Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34445206

RESUMEN

UV-induced DNA damage response and repair are extensively studied processes, as any malfunction in these pathways contributes to the activation of tumorigenesis. Although several proteins involved in these cellular mechanisms have been described, the entire repair cascade has remained unexplored. To identify new players in UV-induced repair, we performed a microarray screen, in which we found SerpinB10 (SPB10, Bomapin) as one of the most dramatically upregulated genes following UV irradiation. Here, we demonstrated that an increased mRNA level of SPB10 is a general cellular response following UV irradiation regardless of the cell type. We showed that although SPB10 is implicated in the UV-induced cellular response, it has no indispensable function in cell survival upon UV irradiation. Nonetheless, we revealed that SPB10 might be involved in delaying the duration of DNA repair in interphase and also in S-phase cells. Additionally, we also highlighted the interaction between SPB10 and H3. Based on our results, it seems that SPB10 protein is implicated in UV-induced stress as a "quality control protein", presumably by slowing down the repair process.


Asunto(s)
Daño del ADN , Reparación del ADN/efectos de la radiación , Fase S/efectos de la radiación , Serpinas/metabolismo , Rayos Ultravioleta/efectos adversos , Línea Celular Tumoral , Humanos , Serpinas/genética
2.
Mol Cell Biol ; 40(20)2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32778572

RESUMEN

Ultraviolet (UV) radiation is a major environmental mutagen. Exposure to UV leads to a sharp peak of γH2AX, the phosphorylated form of the histone variant H2AX, in the S phase within an asynchronous population of cells. γH2AX is often considered a definitive marker of DNA damage inside a cell. In this report, we show that γH2AX in the S-phase cells after UV irradiation reports neither on the extent of primary DNA damage in the form of cyclobutane pyrimidine dimers nor on the extent of its secondary manifestations in the form of DNA double-strand breaks or in the inhibition of global transcription. Instead, γH2AX in the S phase corresponds to the sites of active replication at the time of UV irradiation. This accumulation of γH2AX at replication sites slows down the replication. However, the cells do complete the replication of their genomes and arrest within the G2 phase. Our study suggests that it is not DNA damage, but the response elicited, which peaks in the S phase upon UV irradiation.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de la radiación , Replicación del ADN/genética , Histonas/genética , Dímeros de Pirimidina/efectos de la radiación , Fase S/efectos de la radiación , Células A549 , Línea Celular Tumoral , ADN/biosíntesis , Reparación del ADN/genética , Replicación del ADN/efectos de la radiación , Humanos , Fosforilación/efectos de la radiación , Fase S/genética , Rayos Ultravioleta
3.
Nat Commun ; 11(1): 1836, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32296067

RESUMEN

Studies on multisite phosphorylation networks of cyclin-dependent kinase (CDK) targets have opened a new level of signaling complexity by revealing signal processing routes encoded into disordered proteins. A model target, the CDK inhibitor Sic1, contains linear phosphorylation motifs, docking sites, and phosphodegrons to empower an N-to-C terminally directed phosphorylation process. Here, we uncover a signal processing mechanism involving multi-step competition between mutually diversional phosphorylation routes within the S-CDK-Sic1 inhibitory complex. Intracomplex phosphorylation plays a direct role in controlling Sic1 degradation, and provides a mechanism to sequentially integrate both the G1- and S-CDK activities while keeping S-CDK inhibited towards other targets. The competing phosphorylation routes prevent premature Sic1 degradation and demonstrate how integration of MAPK from the pheromone pathway allows one to tune the competition of alternative phosphorylation paths. The mutually diversional phosphorylation circuits may be a general way for processing multiple kinase signals to coordinate cellular decisions in eukaryotes.


Asunto(s)
Fase G1/fisiología , Fase S/efectos de la radiación , Transducción de Señal/fisiología , Western Blotting , División Celular/genética , División Celular/fisiología , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fase G1/genética , Inmunoprecipitación , Espectrometría de Masas , Fosforilación , Fase S/genética , Transducción de Señal/genética
4.
Oncogene ; 39(19): 3952-3964, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32203168

