Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Medicine (Baltimore) ; 103(37): e39731, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39287256

RESUMEN

Increasing evidence suggests that patients with diabetes are at increased risk of developing nonalcoholic steatohepatitis (NASH), but the underlying mechanisms that affect the progression of NASH remain unclear. In this study, we used bioinformatics and network pharmacology methods to explore the differentially expressed genes of NASH and the related genes of type 2 diabetes mellitus, and a total of 46 common targets were obtained. Gene ontology showed that the common targets were mainly involved in biological processes such as glucocorticoid, hormone, and bacterium responses. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis signal pathways were mainly in colorectal cancer, amphetamine addition, the peroxisome proliferator-activated receptor signaling pathway, and the toll-like receptor signaling pathway. The protein-protein interaction network identified 8 hub genes, and the co-expression network was analyzed to obtain 7 related functions and mutual proportions of hub genes. A total of 120 transcription factors were predicted for hub genes. Hub genes were closely related to immune cells, including neutropils and eosinophils. In addition, we identified 15 potential candidate drugs based on hub genes that are promising for the treatment of NASH. Type 2 diabetes mellitus can affect the progression of NASH by changing hormone levels and inflammatory responses through multiple targets and signaling pathways. Eight hub genes are expected to be potential targets for subsequent treatment.


Asunto(s)
Biología Computacional , Diabetes Mellitus Tipo 2 , Progresión de la Enfermedad , Farmacología en Red , Enfermedad del Hígado Graso no Alcohólico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Humanos , Biología Computacional/métodos , Farmacología en Red/métodos , Mapas de Interacción de Proteínas/genética , Transducción de Señal , Redes Reguladoras de Genes
2.
J Musculoskelet Neuronal Interact ; 24(3): 291-300, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219327

RESUMEN

OBJECTIVES: To investigate the therapeutic effect and mechanism of Danggui Buxue Tang in the treatment of biceps longus tendon lesions, and to preliminarily explore the relevant factors affecting this injury. METHODS: Using network pharmacology analysis methods, the potential mechanism of Danggui Buxue Tang in treating key lesions of the long head of the biceps brachii muscle was studied. RESULTS: Model analysis revealed 44 protein-protein interactions associated with long head binding. The distribution of 19 strongly correlated targets is Pharmaper>SEA>Stitch>Swiss. Further discovery revealed 17 immune system and inflammation related KEGG pathways with P values less than 0.01. The TNF and sphingolipid signaling pathways are associated with inflammation, while the MAPK signaling pathway is associated with immunity. Finally, it was found that the FoxO and HIF-1 signaling pathways are directly associated with long head restraint injury in the biceps brachii muscle. CONCLUSION: Danggui Buxue Tang inhibits related pathways, regulates the immune system, reduces inflammation, and alleviates disease progression. Danggui Buxue Tang can be an effective choice for treating combined lesions of the long head of the biceps brachii muscle.


Asunto(s)
Medicamentos Herbarios Chinos , Farmacología en Red , Tendinopatía , Farmacología en Red/métodos , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Tendinopatía/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculos Isquiosurales/efectos de los fármacos
3.
Compr Rev Food Sci Food Saf ; 23(5): e13429, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39217524

RESUMEN

Network pharmacology is an emerging interdisciplinary research method. The application of network pharmacology to reveal the nutritional effects and mechanisms of active ingredients in food is of great significance in promoting the development of functional food, facilitating personalized nutrition, and exploring the mechanisms of food health effects. This article systematically reviews the application of network pharmacology in the field of food science using a literature review method. The application progress of network pharmacology in food science is discussed, and the mechanisms of functional factors in food on the basis of network pharmacology are explored. Additionally, the limitations and challenges of network pharmacology are discussed, and future directions and application prospects are proposed. Network pharmacology serves as an important tool to reveal the mechanisms of action and health benefits of functional factors in food. It helps to conduct in-depth research on the biological activities of individual ingredients, composite foods, and compounds in food, and assessment of the potential health effects of food components. Moreover, it can help to control and enhance their functionality through relevant information during the production and processing of samples to guarantee food safety. The application of network pharmacology in exploring the mechanisms of functional factors in food is further analyzed and summarized. Combining machine learning, artificial intelligence, clinical experiments, and in vitro validation, the achievement transformation of functional factor in food driven by network pharmacology is of great significance for the future development of network pharmacology research.


