Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.353
Filtrar
1.
An Acad Bras Cienc ; 96(2): e20220963, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747784

RESUMEN

The objective of this study was to evaluate the effects of diets with two energy levels fed to Ile de France ewes during the last third of gestation on the performance, carcass, and meat traits of their offspring. Treatments were: D0: maternal diet meeting the requirements for the last third of gestation, and D20: maternal diet containing an additional 20% energy requirements. Twenty single-born male lambs, ten from each group of ewes, were weaned at 60 d (18.3 ± 1.4 kg initial BW) and fed a common finishing diet. Animals were slaughtered when they reached 32 kg BW. Dry matter intake, average daily gain, feed conversion, and days on feed were unaffected by treatments (P≥0.09). No effects were observed on hot and cold carcass weights, dressing percentage, chilling loss, commercial cuts yields, and loin-eye area (P≥0.17). Meat pH, thawing loss, cooking loss, shear force, and water holding capacity were also not affected by treatments (P≥0.09). Temperature and meat color, as well as centesimal composition were similar between treatments (P≥0.27). Adding 20% energy on top of the requirements of Ile de France ewes during the last third of gestation does not influence the performance, carcass traits, nor meat traits of their offspring.


Asunto(s)
Alimentación Animal , Carne , Animales , Femenino , Masculino , Alimentación Animal/análisis , Ovinos/fisiología , Carne/análisis , Embarazo , Fenómenos Fisiológicos Nutricionales de los Animales , Fenómenos Fisiologicos Nutricionales Maternos , Composición Corporal , Dieta/veterinaria
2.
J Agric Food Chem ; 72(19): 10679-10691, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38695770

RESUMEN

There has been a dramatic surge in the prevalence of food allergy (FA) that cannot be explained solely by genetics, identifying mechanisms of sensitization that are driven by environmental factors has become increasingly important. Diet, gut microbiota, and their metabolites have been shown to play an important role in the development of FA. In this review, we discuss the latest epidemiological evidence on the impact of two major dietary patterns and key nutrients in early life on the risk of offspring developing FA. The Western diet typically includes high sugar and high fat, which may affect the immune system of offspring and increase susceptibility to FA. In contrast, the Mediterranean diet is rich in fiber, which may reduce the risk of FA in offspring. Furthermore, we explore the potential mechanisms by which maternal dietary nutrients during a window of opportunity (pregnancy, birth, and lactation) influences the susceptibility of offspring to FA through multi-interface crosstalk. Finally, we discuss the limitations and gaps in the available evidence regarding the relationship between maternal dietary nutrients and the risk of FA in offspring. This review provides novel perspective on the regulation of offspring FA by maternal diet and nutrients.


Asunto(s)
Hipersensibilidad a los Alimentos , Microbioma Gastrointestinal , Fenómenos Fisiologicos Nutricionales Maternos , Nutrientes , Humanos , Femenino , Hipersensibilidad a los Alimentos/inmunología , Hipersensibilidad a los Alimentos/prevención & control , Hipersensibilidad a los Alimentos/etiología , Embarazo , Nutrientes/metabolismo , Animales , Dieta , Efectos Tardíos de la Exposición Prenatal
3.
Trials ; 25(1): 315, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741174

RESUMEN

BACKGROUND: The World Health Organization (WHO) recommends balanced energy and protein (BEP) supplementation be provided to all pregnant women living in undernourished populations, usually defined as having a prevalence > 20% of underweight women, to reduce the risk of stillbirths and small-for-gestational-age neonates. Few geographies meet this threshold, however, and a large proportion of undernourished women and those with inadequate gestational weight gain could miss benefiting from BEP. This study compares the effectiveness of individual targeting approaches for supplementation with micronutrient-fortified BEP vs. multiple micronutrient supplements (MMS) alone as control in pregnancy in improving birth outcomes. METHODS: The TARGET-BEP study is a four-arm, cluster-randomized controlled trial conducted in rural northwestern Bangladesh. Eligible participants are married women aged 15-35 years old identified early in pregnancy using a community-wide, monthly, urine-test-based pregnancy detection system. Beginning at 12-14 weeks of gestation, women in the study area comprising 240 predefined sectors are randomly assigned to one of four intervention arms, with sector serving as the unit of randomization. The interventions involving daily supplementation through end of pregnancy are as follows: (1) MMS (control); (2) BEP; (3) targeted BEP for those with pre-pregnancy body mass index (BMI) < 18.5 kg/m2 and MMS for others; (4) targeted BEP for those with pre-pregnancy BMI < 18.5 kg/m2, MMS for others, and women with inadequate gestational weight gain switched from MMS to BEP until the end of pregnancy. Primary outcomes include birth weight, low birth weight (< 2500 g), and small for gestational age, defined using the 10th percentile of the INTERGROWTH-21st reference, for live-born infants measured within 72 h of birth. Project-hired local female staff visit pregnant women monthly to deliver the assigned supplements, monitor adherence biweekly, and assess weight regularly during pregnancy. Trained data collectors conduct pregnancy outcome assessment and measure newborn anthropometry in the facility or home depending on the place of birth. DISCUSSION: This study will assess the effectiveness of targeted balanced energy and protein supplementation to improve birth outcomes among pregnant women in rural Bangladesh and similar settings. TRIAL REGISTRATION: ClinicalTrials.gov NCT05576207. Registered on October 5th, 2022.