RESUMEN

The elimination of DNA polymerase eta (pol η) causes discontinuous DNA elongation and fork stalling in UV-irradiated cells. Such alterations in DNA replication are followed by S-phase arrest, DNA double-strand break (DSB) accumulation, and cell death. However, their molecular triggers and the relative timing of these events have not been fully elucidated. Here, we report that DSBs accumulate relatively early after UV irradiation in pol η-depleted cells. Despite the availability of repair pathways, DSBs persist and chromosome instability (CIN) is not detectable. Later on cells with pan-nuclear γH2AX and massive exposure of template single-stranded DNA (ssDNA), which indicate severe replication stress, accumulate and such events are followed by cell death. Reinforcing the causal link between the accumulation of pan-nuclear ssDNA/γH2AX signals and cell death, downregulation of RPA increased both replication stress and the cell death of pol η-deficient cells. Remarkably, DSBs, pan-nuclear ssDNA/γH2AX, S-phase arrest, and cell death are all attenuated by MRE11 nuclease knockdown. Such results suggest that unscheduled MRE11-dependent activities at replicating DNA selectively trigger cell death, but not CIN. Together these results show that pol η-depletion promotes a type of cell death that may be attractive as a therapeutic tool because of the lack of CIN.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de la radiación , ADN Polimerasa Dirigida por ADN/genética , Histonas/genética , Proteína Homóloga de MRE11/genética , Puntos de Control del Ciclo Celular/efectos de la radiación , Muerte Celular/genética , Inestabilidad Cromosómica/efectos de la radiación , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Replicación del ADN/efectos de la radiación , ADN de Cadena Simple/efectos de la radiación , Humanos , Fase S/efectos de la radiación , Rayos Ultravioleta/efectos adversos
5.
Radiat Res ; 193(5): 451-459, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32150497

RESUMEN

Findings from previous studies have suggested that the telomerase system is involved in radiation-induced genomic instability. In this study, we investigated the involvement of telomerase in the development and processing of chromosomal damage at different cell cycle stages after irradiation of human fibroblasts. Several response criteria were investigated, including cell survival, chromosomal damage (using the micronucleus assay), G2-induced chromatid aberrations (using the conventional G2 assay as well as a chemically-induced premature chromosome condensation assay) and DNA double-strand breaks (DSBs; using γ-H2AX, 53BP1 and Rad51) in an isogenic pair of cell lines: BJ human foreskin fibroblasts and BJ1-hTERT, a telomerase-immortalized BJ cell line. To distinguish among G1, S and G2 phase, cells were co-immunostained for CENP-F and cyclin A, which are tightly regulated proteins in the cell cycle. After X-ray irradiation at doses in the range of 0.1-6 Gy, the results showed that for cell survival and micronuclei induction, where the overall effect is dominated by the cells in G1 and S phase, no difference was observed between the two cell types; in contrast, when radiation sensitivity at the G2 stage of the cell cycle was analyzed, a significantly higher number of chromatid-type aberrations (breaks and exchanges), and higher levels of γ-H2AX and of Rad51 foci were observed for the BJ cells compared to the BJ1-hTERT cells. Therefore, it can be concluded that telomerase appears to be involved in DNA DSB repair processes, mainly in the G2 phase. These data, taken overall, reinforce the notion that hTERT or other elements of the telomere/telomerase system may defend chromosome integrity in human fibroblasts by promoting repair in G2 phase of the cell cycle.


Asunto(s)
Inestabilidad Genómica/efectos de la radiación , Telomerasa/metabolismo , Línea Celular , Supervivencia Celular/efectos de la radiación , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Fase G2/efectos de la radiación , Rayos gamma/efectos adversos , Humanos , Pruebas de Micronúcleos , Recombinasa Rad51/metabolismo , Fase S/efectos de la radiación
6.
Curr Genet ; 66(4): 749-763, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32076806