Asunto(s)
Tecnología de Alimentos , Alimentos Funcionales , Farmacología en Red , Humanos , Farmacología en Red/métodos , Tecnología de Alimentos/métodos , Inocuidad de los Alimentos , Aprendizaje Automático
4.
Medicine (Baltimore) ; 103(36): e35529, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39252243

RESUMEN

BACKGROUND: Upper respiratory tract infection (URTI), one of the most common respiratory diseases, has a high annual incidence. Trollius chinensis capsule has been used to treat URTI in China. However, the underlying-mechanisms remain unclear. METHODS: Network pharmacology was used to explore the potential mechanism of action of Trollius chinensis capsule in URTI treatment. The active compounds in Trollius chinensis were obtained from the TCMSP, SymMap, and ETCM databases. The TCMSP, PubChem, and SwissTargetPrediction databases were used to predict potential targets of Trollius chinensis. URTI-associated targets were gathered from GeneCards and DisGeNET databases. The key targets and signaling pathways associated with URTI were selected by network topology, GO, and KEGG pathway enrichment analysis. Molecular docking was used to verify the binding activity between active compounds and key targets. RESULTS: Quercetin, pectolinarigenin, beta-sitosterol, acacetin and cirsimaritin are major active compounds in Trollius chinensis capsule. Eighty one candidate therapeutic targets were confirmed to be involved in protection of Trollius chinensis capsule against URTI. Among them, 7 key targets (TP53, IL6, AKT1, CASP3, CXCL8, MMP9, and EGFR) were verified to have good binding affinities to the main active compounds. Furthermore, enrichment analyses suggested that inflammatory response, virus infection and oxidative stress related biological processes and pathways were possibly the potential mechanism. CONCLUSION: Overall, the present study clarified that quercetin, pectolinarigenin, beta-sitosterol, acacetin and cirsimaritin are proved to be the main effective compounds of Trollius chinensis capsule treating URTI, possibly by acting on the targets of IL6, AKT1, CASP3, CXCL8, MMP9 and EGFR to play anti-infectious, anti-viral, and anti-oxidative effects. This study provides a new understanding of the active compounds and mechanisms of Trollius chinensis capsule in URTI treatment from the perspective of network pharmacology.


Asunto(s)
Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Infecciones del Sistema Respiratorio , Farmacología en Red/métodos , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Transducción de Señal/efectos de los fármacos , Ranunculaceae/química , Sitoesteroles/farmacología , Sitoesteroles/uso terapéutico , Cápsulas , Medicina Tradicional China/métodos
5.
Medicine (Baltimore) ; 103(22): e38224, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-39259113

RESUMEN

To explore the mechanism of Tiaoqi Xiaowei decoction in the treatment of chronic atrophic gastritis by network pharmacology and molecular docking. The main active components and targets of Tiaoqi Xiaowei decoction were obtained from TCMSP database. The databases of Disgenet, GeneCards, and OMIM were used to obtain chronic atrophic gastritis-related targets. The component-target-disease network was constructed by Cytoscape 3.7.1 software, and the protein-protein interaction network was constructed by String database. The core targets were screened by CytoNCA plug-in. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genome pathway enrichment analysis were performed using the Metascape database. The core components and targets were subjected to molecular docking verification using AutoDock Tools 1.5.6 software, and the binding score was obtained. A total of 48 active components were identified, involving 82 action targets. Core active components such as quercetin, beta-sitosterol, kaempferol, luteolin, and naringenin, and core targets such as AKT1, TP53, VEGFA, TNF, IL6, and PTGS2 were obtained. A total of 188 signaling pathways were screened out, including cancer pathway, PI3K-Akt, IL-17, and TNF signaling pathway. Molecular docking results showed that the key components of Tiaoqi Xiaowei decoction had a favorable binding affinity with key targets. Tiaoqi Xiaowei decoction acts on multiple targets such as AKT1, TP53, VEGFA, TNF, IL6, PTGS2, and synergistically treats chronic atrophic gastritis by regulating inflammatory responses and tumor-related signaling pathways.


Asunto(s)
Medicamentos Herbarios Chinos , Gastritis Atrófica , Simulación del Acoplamiento Molecular , Farmacología en Red , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Gastritis Atrófica/tratamiento farmacológico , Humanos , Farmacología en Red/métodos , Mapas de Interacción de Proteínas , Enfermedad Crónica/tratamiento farmacológico , Medicina Tradicional China/métodos
6.
Medicine (Baltimore) ; 103(31): e39138, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093780