Asunto(s)
Proteínas en la Dieta , Suplementos Dietéticos , Ganancia de Peso Gestacional , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Femenino , Embarazo , Bangladesh/epidemiología , Adulto , Adulto Joven , Adolescente , Proteínas en la Dieta/administración & dosificación , Ingestión de Energía , Estado Nutricional , Recién Nacido , Fenómenos Fisiologicos Nutricionales Maternos , Peso al Nacer , Complicaciones del Embarazo/prevención & control , Micronutrientes/administración & dosificación , Resultado del Tratamiento , Edad Gestacional , Factores de Tiempo
4.
Reprod Fertil Dev ; 362024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739740

RESUMEN

Context A maternal high-fat diet is thought to pose a risk to spermatogenesis in the progeny. Aims We tested whether a maternal high-fat diet would affect Sertoli cell expression of transcription factors (insulin-like growth factor I (IGF-I); glial-cell line-derived neurotrophic factor (GDNF); Ets variant 5 (ETV5)) and cell proliferation and apoptotic proteins, in the testis of adult offspring. Methods Pregnant rats were fed ad libitum with a standard diet (Control) or a high-fat diet (HFat) throughout pregnancy and lactation. After weaning, male pups were fed the standard diet until postnatal day 160. Males were monitored daily from postnatal day 34 to determine onset of puberty. On postnatal day 160, their testes were processed for morphometry and immunohistochemistry. Key results The HFat diet increased seminiferous-tubule diameter (P P P P P P P P Conclusions A maternal high-fat diet alters the balance between spermatogonia proliferation and spermatid apoptosis. Implications A maternal high-fat diet seems to 'program' adult male fertility.


Asunto(s)
Apoptosis , Proliferación Celular , Dieta Alta en Grasa , Lactancia , Fenómenos Fisiologicos Nutricionales Maternos , Efectos Tardíos de la Exposición Prenatal , Testículo , Animales , Femenino , Masculino , Embarazo , Apoptosis/fisiología , Lactancia/fisiología , Testículo/metabolismo , Testículo/patología , Ratas , Efectos Tardíos de la Exposición Prenatal/patología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Espermatogénesis/fisiología , Células de Sertoli/metabolismo , Células de Sertoli/patología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Ratas Wistar
5.
Nutrients ; 16(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732510

RESUMEN

Amino acids are essential for normal pregnancy and fetal development. Disruptions in maternal amino acid metabolism have been associated with various adult diseases later in life, a phenomenon referred to as the developmental origins of health and disease (DOHaD). In this review, we examine the recent evidence highlighting the significant impact of amino acids on fetal programming, their influence on the modulation of gut microbiota, and their repercussions on offspring outcomes, particularly in the context of cardiovascular-kidney-metabolic (CKM) syndrome. Furthermore, we delve into experimental studies that have unveiled the protective effects of therapies targeting amino acids. These interventions have demonstrated the potential to reprogram traits associated with CKM in offspring. The discussion encompasses the challenges of translating the findings from animal studies to clinical applications, emphasizing the complexity of this process. Additionally, we propose potential solutions to overcome these challenges. Ultimately, as we move forward, future research endeavors should aim to pinpoint the most effective amino-acid-targeted therapies, determining the optimal dosage and mode of administration. This exploration is essential for maximizing the reprogramming effects, ultimately contributing to the enhancement of cardiovascular-kidney-metabolic health in offspring.