RESUMEN

Y-family DNA polymerases mediate DNA damage tolerance via translesion synthesis (TLS). Because of the intrinsically error-prone nature of these enzymes, their activities are regulated at several levels. Here, we demonstrate the common regulation of the cellular abundance of Y-family polymerases, polymerase eta (Pol eta), and Rev1, in response to DNA damage at various stages of the cell cycle. UV radiation influenced polymerase abundance more when cells were exposed in S-phase than in G1- or G2-phases. We noticed two opposing effects of UV radiation in S-phase. On one hand, exposure to increasing doses of UV radiation at the beginning of this phase increasingly delayed S-phase progression. As a result, the accumulation of Pol eta and Rev1, which in nonirradiated yeast is initiated at the S/G2-phase boundary, was gradually shifted into the prolonged S-phase. On the other hand, the extent of polymerase accumulation was inversely proportional to the dose of irradiation, such that the accumulation was significantly lower after exposure to 80 J/m2 in S-phase than after exposure to 50 J/m2 or 10 J/m2. The limitation of polymerase accumulation in S-phase-arrested cells in response to high UV dose was suppressed upon RAD9 (but not MRC1) deletion. Additionally, hydroxyurea, which activates mainly the Mrc1-dependent checkpoint, did not limit Pol eta or Rev1 accumulation in S-phase-arrested cells. The results show that the accumulation of Y-family TLS polymerases is limited in S-phase-arrested cells due to high levels of DNA damage and suggest a role of the Rad9 checkpoint protein in this process.


Asunto(s)
Ciclo Celular/genética , Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleotidiltransferasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Daño del ADN/fisiología , ADN Polimerasa Dirigida por ADN/genética , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Hidroxiurea/farmacología , Nucleotidiltransferasas/metabolismo , ARN Mensajero/metabolismo , Fase S/efectos de los fármacos , Fase S/efectos de la radiación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/metabolismo , Rayos Ultravioleta
7.
Cell Rep ; 28(1): 119-131.e4, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31269434

RESUMEN

Several oncogenes induce untimely entry into S phase and alter replication timing and progression, thereby generating replicative stress, a well-known source of genomic instability and a hallmark of cancer. Using an epithelial model in Drosophila, we show that the RAS oncogene, which triggers G1/S transition, induces DNA damage and, at the same time, silences the DNA damage response pathway. RAS compromises ATR-mediated phosphorylation of the histone variant H2Av and ATR-mediated cell-cycle arrest in G2 and blocks, through ERK, Dp53-dependent induction of cell death. We found that ERK is also activated in normal tissues by an exogenous source of damage and that this activation is necessary to dampen the pro-apoptotic role of Dp53. We exploit the pro-survival role of ERK activation upon endogenous and exogenous sources of DNA damage to present evidence that its genetic or chemical inhibition can be used as a therapeutic opportunity to selectively eliminate RAS-malignant tissues.


Asunto(s)
Apoptosis/efectos de los fármacos , Daño del ADN/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Neoplasias del Ojo/terapia , Genes ras , Proteína p53 Supresora de Tumor/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Apoptosis/efectos de la radiación , Caspasas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Drosophila/metabolismo , Drosophila/efectos de la radiación , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neoplasias del Ojo/tratamiento farmacológico , Neoplasias del Ojo/genética , Neoplasias del Ojo/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Inestabilidad Genómica , Histonas/química , Histonas/metabolismo , Larva/genética , Larva/metabolismo , Larva/efectos de la radiación , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S/genética , Fase S/efectos de la radiación , Transducción de Señal , Proteína p53 Supresora de Tumor/genética
8.
Mutat Res ; 815: 10-19, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30999232

RESUMEN

The classical G2-assay is widely used to assess cell-radiosensitivity and cancer phenotype: Cells are exposed to low doses of ionizing-radiation (IR) and collected for cytogenetic- analysis ˜1.5 h later. In this way, chromosome-damage is measured in cells irradiated in G2-phase, without retrieving information regarding kinetics of chromosome-break-repair. Modification of the assay to include analysis at multiple time-points after IR, has enabled kinetic-analysis of chromatid-break-repair and assessment of damage in a larger proportion of G2-phase cells. This modification, however, increases the probability that at later time points not only cells irradiated in G2-phase, but also cells irradiated in S-phase will reach metaphase. However, the response of cells irradiated in G2-phase can be mechanistically different from that of cells irradiated in S-phase. Therefore, indiscriminate analysis may confound the interpretation of experiments designed to elucidate mechanisms of chromosome-break-repair and the contributions of the different DSB-repair-pathways in this response. Here we report an EdU based modification of the assay that enables S- and G2-phase specific analysis of chromatid break repair. Our results show that the majority of metaphases captured during the first 2 h after IR originate from cells irradiated in G2-phase (EdU- metaphases) in both rodent and human cells. Metaphases originating from cells irradiated in S-phase (EdU+ metaphases) start appearing at 2 h and 4 h after IR in rodent and human cells, respectively. The kinetics of chromatid-break-repair are similar in cells irradiated in G2- and S-phase of the cell-cycle, both in rodent and human cells. The protocol is applicable to classical-cytogenetic experiments and allows the cell-cycle specific analysis of chromosomal-aberrations. Finally, the protocol can be applied to the kinetic analysis of chromosome-breaks in prematurely-condensed-chromosomes of G2-phase cells. In summary, the developed protocol provides means to enhance the analysis of IR-induced-cytogenetic-damage by providing information on the cell-cycle phase where DNA damage is inflicted.