RESUMEN

Xianlinggubao formula (XLGB), is a traditional Chinese compound Medicine that has been extensively used in osteoarthritis and aseptic osteonecrosis, but its curative effect on diabetic osteoporosis (DOP) and its pharmacological mechanisms remains not clear. The aim of the present study was to investigate the possible mechanism of drug repurposing of XLGB in DOP therapy. We acquired XLGB active compounds from the traditional Chinese medicine systems pharmacology and traditional Chinese medicines integrated databases and discovered potential targets for these compounds by conducting target fishing using the traditional Chinese medicine systems pharmacology and Swiss Target Prediction databases. Gene Cards and Online Mendelian Inheritance in Man® database were used to identify the DOP targets. Overlapping related targets between XLGB and DOP was selected to build a protein-protein interaction network. Next, the Metascape database was utilized to enrich the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. In addition, Auto-Dock Vina software was used to verify drug and target binding. In total, 48 hub targets were obtained as the candidate targets responsible for DOP therapy. The anti-DOP effect mediated by XLGB was primarily centralized on the advanced glycation end products (AGEs)-receptor for AGE signaling pathway in diabetic complications and osteoclast differentiation. In addition, AKT serine/threonine kinase 1, tumor necrosis factor, Interleukin-6, vascular endothelial growth factor A and peroxisome proliferator activated receptor gamma, which were considered as potential therapeutic targets. Furthermore, molecular docking results confirm the credibility of the predicted therapeutic targets. This study elucidates that XLGB may through regulating AGEs formation and osteoclast differentiation as well as angiogenesis and adipogenesis against DOP. And this study provides new promising points to find the exact regulatory mechanisms of XLGB mediated anti-DOP effect.


Asunto(s)
Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Osteoporosis , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Osteoporosis/tratamiento farmacológico , Humanos , Farmacología en Red/métodos , Mapas de Interacción de Proteínas/efectos de los fármacos , Medicina Tradicional China/métodos , Transducción de Señal/efectos de los fármacos , Complicaciones de la Diabetes/tratamiento farmacológico
7.
Respir Res ; 25(1): 294, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095732

RESUMEN

BACKGROUND: Lianhuaqingwen (LHQW) has been used in the treatment of chronic bronchitis, but the precise mechanism through which LHQW exhibits its anti-inflammatory effects in this context is not yet fully understood. The aim of this study was to investigate the active ingredients and signaling pathways responsible for LHQW's effectiveness in managing chronic bronchitis. METHODS: The research leveraged the TCMSP database to determine the active compounds and drug targets of LHQW. In parallel, the GeneCards, DrugBank, and PharmGkb databases were used to uncover targets pertinent to chronic bronchitis. To discern the potential mechanisms by which LHQW's active ingredients might treat chronic bronchitis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. Network pharmacology facilitated the construction of a drug-active ingredient-disease target network, aiding in forecasting the core targets for chronic bronchitis treatment by LHQW. Subsequently, molecular docking techniques alongside in vitro experiments were applied to confirm the interactions between the active ingredients and the primary targets. RESULTS: A total of 157 active ingredients, 225 potential drug targets, and 594 bronchitis-related targets were derived from various databases. Following this, 76 potential gene targets were pinpointed by integrating drug and related targets. GO and KEGG enrichment analyses were employed to identify key pathways involved in LHQW's mechanism for treating chronic bronchitis. By constructing a protein-protein interaction (PPI) network for the 76 potential gene targets, four core targets (TNF, IL6, IFNG, and STAT3) were identified as primarily involved in responses to lipopolysaccharide, the TNF pathway, and the JAK-STAT pathway. Molecular docking results revealed a favorable affinity between multiple active ingredients of LHQW and the four core targets, suggesting that the therapeutic effects are mediated through the inhibition of inflammatory responses and signaling pathways. Interestingly, quercetin, an active ingredient of LHQW, was observed to bind to all four core targets simultaneously. Furthermore, cell experiment and western blot analysis indicated that both LHQW and quercetin exhibit anti-inflammatory effects by targeting the four core proteins and the JAK-STAT pathways. CONCLUSION: This research emphasizes the diverse active ingredients, targets, channels, and pathways of LHQW in the treatment of chronic bronchitis, providing important perspectives for the creation of novel therapeutic drugs and clinical uses.


Asunto(s)
Bronquitis Crónica , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Bronquitis Crónica/tratamiento farmacológico , Bronquitis Crónica/metabolismo , Bronquitis Crónica/genética , Farmacología en Red/métodos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Simulación del Acoplamiento Molecular/métodos , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Transducción de Señal/efectos de los fármacos , Animales
8.
Clin Respir J ; 18(8): e13826, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39155275