Asunto(s)
Aminoácidos , Enfermedades Cardiovasculares , Desarrollo Fetal , Microbioma Gastrointestinal , Riñón , Humanos , Embarazo , Femenino , Aminoácidos/metabolismo , Riñón/metabolismo , Animales , Microbioma Gastrointestinal/fisiología , Efectos Tardíos de la Exposición Prenatal , Enfermedades Renales , Fenómenos Fisiologicos Nutricionales Maternos
6.
Nutrients ; 16(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732568

RESUMEN

Household food insecurity (HFI) and poorer prenatal diet quality are both associated with adverse perinatal outcomes. However, research assessing the relationship between HFI and diet quality in pregnancy is limited. A cross-sectional online survey was conducted to examine the relationship between HFI and diet quality among 1540 pregnant women in Australia. Multiple linear regression models were used to examine the associations between HFI severity (marginal, low, and very low food security compared to high food security) and diet quality and variety, adjusting for age, education, equivalised household income, and relationship status. Logistic regression models were used to assess the associations between HFI and the odds of meeting fruit and vegetable recommendations, adjusting for education. Marginal, low, and very low food security were associated with poorer prenatal diet quality (adj ß = -1.9, -3.6, and -5.3, respectively; p < 0.05), and very low food security was associated with a lower dietary variety (adj ß = -0.5, p < 0.001). An association was also observed between HFI and lower odds of meeting fruit (adjusted odds ratio [AOR]: 0.61, 95% CI: 0.49-0.76, p < 0.001) and vegetable (AOR: 0.40, 95% CI: 0.19-0.84, p = 0.016) recommendations. Future research should seek to understand what policy and service system changes are required to reduce diet-related disparities in pregnancy.


Asunto(s)
Dieta , Inseguridad Alimentaria , Humanos , Femenino , Embarazo , Estudios Transversales , Adulto , Australia , Adulto Joven , Verduras , Frutas , Abastecimiento de Alimentos/estadística & datos numéricos , Seguridad Alimentaria , Fenómenos Fisiologicos Nutricionales Maternos
7.
Nutrients ; 16(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732572

RESUMEN

The effects of gut microbiota on the association between carbohydrate intake during pregnancy and neonatal low birth weight (LBW) were investigated. A prospective cohort study was conducted with 257 singleton-born mother-child pairs in Taiwan, and maternal dietary intake was estimated using a questionnaire, with each macronutrient being classified as low, medium, or high. Maternal fecal samples were collected between 24 and 28 weeks of gestation, and gut microbiota composition and diversity were profiled using 16S rRNA amplicon gene sequencing. Carbohydrates were the major source of total energy (56.61%), followed by fat (27.92%) and protein (15.46%). The rate of infant LBW was 7.8%, which was positively correlated with maternal carbohydrate intake. In the pregnancy gut microbiota, Bacteroides ovatus and Dorea spp. were indirectly and directly negatively associated with fetal growth, respectively; Rosenburia faecis was directly positively associated with neonatal birth weight. Maternal hypertension during pregnancy altered the microbiota features and was associated with poor fetal growth. Microbiota-accessible carbohydrates can modify the composition and function of the pregnancy gut microbiota, thus providing a potential marker to modulate deviations from dietary patterns, particularly in women at risk of hypertension during pregnancy, to prevent neonatal LBW.


Asunto(s)
Carbohidratos de la Dieta , Heces , Microbioma Gastrointestinal , Recién Nacido de Bajo Peso , Humanos , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Embarazo , Recién Nacido , Adulto , Estudios Prospectivos , Heces/microbiología , Fenómenos Fisiologicos Nutricionales Maternos , Taiwán , ARN Ribosómico 16S/genética , Desarrollo Fetal
8.
Nutrients ; 16(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732620