Asunto(s)
Aberraciones Cromosómicas/efectos de la radiación , Cromosomas/genética , Metafase/genética , Metafase/efectos de la radiación , Animales , Células CHO , Línea Celular , Línea Celular Tumoral , Rotura Cromosómica/efectos de los fármacos , Cromosomas/efectos de la radiación , Cricetulus , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Fase G2/genética , Fase G2/efectos de la radiación , Células HCT116 , Humanos , Cinética , Radiación Ionizante , Fase S/genética , Fase S/efectos de la radiación
9.
Cell Rep ; 25(13): 3869-3883.e4, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30590055

RESUMEN

Eukaryotic cells use copious measures to ensure accurate duplication of the genome. Various genotoxic agents pose threats to the ongoing replication fork that, if not efficiently dealt with, can result in replication fork collapse. It is unknown how replication fork is precisely controlled and regulated under different conditions. Here, we examined the complexity of replication fork composition upon DNA damage by using a PCNA-based proteomic screen to uncover known and unexplored players involved in replication and replication stress response. We used camptothecin or UV radiation, which lead to fork-blocking lesions, to establish a comprehensive proteomics map of the replisome under such replication stress conditions. We identified and examined two potential candidate proteins WIZ and SALL1 for their roles in DNA replication and replication stress response. In addition, our unbiased screen uncovered many prospective candidate proteins that help fill the knowledge gap in understanding chromosomal DNA replication and DNA repair.


Asunto(s)
Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Complejos Multienzimáticos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Mapas de Interacción de Proteínas , Camptotecina/farmacología , Replicación del ADN/efectos de los fármacos , Replicación del ADN/efectos de la radiación , Células HEK293 , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Mapas de Interacción de Proteínas/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de la radiación , Proteoma/metabolismo , Fase S/efectos de los fármacos , Fase S/efectos de la radiación , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/efectos de la radiación , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/efectos de la radiación , Rayos Ultravioleta
10.
Audiol Neurootol ; 23(3): 173-180, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30300901

RESUMEN

Survival of cochlear sensory epithelial cells may be regulated by inhibitor of differentiation-1 (Id1) and the N-methyl-D-aspartic acid (NMDA) receptor. However, it is unclear whether Id1 and the NMDA receptor are involved in the radiation-mediated survival of rat cochlear sensory epithelial cells. Here, we show that the percentage of apoptotic cells increased, the percentage of cells in the S phase decreased, Id1 mRNA and protein expression decreased and the NMDA receptor subtype 2B (NR2B) mRNA and protein level increased in OC1 cells after radiation. Cells infected with the Id1 gene exhibited higher Id1 mRNA and protein levels and lower NR2B mRNA and protein levels than the control cells. In contrast, after transfection of the Id1 siRNA into OC1 cells, Id1 mRNA and protein expression decreased and NR2B mRNA and protein expression increased relative to that of the control group. Additionally, treatment with ifenprodil for 24 h before radiation reduced apoptosis and increased the percentage of cells in the S phase. Our results suggest that Id1 and NR2B might regulate the survival of OC1 cells following radiation.


Asunto(s)
Células Epiteliales/efectos de la radiación , Proteína 1 Inhibidora de la Diferenciación/efectos de la radiación , Órgano Espiral/efectos de la radiación , ARN Mensajero/efectos de la radiación , Receptores de N-Metil-D-Aspartato/efectos de la radiación , Animales , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Cóclea/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Proteína 1 Inhibidora de la Diferenciación/genética , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Órgano Espiral/citología , Órgano Espiral/efectos de los fármacos , Órgano Espiral/metabolismo , Piperidinas/farmacología , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Ratas , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Fase S/efectos de los fármacos , Fase S/efectos de la radiación , Transfección
11.
Anticancer Res ; 38(6): 3323-3331, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29848680