RESUMEN

INTRODUCTION: Traditional Chinese medicinal plant, safflower, shows effective for treating pulmonary arterial hypertension (PAH), yet the underlying mechanisms remain largely unexplored. This study is aimed at exploring the potential molecular mechanisms of safflower in the treatment of PAH. METHODS: Network pharmacology approach and molecular docking were applied to identify the core active compounds, therapeutic targets, and potential signaling pathways of safflower against PAH. Meanwhile, high-performance liquid chromatography (HPLC) assay was performed to determine the core compounds from safflower. Further, the mechanism of action of safflower on PAH was verified by in vivo and in vitro experiments. RESULTS: A total of 15 active compounds and 177 targets were screened from safflower against PAH. Enrichment analysis indicated that these therapeutic targets were mainly involved in multiple key pathways, such as TNF signaling pathway and Th17 cell differentiation. Notably, molecular docking revealed that quercetin (core compound in safflower) displayed highest binding capacity with NLRP3. In vivo, safflower exerted therapeutic effects on PAH by inhibiting right ventricular hypertrophy, inflammatory factor release, and pulmonary vascular remodeling. Mechanistically, it significantly reduced the expression of proangiogenesis-related factors (MMP-2, MMP-9, Collagen 1, and Collagen 3) and NLRP3 inflammasome components (NLRP3, ASC, and Caspase-1) in PAH model. Similarly, these results were observed in vitro. Besides, we further confirmed that NLRP3 inhibitor had the same therapeutic effect as safflower in vitro. CONCLUSION: Our findings suggest that safflower mitigates PAH primarily by inhibiting NLRP3 inflammasome activation. This provides novel insights into the potential use of safflower as an alternative therapeutic approach for PAH.


Asunto(s)
Carthamus tinctorius , Simulación del Acoplamiento Molecular , Proteína con Dominio Pirina 3 de la Familia NLR , Farmacología en Red , Hipertensión Arterial Pulmonar , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Carthamus tinctorius/química , Animales , Simulación del Acoplamiento Molecular/métodos , Farmacología en Red/métodos , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/metabolismo , Modelos Animales de Enfermedad , Ratas , Masculino , Humanos , Transducción de Señal/efectos de los fármacos , Ratones , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Remodelación Vascular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
9.
BMC Bioinformatics ; 25(1): 275, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179993

RESUMEN

BACKGROUND: The rise of network pharmacology has led to the widespread use of network-based computational methods in predicting drug target interaction (DTI). However, existing DTI prediction models typically rely on a limited amount of data to extract drug and target features, potentially affecting the comprehensiveness and robustness of features. In addition, although multiple networks are used for DTI prediction, the integration of heterogeneous information often involves simplistic aggregation and attention mechanisms, which may impose certain limitations. RESULTS: MSH-DTI, a deep learning model for predicting drug-target interactions, is proposed in this paper. The model uses self-supervised learning methods to obtain drug and target structure features. A Heterogeneous Interaction-enhanced Feature Fusion Module is designed for multi-graph construction, and the graph convolutional networks are used to extract node features. With the help of an attention mechanism, the model focuses on the important parts of different features for prediction. Experimental results show that the AUROC and AUPR of MSH-DTI are 0.9620 and 0.9605 respectively, outperforming other models on the DTINet dataset. CONCLUSION: The proposed MSH-DTI is a helpful tool to discover drug-target interactions, which is also validated through case studies in predicting new DTIs.


Asunto(s)
Aprendizaje Profundo , Aprendizaje Automático Supervisado , Biología Computacional/métodos , Farmacología en Red/métodos
10.
Medicine (Baltimore) ; 103(34): e39392, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39183433

RESUMEN

Alzheimer disease is an irreversible neurodegenerative disease, and its pathogenesis involves various mechanisms such as neuroinflammation and ß-amyloid deposition. Erjing Pills can inhibit neuroinflammation by inhibiting toll-like receptor 4/nuclear factor kappa-B/nucleotide-binding domain leucine-rich repeat and pyrin domain-containing protein 3; however, qualitative analysis of the material basis is lacking. Therefore, it is necessary to analyze and explore the material basis of network pharmacology research. This study employed a multifaceted approach, including drug-like screening, molecular docking, and bioinformatic analysis. Preliminary screening identified 59 drug ingredients in Erjing Pills that met the Absorption, Distribution, Metabolism, Excretion and Toxicity screening criteria. Among these, 7 ingredients, including diosgenin, exhibited superior binding properties compared with the positive drugs in molecular docking. Gene ontology annotation and pathway analysis revealed their involvement in crucial biological processes, such as hormone response, insulin resistance, and steroid hormone biosynthesis signaling pathways, which are known for their anti-inflammatory and cognitive enhancement effects. A meta-analysis of relevant literature corroborated the anti-inflammatory activities of diosgenin and 5 other ingredients. These 5 ingredients, with diosgenin as a prominent candidate, exert anti-inflammatory effects by targeting key components of the toll-like receptor 4/nuclear factor kappa-B/nucleotide-binding domain leucine-rich repeat and pyrin domain-containing protein 3 inflammatory pathway, thereby presenting potential efficacy in the treatment of Alzheimer disease.