RESUMEN

Understanding how maternal micronutrient intake and dietary habits impact gestational diabetes mellitus (GDM) is crucial. Data from 797 pregnant women were prospectively analyzed to assess GDM status with the oral glucose tolerance test (OGTT). Nutritional intake was evaluated using a validated food frequency questionnaire (FFQ) across two periods: Period A, covering 6 months before pregnancy, and Period B, from pregnancy onset to mid-gestation (24 weeks). Micronutrient intakes were compared against the European Food Safety Authority (EFSA) dietary reference values (DRVs) and were used to estimate the mean adequacy ratio (MAR) to assess dietary adequacy. GDM was diagnosed in 14.7% (n = 117) of women with the characteristics of a higher mean maternal age (MA) and pre-pregnancy body mass index (BMI). Out of the 13 vitamins assessed, biotin, folate, niacin, and pantothenic acid were found significantly higher in the GDM group, as did iron, magnesium, manganese, phosphorus, and zinc from the 10 minerals. The results were influenced by the timing of the assessment. Importantly, MAR was higher during pregnancy and was found to increase the risk of GDM by 1% (95%CI: 1, 1.02). A sensitivity analysis revealed that reducing MAR significantly raised the GDM risk by 68% (95%CI: 1.02, 2.79). No association was revealed between adherence to the Mediterranean diet (MD) and GDM risk. These findings highlight areas for further investigation into whether dietary modifications involving these specific micronutrients could effectively influence GDM outcomes.


Asunto(s)
Diabetes Gestacional , Micronutrientes , Humanos , Femenino , Embarazo , Diabetes Gestacional/epidemiología , Diabetes Gestacional/etiología , Diabetes Gestacional/prevención & control , Grecia/epidemiología , Micronutrientes/administración & dosificación , Estudios Prospectivos , Adulto , Fenómenos Fisiologicos Nutricionales Maternos , Factores de Riesgo , Prueba de Tolerancia a la Glucosa , Estado Nutricional , Índice de Masa Corporal , Conducta Alimentaria
9.
Nutrients ; 16(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732634

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) has emerged as the most prevalent pediatric liver disorder, primarily attributed to dietary shifts in recent years. NAFLD is characterized by the accumulation of lipid species in hepatocytes, leading to liver inflammation that can progress to steatohepatitis, fibrosis, and cirrhosis. Risk factors contributing to NAFLD encompass genetic variations and metabolic disorders such as obesity, diabetes, and insulin resistance. Moreover, transgenerational influences, resulting in an imbalance of gut microbial composition, epigenetic modifications, and dysregulated hepatic immune responses in offspring, play a pivotal role in pediatric NAFLD development. Maternal nutrition shapes the profile of microbiota-derived metabolites in offspring, exerting significant influence on immune system regulation and the development of metabolic syndrome in offspring. In this review, we summarize recent evidence elucidating the intricate interplay between gut microbiota, epigenetics, and immunity in fetuses exposed to maternal nutrition, and its impact on the onset of NAFLD in offspring. Furthermore, potential therapeutic strategies targeting this network are also discussed.


Asunto(s)
Epigénesis Genética , Microbioma Gastrointestinal , Fenómenos Fisiologicos Nutricionales Maternos , Enfermedad del Hígado Graso no Alcohólico , Efectos Tardíos de la Exposición Prenatal , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/etiología , Humanos , Femenino , Embarazo , Animales , Factores de Riesgo
10.
Mol Nutr Food Res ; 68(9): e2300758, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38639319

RESUMEN

SCOPE: Obesity and metabolic diseases are closely associated, and individuals who become obese are also prone to type 2 diabetes and cardiovascular disorders. Gut microbiota is mediated by diet and can influence host metabolism and the incidence of metabolic disorders. Recent studies have suggested that improving gut microbiota through a fructooligosaccharide (FOS)-supplemented diet may ameliorate obesity and other metabolic disorders. Although accumulating evidence supports the notion of the developmental origins of health and disease, the underlying mechanisms remain obscure. METHODS AND RESULTS: ICR mice are fed AIN-93G formula-based cellulose -, FOS-, acetate-, or propionate-supplemented diets during pregnancy. Offspring are reared by conventional ICR foster mothers for 4 weeks; weaned mice are fed high fat diet for 12 weeks and housed individually. The FOS and propionate offspring contribute to suppressing obesity and improving glucose intolerance. Gut microbial compositions in FOS-fed mothers and their offspring are markedly changed. However, the beneficial effect of FOS diet on the offspring is abolished when antibiotics are administered to pregnant mice. CONCLUSION: The findings highlight the link between the maternal gut environment and the developmental origin of metabolic syndrome in offspring. These results open novel research avenues into preemptive therapies for metabolic disorders by targeting the maternal gut microbiota.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Ratones Endogámicos ICR , Obesidad , Oligosacáridos , Animales , Embarazo , Oligosacáridos/farmacología , Oligosacáridos/administración & dosificación , Dieta Alta en Grasa/efectos adversos , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Ratones Obesos , Ratones , Efectos Tardíos de la Exposición Prenatal , Fenotipo , Fenómenos Fisiologicos Nutricionales Maternos , Suplementos Dietéticos
11.
Mol Nutr Food Res ; 68(8): e2300861, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38566521