RESUMEN

BACKGROUND/AIM: Hypoxia offers resistance to therapy in human solid tumors. The aim of the study was to investigate whether SN-38, the active metabolite of irinotecan, acts as a radiosensitizer through inhibition of hypoxia-inducible factor (HIF)-1α in the human colorectal cancer (CRC) cells. MATERIALS AND METHODS: HT29 and SW480 cells were cultured with SN-38 (0-4 µM) immediately after irradiation (0-8 Gy). HIF-1α expression was assessed using flow-cytometry and western blot analysis. Cell proliferation was evaluated by the calcein assay. Apoptosis and cell cycle were determined by flow-cytometry. RESULTS: Radiation up-regulated HIF-1α, and SN-38 inhibited the radiation-induced HIF-1α. The combination of radiation and SN-38 inhibited cell proliferation more than radiation alone; treatment with SN-38 after radiation exposure did not increase the number of apoptotic cells, whereas, it enhanced the S and G2/M cell-cycle arrest and decreased the population of cells in G1 Conclusion: SN-38 inhibits the radiation-induced up-regulation of HIF-1α and acts as a radiosensitizer by inducing cell-cycle arrest in CRC cells.


Asunto(s)
Camptotecina/análogos & derivados , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Fármacos Sensibilizantes a Radiaciones/farmacología , Regulación hacia Arriba/efectos de los fármacos , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Camptotecina/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Células HT29 , Humanos , Irinotecán , Fase S/efectos de los fármacos , Fase S/efectos de la radiación , Regulación hacia Arriba/efectos de la radiación
12.
Nature ; 543(7646): 573-576, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28297716

RESUMEN

Cell proliferation and survival require the faithful maintenance and propagation of genetic information, which are threatened by the ubiquitous sources of DNA damage present intracellularly and in the external environment. A system of DNA repair, called the DNA damage response, detects and repairs damaged DNA and prevents cell division until the repair is complete. Here we report that methylation at the 6 position of adenosine (m6A) in RNA is rapidly (within 2 min) and transiently induced at DNA damage sites in response to ultraviolet irradiation. This modification occurs on numerous poly(A)+ transcripts and is regulated by the methyltransferase METTL3 (methyltransferase-like 3) and the demethylase FTO (fat mass and obesity-associated protein). In the absence of METTL3 catalytic activity, cells showed delayed repair of ultraviolet-induced cyclobutane pyrimidine adducts and elevated sensitivity to ultraviolet, demonstrating the importance of m6A in the ultraviolet-responsive DNA damage response. Multiple DNA polymerases are involved in the ultraviolet response, some of which resynthesize DNA after the lesion has been excised by the nucleotide excision repair pathway, while others participate in trans-lesion synthesis to allow replication past damaged lesions in S phase. DNA polymerase κ (Pol κ), which has been implicated in both nucleotide excision repair and trans-lesion synthesis, required the catalytic activity of METTL3 for immediate localization to ultraviolet-induced DNA damage sites. Importantly, Pol κ overexpression qualitatively suppressed the cyclobutane pyrimidine removal defect associated with METTL3 loss. Thus, we have uncovered a novel function for RNA m6A modification in the ultraviolet-induced DNA damage response, and our findings collectively support a model in which m6A RNA serves as a beacon for the selective, rapid recruitment of Pol κ to damage sites to facilitate repair and cell survival.


Asunto(s)
Daño del ADN/efectos de la radiación , Metilación , ARN/química , ARN/metabolismo , Rayos Ultravioleta , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Biocatálisis/efectos de la radiación , Línea Celular , Supervivencia Celular/efectos de la radiación , Reparación del ADN/efectos de la radiación , Replicación del ADN/efectos de la radiación , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Metilación/efectos de la radiación , Metiltransferasas/deficiencia , Metiltransferasas/metabolismo , Ratones , Poli A/metabolismo , ARN/efectos de la radiación , Fase S/efectos de la radiación
13.
J Cell Biol ; 215(3): 401-413, 2016 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-27799368

RESUMEN

Regeneration of the intestinal epithelium is driven by multiple intestinal stem cell (ISC) types, including an active, radiosensitive Wnthigh ISC that fuels turnover during homeostasis and a reserve, radioresistant Wntlow/off ISC capable of generating active Wnthigh ISCs. We examined the role of the Msi family of oncoproteins in the ISC compartment. We demonstrated that Msi proteins are dispensable for normal homeostasis and self-renewal of the active ISC, despite their being highly expressed in these cells. In contrast, Msi proteins are required specifically for activation of reserve ISCs, where Msi activity is both necessary and sufficient to drive exit from quiescence and entry into the cell cycle. Ablation of Msi activity in reserve ISCs rendered the epithelium unable to regenerate in response to injury that ablates the active stem cell compartment. These findings delineate a molecular mechanism governing reserve ISC quiescence and demonstrate a necessity for the activity of this rare stem cell population in intestinal regeneration.