Asunto(s)
Enfermedad de Alzheimer , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Farmacología en Red , Receptor Toll-Like 4 , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , FN-kappa B/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Farmacología en Red/métodos , Transducción de Señal/efectos de los fármacos , Antiinflamatorios/farmacología
11.
Arch Dermatol Res ; 316(7): 468, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002062

RESUMEN

Epidermal Growth Factor Receptor Inhibitors (EGFRIs) is a common cancer therapy, but they occasionally cause severe side effects such as xerosis. Tiansha mixture (TM), a traditional Chinese medicines formulation, is develpoed to treat xerosis. This study aims to understand mechanisms of TM on xerosis. Bio-active compounds were selected from databases (TCMSP, TCM-ID, HERB, ETCM) and removed for poor oral bioavailability and low drug likeness. Then a network-based approach filtered out potential active compounds against xerosis. KEGG enrichment analysis identified PI3K/AKT and ERK/MAPK pathways, which were further verified by molecular docking. Afterwards, the effect of TM on activation of PI3K/AKT and ERK/MAPK pathways was validated in gefitinib-induced xerosis rats, where AKT-activator SC79 and MAPK-activator CrPic were also applied. Skin damage was assessed by dorsal score and HE and Tunel stainings. the levels of inflammation factors IL-6 and TNF-α in serum and skin tissue were measured by ELISA. Western blot was used to detect protein levels in the pathways. Network pharmacology identified 111 bio-active compounds from TM and 14 potential targets. Docking simulation showed apigenin, luteolin, and quercetin bio-active compounds in TM bound to IKBKG, INSR, and RAF-1 proteins. In xerosis model rats, TM mitigated xerosis damage, decreased inflammation factors, and phosphorylation of PI3K/AKT and ERK/MAPK proteins. SC79 or CrPic or their combination reversed TM's effect. The current study identified potential targets and PI3K/AKT and ERK/MAPK pathways involved in the effect of TM on xerosis, thus providing a foundation for TM clinical application.


Asunto(s)
Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Animales , Farmacología en Red/métodos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Ratas , Modelos Animales de Enfermedad , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Masculino , Piel/efectos de los fármacos , Piel/patología , Transducción de Señal/efectos de los fármacos , Ratas Sprague-Dawley , Fosfatidilinositol 3-Quinasas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Interleucina-6/metabolismo
12.
Medicine (Baltimore) ; 103(29): e38785, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39029003

RESUMEN

Acne is a common and chronic skin condition characterized by high incidence, recurrent symptoms and difficult cure. Summarizing the clinical treatment experience, it was found that the powder for ascending and descending was effective in the treatment of acne. Our aim was to use network pharmacology and molecular docking to reveal the hub genes, biological functions, and signaling pathways of powder for ascending and descending against acne. First, the chemical components and target genes of PAD were sifted using the TCMSP and HERB database. The targets of acne were obtained simultaneously from the CTD, OMIM and GeneCards database. The obtained drug targets and disease targets were imported into the R language software to draw Venn diagrams. Then, the potential targets were imported into the String website to construct a protein interaction network diagram. And Cytoscape software was used for topological analysis to screen the core targets, and the core targets were analyzed by GO functional enrichment and KEGG pathway enrichment. Finally, molecular docking was used to verify the predictions of key genes' reliability. The core targets of the treatment of acne were TNF, GADPH, IL-6 and so on. The results of enrichment analysis showed that the treatment of acne with PAD may be related to TNF signaling pathway and AGE-RAGE signaling pathway. The molecular docking verification showed that the components were well bound to the core targets of acne, and the docking ability of stigmasterol and TNF (-12.73 kcal/mol) was particularly outstanding.


Asunto(s)
Acné Vulgar , Simulación del Acoplamiento Molecular , Farmacología en Red , Acné Vulgar/tratamiento farmacológico , Humanos , Farmacología en Red/métodos , Mapas de Interacción de Proteínas , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Transducción de Señal/efectos de los fármacos , Medicina Tradicional China/métodos
13.
Medicine (Baltimore) ; 103(29): e39014, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39029023

