , Ratas , Agua/metabolismo
17.
Hepatology ; 76(6): 1673-1689, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35257388

RESUMEN

BACKGROUND AND AIMS: It remains unknown how patients with liver failure maintain essential albumin levels. Here, we delineate a hierarchical transcription regulatory network that ensures albumin expression under different disease conditions. APPROACH AND RESULTS: We examined albumin levels in liver tissues and serum in 157 patients, including 84 with HCC, 38 decompensated cirrhosis, and 35 acute liver failure. Even in patients with liver failure, the average serum albumin concentrations were 30.55 g/L. In healthy subjects and patients with chronic liver diseases, albumin was expressed in hepatocytes. In patients with massive hepatocyte loss, albumin was expressed in liver progenitor cells (LPCs). The albumin gene (ALB) core promoter possesses a TATA box and nucleosome-free area, which allows constitutive RNA polymerase II binding and transcription initiation. Chromatin immunoprecipitation assays revealed that hepatocyte nuclear factor 4 alpha (HNF4α), CCAAT/enhancer-binding protein alpha (C/EBPα), and forkhead box A2 (FOXA2) bound to the ALB enhancer. Knockdown of either of these factors reduced albumin expression in hepatocytes. FOXA2 acts as a pioneer factor to support HNF4α and C/EBPα. In hepatocytes lacking HNF4α and C/EBPα expression, FOXA2 synergized with retinoic acid receptor (RAR) to maintain albumin transcription. RAR nuclear translocation was induced by retinoic acids released by activated HSCs. In patients with massive hepatocyte loss, LPCs expressed HNF4α and FOXA2. RNA sequencing and quantitative PCR analyses revealed that lack of HNF4α and C/EBPα in hepatocytes increased hedgehog ligand biosynthesis. Hedgehog up-regulates FOXA2 expression through glioblastoma family zinc finger 2 binding to the FOXA2 promoter in both hepatocytes and LPCs. CONCLUSIONS: A hierarchical regulatory network formed by master and pioneer transcription factors ensures essential albumin expression in various pathophysiological conditions.


Asunto(s)
Carcinoma Hepatocelular , Fallo Hepático , Neoplasias Hepáticas , Humanos , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Erizos/metabolismo , Neoplasias Hepáticas/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Albúminas , Fallo Hepático/metabolismo
18.
Xenotransplantation ; 29(2): e12730, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35166406

RESUMEN

Liver failure is a critical disease for which regenerative therapies are still being explored. The major limitation in the use of a clinical grade, viable cell-based therapy approach is the scarce availability of sufficient number of in-vitro differentiated hepatocyte-like cells (HLC) that can induce regeneration and ameliorate liver injury. Here, we report for the first time an approach to engineer HLCs using sera of hyperbilirubin patients that act as a reservoir of differentiation factor. Utilizing our humanized approach, mesenchymal stem cells (hMSC) derived from umbilical cord tissue were transdifferentiated into HLC using patient-derived serum along with dimethyl sulfoxide (DMSO). We studied the effects of serum on the proliferation, cell cycle analysis, and apoptosis of hMSC by various differentiation combinations. We optimized the hepatic transdifferentiation ability of hMSC with hyperbilirubin serum treatment for a period of 7 days. Assessment of HLC functionalities was shown by quantifying the HLC spent medium for albumin and urea secretions. Transplantation of HLC in an acute liver injury (ALI) rat model showed an effective improvement in the liver function and histological changes in the liver. The results of this study suggest that hMSC-derived HLC using humanized hepatogenic serum holds a promising potential for cell transplantation, as an efficient therapy modality for liver failure in humans.