Asunto(s)
Intestinos/citología , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Linaje de la Célula/efectos de la radiación , Proliferación Celular/efectos de la radiación , Epitelio/patología , Epitelio/efectos de la radiación , Rayos gamma , Homeostasis/efectos de la radiación , Ratones Endogámicos C57BL , Traumatismos por Radiación/patología , Fase de Descanso del Ciclo Celular/efectos de la radiación , Fase S/efectos de la radiación , Células Madre/efectos de la radiación , Regulación hacia Arriba/efectos de la radiación , Vía de Señalización Wnt/efectos de la radiación
14.
Bull Exp Biol Med ; 161(6): 837-840, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27783285

RESUMEN

Using the autoradiographic method, we studied the kinetics of DNA synthesis over the mitotic cycle in mouse corneal epithelium cells in delayed periods after γ-irradiation in different points of the S phase of the first mitotic cycle. The index labeled cells during 1-3 periods of DNA synthesis most adequately reflects quantitative changes in the cell population composition after cell exposure during the first S period. The relative number of labeled S phase cells in the second mitotic cycle in experiments where the cells were irradiated in the S1 phase of the first S period was 4-fold lower than in experiments where the cells were exposed during S2 phase. This effect is determined by inhibition of the transcription factors activation. It seems that two territorially different sites of the genome controlling the regulatory stimuli and involved in modification of the quantitative composition of the population are responsible for changes in its quantitative balance.


Asunto(s)
Córnea/efectos de la radiación , Replicación del ADN/efectos de la radiación , Células Epiteliales/efectos de la radiación , Rayos gamma , Fase S/efectos de la radiación , Animales , Autorradiografía , Recuento de Células , Córnea/citología , Córnea/metabolismo , Relación Dosis-Respuesta en la Radiación , Células Epiteliales/citología , Células Epiteliales/metabolismo , Instilación de Medicamentos , Masculino , Ratones , Ratones Endogámicos C57BL , Coloración y Etiquetado/métodos , Timidina/metabolismo , Tritio
15.
PLoS One ; 11(9): e0162806, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27611996

RESUMEN

The DNA damage response (DDR) is a coordinated signaling network that ensures the maintenance of genome stability under DNA damaging stress. In response to DNA lesions, activation of the DDR leads to the establishment of cell cycle checkpoints that delay cell-cycle progression and allow repair of the defects. The tumor suppressor p27Kip1 is a cyclin-CDK inhibitor that plays an important role in regulating quiescence in a variety of tissues. Several studies have suggested that p27Kip1 also plays a role in the maintenance of genomic integrity. Here we demonstrate that p27Kip1 is essential for the establishment of a G1 checkpoint arrest after DNA damage. We also uncovered that ATM phosphorylates p27Kip1 on a previously uncharacterized residue (Ser-140), which leads to its stabilization after induction of DNA double-strand breaks. Inhibition of this stabilization by replacing endogenous p27Kip1 with a Ser-140 phospho-mutant (S140A) significantly sensitized cells to IR treatments. Our findings reveal a novel role for p27Kip1 in the DNA damage response pathway and suggest that part of its tumor suppressing functions relies in its ability to mediate a G1 arrest after the induction of DNA double strand breaks.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN , Puntos de Control de la Fase G1 del Ciclo Celular , Transducción de Señal , Línea Celular , Supervivencia Celular/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Fase G1/efectos de la radiación , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de la radiación , Rayos gamma , Humanos , Fosforilación/efectos de la radiación , Fosfoserina/metabolismo , Estabilidad Proteica/efectos de la radiación , Fase S/efectos de la radiación , Transducción de Señal/efectos de la radiación , Esferoides Celulares/patología , Esferoides Celulares/efectos de la radiación , Factores de Tiempo
16.
PLoS One ; 11(7): e0159344, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27442013