RESUMEN

Coronary spastic angina (CSA) is common, and treatment options for refractory vasospastic angina are sometimes limited. Guizhifuling pills (GFP) have demonstrated efficacy in reducing CSA episodes, but their pharmacological mechanism remains unclear. To explore the mechanism of action of GFP in preventing and treating CSA, we employed network pharmacology and molecular docking to predict targets and analyze networks. We searched GFP chemical composition information and related targets from databases. The drug-target and drug-target pathway networks were constructed using Cytoscape. Then the protein-protein interaction was analyzed using the STRING database. Gene Ontology biological functions and Kyoto Encyclopedia of Genes and Genomes pathways were performed by the Metascape database, and molecular docking validation of vital active ingredients and action targets of GFP was performed using AutoDock Vina software. The 51 active components in GFP are expected to influence CSA by controlling 279 target genes and 151 signaling pathways. Among them, 6 core components, such as quercetin, ß-sitosterol, and baicalein, may regulate CSA by affecting 10 key target genes such as STAT3, IL-6, TP53, AKT1, and EGFR. In addition, they are involved in various critical signaling pathways such as apelin, calcium, advanced glycation end product-receptor for advanced glycation end product, and necroptosis. Molecular docking analysis confirms favorable binding interactions between the active components of GFP and the selected target proteins. The effects of GFP in treating CSA involve multiple components, targets, and pathways, offering a theoretical basis for its clinical use and enhancing our understanding of how it works.


Asunto(s)
Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Humanos , Farmacología en Red/métodos , Vasoespasmo Coronario/tratamiento farmacológico , Vasoespasmo Coronario/metabolismo , Transducción de Señal/efectos de los fármacos , Mapas de Interacción de Proteínas , Sitoesteroles/uso terapéutico , Sitoesteroles/farmacología
14.
Medicine (Baltimore) ; 103(29): e38953, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39029064

RESUMEN

To investigate the efficacy of Frankincense-Myrrh in lumbar Intervertebral degenerative diseases (LIDD). The active components of frankincense-myrrh was retrieved with a unique system pharmacology platform for Traditional Chinese Medicine Systems Pharmacology (TCMSP). The LIDD-related target genes were screened with DisGeNET and Genecards databases. Then, STRING & Cytoscape were used for analyzing the Protein-Protein Interaction network. DAVID was used for analyzing Gene Ontology (GO) & Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Finally, molecules of AutoDockVina and Pymol were used for docking the molecules for verifying active ingredients and key targets' binding force. The 105 LIDD-related targets identified in Ruxiang (RX)-Moyao (MY) involve 53 active ingredients. In addition, topological analysis was conducted for identifying the 12 key targets. According to the analysis results of GO & KEGG, RX-MY is significant for treating LIDD through participating in many pathways and biological processes, such as signaling pathways of inflammatory response reactive process, MAP kinase activity, TNF, and MAPK, etc. According to the dock results, the active components oxo-tirucalic, acid, isofouquierone, (7S, 8R, 9S, 10R, 13S, 14S,17Z)-17-ethylidene-7-hydroxy-10,13-dimethyl-1,2,6,7,8,9,11,12,14,15-decahydrocyclopenta [a] phenanthrene-3,16-dion in RX-MY binds actively. The basic pharmacological action and RX-MY-related mechanism in the treatment of LIDD was revealed in this study for the first time. It is predicted that the results may provide a treatment plan for RX-MY with replacement of NSAIDs and warrant investigation of new therapeutic alternatives for LIDD. However, these predictions should be validated by relevant pharmacological trials.


Asunto(s)
Degeneración del Disco Intervertebral , Simulación del Acoplamiento Molecular , Farmacología en Red , Degeneración del Disco Intervertebral/tratamiento farmacológico , Humanos , Farmacología en Red/métodos , Mapas de Interacción de Proteínas/efectos de los fármacos , Medicina Tradicional China/métodos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Vértebras Lumbares
15.
Medicine (Baltimore) ; 103(27): e38699, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968529

RESUMEN

Investigations into the therapeutic potential of Astragalus Mongholicus (AM, huáng qí) and Largehead Atractylodes (LA, bái zhú) reveal significant efficacy in mitigating the onset and progression of knee osteoarthritis (KOA), albeit with an elusive mechanistic understanding. This study delineates the primary bioactive constituents and their molecular targets within the AM-LA synergy by harnessing the comprehensive Traditional Chinese Medicine (TCM) network databases, including TCMSP, TCMID, and ETCM. Furthermore, an analysis of 3 gene expression datasets, sourced from the gene expression omnibus database, facilitated the identification of differential genes associated with KOA. Integrating these findings with data from 5 predominant databases yielded a refined list of KOA-associated targets, which were subsequently aligned with the gene signatures corresponding to AM and LA treatment. Through this alignment, specific molecular targets pertinent to the AM-LA therapeutic axis were elucidated. The construction of a protein-protein interaction network, leveraging the shared genetic markers between KOA pathology and AM-LA intervention, enabled the identification of pivotal molecular targets via the topological analysis facilitated by CytoNCA plugins. Subsequent GO and KEGG enrichment analyses fostered the development of a holistic herbal-ingredient-target network and a core target-signal pathway network. Molecular docking techniques were employed to validate the interaction between 5 central molecular targets and their corresponding active compounds within the AM-LA complex. Our findings suggest that the AM-LA combination modulates key biological processes, including cellular activity, reactive oxygen species modification, metabolic regulation, and the activation of systemic immunity. By either augmenting or attenuating crucial signaling pathways, such as MAPK, calcium, and PI3K/AKT pathways, the AM-LA dyad orchestrates a comprehensive regulatory effect on immune-inflammatory responses, cellular proliferation, differentiation, apoptosis, and antioxidant defenses, offering a novel therapeutic avenue for KOA management. This study, underpinned by gene expression omnibus gene chip analyses and network pharmacology, advances our understanding of the molecular underpinnings governing the inhibitory effects of AM and LA on KOA progression, laying the groundwork for future explorations into the active components and mechanistic pathways of TCM in KOA treatment.