Asunto(s)
Fallo Hepático , Células Madre Mesenquimatosas , Animales , Diferenciación Celular , Hepatocitos , Humanos , Fallo Hepático/metabolismo , Ratas , Trasplante Heterólogo
19.
Life Sci ; 289: 120212, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34896163

RESUMEN

AIMS: Hepatic ischemia reperfusion injury (HIRI) is associated with liver failure after liver transplantation and hepatectomy. Thus, this study aims to explore the effect of conditioned medium from adipose derived stem cells (ADSC-CM) on endoplasmic reticulum stress (ERS) and lipid metabolism after HIRI combined with hepatectomy in miniature pigs. MAIN METHODS: A model of HIRI combined with hepatectomy in miniature pigs was established. The expression of ERS-related proteins and lipid metabolism related genes, as well as triglyceride (TG), total cholesterol (TC), high density lipoprotein (HDL), very low density lipoprotein (VLDL) and acetyl-CoA carboxylase 1 (ACC1) level were measured in liver tissues. KEY FINDINGS: Both ADSCs and ADSC-CM could improve the damage in the ultrastructure of hepatocytes. ADSC-CM significantly decreased the protein expression of GRP78, ATF6, XBP1, p-eIF2α, ATF4, p-JNK and CHOP. Oil red O staining revealed that the degree of hepatocyte steatosis was also significantly reduced after treatment with ADSC-CM. In addition, ADSC-CM remarkably decreased TG, TC, HDL and ACC1 level in liver tissues, while enhanced VLDL content. Finally, SREBP1, SCAP, FASN, ACC1, HMGCR and HMGCS1 mRNA expression was also markedly downregulated in liver tissues. SIGNIFICANCE: Injection of ADSC-CM into the hepatic parenchymal could represent a novel cell-free therapeutic approach to improve HIRI combined with hepatectomy injury. The inhibition of ERS and the improvement of lipid metabolism in the hepatocytes might be a potential mechanism used by ADSC-CM to prevent liver injury from HIRI combined with hepatectomy.


Asunto(s)
Tejido Adiposo/metabolismo , Estrés del Retículo Endoplásmico , Hepatectomía , Metabolismo de los Lípidos , Fallo Hepático/metabolismo , Trasplante de Hígado , Hígado/metabolismo , Células Madre Mesenquimatosas/metabolismo , Daño por Reperfusión/metabolismo , Animales , Medios de Cultivo Condicionados/farmacología , Fallo Hepático/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , Porcinos , Porcinos Enanos
20.
J Clin Pharmacol ; 62(2): 171-181, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34402068

RESUMEN

Ipatasertib is a highly selective small-molecule pan-Akt inhibitor in clinical development. Ipatasertib is predominantly eliminated by the liver, and therefore, the effect of hepatic impairment on ipatasertib pharmacokinetics (PK) was evaluated. In this phase 1 open-label, parallel group study, the PK of ipatasertib were evaluated in subjects with hepatic impairment based on both the Child-Pugh and the National Cancer Institute Organ Dysfunction Working Group classification for hepatic impairment. A single dose of ipatasertib at 100 mg was administered and the PK was characterized in healthy subjects with normal hepatic function or mild, moderate, and severe hepatic impairment. Based on Child-Pugh classification, subjects with moderate and severe hepatic impairment had an ≈2- and 3-fold increase in systemic exposure (area under the plasma concentration-time curve from time 0 to infinity [AUC0-∞ ]) to ipatasertib, respectively, compared to subjects with normal hepatic function. Systemic exposure (AUC0-∞ ) to ipatasertib in subjects with mild hepatic impairment was comparable to that in subjects with normal hepatic function. In accordance with reduced clearance capacity, subjects with mild to severe hepatic impairment showed lower systemic exposure (AUC0-∞ ) of ipatasertib metabolite M1 (G-037720). Overall results were comparable between Child-Pugh and National Cancer Institute Organ Dysfunction Working Group classification criteria. Based on the results from this study, no dosage adjustment is required for ipatasertib when treating patients with mild hepatic impairment, whereas a dose reduction would be recommended for subjects with moderate or severe hepatic impairment. Based on real-world data analysis, ≈2% of the intended patient population is expected to need a modified dose due to moderate or severe hepatic impairment.


Asunto(s)
Antineoplásicos/farmacocinética , Fallo Hepático/epidemiología , Fallo Hepático/metabolismo , Piperazinas/farmacocinética , Pirimidinas/farmacocinética , Adulto , Anciano , Área Bajo la Curva , Relación Dosis-Respuesta a Droga , Femenino , Semivida , Humanos , Masculino , Tasa de Depuración Metabólica , Persona de Mediana Edad , Gravedad del Paciente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...