RESUMEN

Cell cycle checkpoint is mediated by ATR and ATM kinases, as a prompt early response to a variety of DNA insults, and culminates in a highly orchestrated signal transduction cascade. Previously, we defined the regulatory role of nucleotide excision repair (NER) factors, DDB2 and XPC, in checkpoint and ATR/ATM-dependent repair pathway via ATR and ATM phosphorylation and recruitment to ultraviolet radiation (UVR)-induced damage sites. Here, we have dissected the molecular mechanisms of DDB2- and XPC- mediated regulation of ATR and ATM recruitment and activation upon UVR exposures. We show that the ATR and ATM activation and accumulation to UVR-induced damage not only depends on DDB2 and XPC, but also on the NER protein XPA, suggesting that the assembly of an active NER complex is essential for ATR and ATM recruitment. ATR and ATM localization and H2AX phosphorylation at the lesion sites occur as early as ten minutes in asynchronous as well as G1 arrested cells, showing that repair and checkpoint-mediated by ATR and ATM starts early upon UV irradiation. Moreover, our results demonstrated that ATR and ATM recruitment and H2AX phosphorylation are dependent on NER proteins in G1 phase, but not in S phase. We reasoned that in G1 the UVR-induced ssDNA gaps or processed ssDNA, and the bound NER complex promote ATR and ATM recruitment. In S phase, when the UV lesions result in stalled replication forks with long single-stranded DNA, ATR and ATM recruitment to these sites is regulated by different sets of proteins. Taken together, these results provide evidence that UVR-induced ATR and ATM recruitment and activation differ in G1 and S phases due to the existence of distinct types of DNA lesions, which promote assembly of different proteins involved in the process of DNA repair and checkpoint activation.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN , Reparación del ADN , Fase G1 , Fase S , Puntos de Control del Ciclo Celular/efectos de la radiación , Línea Celular , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Fase G1/efectos de la radiación , Histonas/metabolismo , Humanos , Modelos Biológicos , Fosforilación/efectos de la radiación , Fase S/efectos de la radiación , Especificidad por Sustrato/efectos de la radiación , Rayos Ultravioleta , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
17.
Dev Cell ; 37(5): 444-57, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27270041

RESUMEN

Conserved DNA-damage responses (DDRs) sense genome damage and prevent mitosis of broken chromosomes. How cells lacking DDRs cope with broken chromosomes during mitosis is poorly understood. DDRs are frequently inactivated in cells with extra genomes (polyploidy), suggesting that study of polyploidy can reveal how cells with impaired DDRs/genome damage continue dividing. Here, we show that continued division and normal organ development occurs in polyploid, DDR-impaired Drosophila papillar cells. As papillar cells become polyploid, they naturally accumulate broken acentric chromosomes but do not apoptose/arrest the cell cycle. To survive mitosis with acentric chromosomes, papillar cells require Fanconi anemia proteins FANCD2 and FANCI, as well as Blm helicase, but not canonical DDR signaling. FANCD2 acts independently of previous S phases to promote alignment and segregation of acentric DNA produced by double-strand breaks, thus avoiding micronuclei and organ malformation. Because polyploidy and impaired DDRs can promote cancer, our findings provide insight into disease-relevant DNA-damage tolerance mechanisms.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Poliploidía , Animales , Apoptosis/efectos de la radiación , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Segregación Cromosómica/efectos de la radiación , Cromosomas de Insectos/metabolismo , ADN/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , ADN Helicasas/metabolismo , Reparación del ADN/efectos de la radiación , Drosophila melanogaster/efectos de la radiación , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Fenotipo , Radiación Ionizante , Fase S/efectos de la radiación , Proteína p53 Supresora de Tumor/metabolismo
18.
Radiat Res ; 185(5): 527-38, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27135971