Asunto(s)
Atractylodes , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Osteoartritis de la Rodilla , Atractylodes/química , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/genética , Farmacología en Red/métodos , Humanos , Mapas de Interacción de Proteínas , Planta del Astrágalo/química , Medicina Tradicional China/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Astragalus propinquus
16.
J Pharm Biomed Anal ; 248: 116326, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959756

RESUMEN

Antibiotic-associated diarrhea (AAD) is a common side effect of antibiotic therapy, characterized by intestinal inflammation which reduces the quality of life of patients. Xianglian Pill (XLP) has long been used to treat abdominal pain, diarrhea, bacillary dysentery and enteritis. Studies found that XLP has curative effect on AAD; however, the chemical constituents and mechanism of XLP have not been fully elucidated because of the lack of in vitro and in vivo studies. In this study, ultra-high performance liquid chromatography mass spectrometry method (UPLC-Q-Exactive-Orbitrap-HRMS) was used to examine the components of the XLP. Then, the binding between active compounds and the key targets was studied using network pharmacology and molecular docking. A comparative tissue distribution study was established for the simultaneous determination of the 10 active components in healthy and AAD mouse models. Forty-six components were characterized from XLP. According to the network pharmacology degree value, a prediction was made that encompassed 42 components and 14 core targets, which were intricately involved in crucial biological pathways, such as the AGE-RAGE signaling, cellular senescence, and MAPK signaling. Tissue distribution analysis showed that the 10 components were widely distributed in the heart, liver, spleen, lungs, kidneys, small intestine, and large intestine of mice, with varying concentrations in healthy and AAD mice. Molecular docking analysis also indicated that the active compounds in the tissue distribution could bind tightly to key targets of network pharmacological studies. This study provides a reference for further investigations of the relationships between the chemical components and pharmacological activities of XLP.


Asunto(s)
Antibacterianos , Diarrea , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Animales , Ratones , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Masculino , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Distribución Tisular , Farmacología en Red/métodos
18.
J Pharm Biomed Anal ; 247: 116265, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38850849

RESUMEN

Dingchuan Decoction (DCD) is a traditional Chinese medicine prescription commonly used in the treatment of asthma, but the mechanism of DCD in treating asthma has not yet been determined. In this study, we employed a combination of metabolomics and network pharmacology to investigate the mechanism of DCD in treating asthma. An allergic asthma rat model was induced by ovalbumin (OVA). Metabolomics based on 1H NMR and UHPLC-MS was used to identify differential metabolites and obtain the major metabolic pathways and potential targets. Network pharmacology was utilized to explore potential targets of DCD for asthma treatment. Finally, the results of metabolomics and network pharmacology were integrated to obtain the key targets and metabolic pathways of DCD for the therapy of asthma, and molecular docking was utilized to validate the key targets. A total of 76 important metabolites and 231 potential targets were identified through metabolomics. Using network pharmacology, 184 potential therapeutic targets were obtained. These 184 targets were overlaid with the 231 potential targets obtained through metabolomics and were analyzed in conjunction with metabolic pathways. Ultimately, the key targets were identified as aldehyde dehydrogenase 2 (ALDH2) and amine oxidase copper-containing 3 (AOC3), and the relevant metabolic pathways affected were glycolysis and gluconeogenesis as well as arginine and proline metabolism. Molecular docking showed that the key targets had high affinity with the relevant active ingredients in DCD, which further demonstrated that DCD may exert therapeutic effects by acting on the key targets. The present study demonstrated that DCD can alleviate OVA-induced allergic asthma and that DCD may have a therapeutic effect by regulating intestinal flora and polyamine metabolism through its effects on ALDH2 and AOC3.