RESUMEN

Several classes of inhibitors of the mammalian target of rapamycin (mTOR) have been developed based on its central role in sensing growth factor and nutrient levels to regulate cellular metabolism. However, its ATP-binding site closely resembles other phosphatidylinositol 3-kinase-related kinase (PIKK) family members, resulting in reactivity with these targets that may also be therapeutically useful. The ATP-competitive mTOR inhibitor, Torin2, shows biochemical activity against the DNA repair-associated proteins ATM, ATR and DNA-PK, which raises the possibility that Torin2 and related compounds might radiosensitize cancerous tumors. In this study Torin2 was also found to enhance ionizing radiation-induced cell killing in conditions where ATM was dispensable, confirming the requirement for multiple PIKK targets. Moreover, Torin2 did not influence the initial appearance of γ-H2AX foci after irradiation but significantly delayed the disappearance of radiation-induced γ-H2AX foci, indicating a DNA repair defect. Torin2 increased the number of radiation-induced S-phase specific chromosome aberrations and reduced the frequency of radiation-induced CtIP and Rad51 foci formation, suggesting that Torin2 works by blocking homologous recombination (HR)-mediated DNA repair resulting in an S-phase specific DNA repair defect. Accordingly, Torin2 reduced HR-mediated repair of I-Sce1-induced DNA damage and contributed to replication fork stalling. We conclude that radiosensitization of tumor cells by Torin2 is associated with disrupting ATR- and ATM-dependent DNA damage responses. Our findings support the concept of developing combination cancer therapies that incorporate ionizing radiation therapy and Torin2 or compounds with similar properties.


Asunto(s)
Daño del ADN , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Naftiridinas/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Aberraciones Cromosómicas/efectos de los fármacos , Aberraciones Cromosómicas/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Replicación del ADN/efectos de los fármacos , Replicación del ADN/efectos de la radiación , Fase G2/efectos de los fármacos , Fase G2/efectos de la radiación , Histonas/metabolismo , Recombinación Homóloga/efectos de los fármacos , Recombinación Homóloga/efectos de la radiación , Humanos , Cinética , Fase S/efectos de los fármacos , Fase S/efectos de la radiación
19.
J Radiat Res ; 57(2): 110-4, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26747201

RESUMEN

Densely ionizing charged particle irradiation offers physical as well as biological advantages compared with photon irradiation. Radiobiological data for the combination of such particle irradiation (i.e. therapeutic carbon ions) with commonly used chemotherapeutics are still limited. Recent in vitro results indicate a general prevalence of additive cytotoxic effects in combined treatments, but an extension of established multimodal treatment regimens with photons to the inclusion of particle therapy needs to evaluate possible peculiarities of using high linear energy transfer (LET) radiation. The present study investigates the effect of combined radiochemotherapy using gemcitabine and high-LET irradiation with therapeutic carbon ions. In particular, the earlier observation of S-phase specific radiosensitization with photon irradiation should be evaluated with carbon ions. In the absence of the drug gemcitabine, carbon ion irradiation produced the typical survival behavior seen with X-rays-increased relative biological efficiency, and depletion of the survival curve's shoulder. By means of serum deprivation and subsequent replenishment, ∼70% S-phase content of the cell population was achieved, and such preparations showed radioresistance in both treatment arms-,photon and carbon ion irradiation. Combined modality treatment with gemcitabine caused significant reduction of clonogenic survival especially for the S-phase cells. WIDR cells exhibited S-phase-specific radioresistance with high-LET irradiation, although this was less pronounced than for X-ray exposure. The combined treatment with therapeutic carbon ions and gemcitabine caused the resistance phenomenon to disappear phenotypically.


Asunto(s)
Desoxicitidina/análogos & derivados , Radioterapia de Iones Pesados , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/efectos de la radiación , Fase S/efectos de los fármacos , Fase S/efectos de la radiación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Desoxicitidina/farmacología , Humanos , Ensayo de Tumor de Célula Madre , Gemcitabina
20.
Nat Genet ; 48(1): 36-43, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26595769

RESUMEN

DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism. We establish that TRAIP relocalizes to sites of DNA damage, where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to ultraviolet (UV) irradiation, as well as fork progression through UV-induced DNA lesions. TRAIP is necessary for efficient cell cycle progression and mutations in TRAIP therefore limit cellular proliferation, providing a potential mechanism for microcephaly and dwarfism phenotypes. Human genetics thus identifies TRAIP as a component of the DNA damage response to replication-blocking DNA lesions.


Asunto(s)
Daño del ADN , Enanismo/genética , Mutación , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Proliferación Celular/genética , Preescolar , Daño del ADN/efectos de la radiación , Facies , Histonas/genética , Histonas/metabolismo , Humanos , Microcefalia/genética , Datos de Secuencia Molecular , Fosforilación , Proteína de Replicación A/metabolismo , Fase S/efectos de la radiación , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Ubiquitina-Proteína Ligasas/genética , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...