Asunto(s)
Asma , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Metabolómica , Simulación del Acoplamiento Molecular , Farmacología en Red , Ovalbúmina , Ratas Sprague-Dawley , Animales , Asma/tratamiento farmacológico , Asma/metabolismo , Metabolómica/métodos , Ratas , Medicamentos Herbarios Chinos/farmacología , Farmacología en Red/métodos , Masculino , Cromatografía Líquida de Alta Presión/métodos , Redes y Vías Metabólicas/efectos de los fármacos , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Medicina Tradicional China/métodos
19.
Medicine (Baltimore) ; 103(25): e38315, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905402

RESUMEN

Gegensan (GGS) has been reported for the treatment of alcoholic liver disease (ALD), but its therapeutic mechanism is still unclear. This paper aims to determine the therapeutic mechanism and targets of action of GGS on alcoholic liver disease utilizing network pharmacology and bioinformatics. The active ingredients in GGS were screened in the literature and databases, and common targets of ALD were then obtained from public databases to construct the network diagram of traditional Chinese medicine-active ingredient targets. Based on the common targets, Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to find target enrichment pathways, and the core targets were screened out by combining differential analysis and protein-protein interaction network analysis. Molecular docking was performed to verify the binding effect between the core targets and the corresponding active ingredients. ALD and GGS have 84 common targets, corresponding to 91 active ingredients. After subsequent differential analysis and protein-protein interaction network analysis, 10 core targets were identified. Gene Ontology and KEGG enrichment analyses showed that the main BPs corresponding to the common targets included the response to lipopolysaccharide, inflammatory response, etc. The KEGG pathways involved in the regulation of the common targets included the lipid-atherosclerosis pathway and the alcoholic liver disease pathway, etc. Further molecular docking showed that the core targets CYP1A1, CYP1A2, CXCL8, ADH1C, MMP1, SERPINE1, COL1A1, APOB, MMP1, and their corresponding 4 active ingredients, Naringenin, Kaempferol, Quercetin, and Stigmasterol, have a greater docking potential. The above results suggest that GGS can regulate lipid metabolism and inflammatory response in the ALD process, and alleviate the lipid accumulation and oxidative stress caused by ethanol. This study analyzed the core targets and mechanisms of action of GGS on ALD, which provides certain theoretical support for the further development of GGS in the treatment of ALD, and provides a reference for the subsequent research on the treatment of ALD.


Asunto(s)
Biología Computacional , Medicamentos Herbarios Chinos , Hepatopatías Alcohólicas , Simulación del Acoplamiento Molecular , Farmacología en Red , Mapas de Interacción de Proteínas , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/metabolismo , Farmacología en Red/métodos , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Biología Computacional/métodos , Medicina Tradicional China/métodos , Ontología de Genes
20.
Medicine (Baltimore) ; 103(25): e38419, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905418

RESUMEN

The present study utilizes network pharmacology and molecular docking methodologies to investigate the mechanism of action behind the intervention of Polygonum capitatum Buch.-Ham.ex D. Don (THL) in treating pulmonary nodules (PN). This research aims to provide a theoretical foundation for broadening the clinical application of THL. Active components of THL were identified and screened through an extensive literature review and the PharmMapper database, followed by an analysis of their target interactions. Relevant targets associated with PN were selected using databases such as OMIM and GeneCards, with an intersection of the two sets being determined. STRING11.5 facilitated the acquisition of protein-protein interaction data, which was then imported into Cytoscape 3.7.2 to establish a protein interaction network topology. This enabled the identification of pivotal targets affected by THL intervention in PN. The study further employed the Metascape database to conduct GO and KEGG bioinformatics enrichment analyses, which illuminated core pathways involved in THL's therapeutic effects on PN. A comprehensive component-target-pathway diagram was constructed utilizing Cytoscape 3.7.2 software, with molecular docking validations carried out via Maestro software. A total of 49 active THL ingredients were discerned, implicating 67 PN-relevant targets. Subsequent software analysis pinpointed 10 key targets, including ALB, EGFR, and SRC. Molecular docking studies indicated strong binding affinities for most protein-compound pairs, with 44 out of 60 docking results exhibiting binding energies below -5 kcal/mol. Enrichment analysis highlights that key targets are mainly involved in pathways such as cancer, lipid metabolism and atherosclerosis, estrogen signaling, IL-17 signaling, complement and coagulation cascades, and chemical carcinogenesis through receptor activation. Through comprehensive network pharmacological approaches, this research delineates the synergy of THL's multiple components, targets, and pathways in mitigating PN. It posits that primary active ingredients of THL - quercetin, salidroside, and oleanolic acid - may exert effects on targets like ALB, EGFR, SRC, potentially modulating pathways associated with cancer, lipid and atherosclerosis, and IL-17 signaling in the context of PN intervention.


Asunto(s)
Simulación del Acoplamiento Molecular , Farmacología en Red , Polygonum , Polygonum/química , Humanos , Farmacología en Red/métodos , Mapas de Interacción de Proteínas , Nódulo Pulmonar Solitario/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...