RESUMEN

SCOPE: Brown rice, the most consumed food worldwide, has been shown to possess beneficial effects on the prevention of metabolic diseases. However, the way in which maternal brown rice diet improves metabolism in offspring and the regulatory mechanisms remains unclear. The study explores the epigenetic regulation of offspring energy metabolic homeostasis by maternal brown rice diet during pregnancy. METHODS AND RESULTS: Female mice are fed brown rice during pregnancy, and then body phenotypes, the histopathological analysis, and adipose tissues biochemistry assay of offspring mice are detected. It is found that maternal brown rice diet significantly reduces body weight and fat mass, increases energy expenditure and heat production in offspring. Maternal brown rice diet increases uncoupling protein 1 (UCP1) protein level and upregulates the mRNA expression of thermogenic genes in adipose tissues. Mechanistically, protein kinase A (PKA) signaling is likely responsible in the induced thermogenic program in offspring adipocytes, and the progeny adipocytes browning program is altered due to decreased level of DNA methyltransferase 1 protein and hypomethylation of the transcriptional coregulator positive regulatory domain containing 16 (PRDM16). CONCLUSIONS: These findings demonstrate that maternal brown rice during pregnancy improves offspring mice metabolic homeostasis via promoting adipose browning, and its mechanisms may be mediated by DNA methylation reprogramming.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Metilación de ADN , Oryza , Transducción de Señal , Animales , Femenino , Embarazo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ratones , Termogénesis , Tejido Adiposo Pardo/metabolismo , Metabolismo Energético , Fenómenos Fisiologicos Nutricionales Maternos , Ratones Endogámicos C57BL , Dieta , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Masculino , Epigénesis Genética
12.
Nutrients ; 16(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38674900

RESUMEN

We aimed to investigate the associations between maternal intake of folate, vitamin B12, B6, B2, methionine, choline, phosphatidylcholine and betaine during the period surrounding pregnancy and offspring weight outcomes from birth to early adulthood. These associations were examined among 2454 mother-child pairs from the Nurses' Health Study II and Growing Up Today Study. Maternal energy-adjusted nutrient intakes were derived from food frequency questionnaires. Birth weight, body size at age 5 and repeated BMI measurements were considered. Overweight/obesity was defined according to the International Obesity Task Force (<18 years) and World Health Organization guidelines (18+ years). Among other estimands, we report relative risks (RRs) for offspring ever being overweight with corresponding 95% confidence intervals across quintiles of dietary factors, with the lowest quintile as the reference. In multivariate-adjusted models, higher maternal intakes of phosphatidylcholine were associated with a higher risk of offspring ever being overweight (RRQ5vsQ1 = 1.16 [1.01-1.33] p-trend: 0.003). The association was stronger among offspring born to mothers with high red meat intake (high red meat RRQ5vsQ1 = 1.50 [1.14-1.98], p-trend: 0.001; low red meat RRQ5vsQ1 = 1.05 [0.87-1.27], p-trend: 0.46; p-interaction = 0.13). Future studies confirming the association between a higher maternal phosphatidylcholine intake during pregnancy and offspring risk of being overweight or obese are needed.


Asunto(s)
Fenómenos Fisiologicos Nutricionales Maternos , Sobrepeso , Humanos , Femenino , Embarazo , Estudios Prospectivos , Adulto , Sobrepeso/epidemiología , Dieta/efectos adversos , Factores de Riesgo , Masculino , Obesidad/epidemiología , Obesidad/etiología , Preescolar , Índice de Masa Corporal , Colina/administración & dosificación , Fosfatidilcolinas , Efectos Tardíos de la Exposición Prenatal , Peso al Nacer
13.
Nutrition ; 123: 112426, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38581846

RESUMEN

OBJECTIVE: Studies that have investigated the effect of nutritional counseling during the prenatal period on the follow-up outcomes of children at 6 mo have produced inconclusive results. The present study aimed to investigate the effect of nutritional counseling, based on the NOVA food classification, encouraging the consumption of fresh and minimally processed foods, with overweight adult pregnant women on infant growth at 6 mo of age. METHODS: A randomized controlled trial with 195 pairs of pregnant overweight women and their infants at 6 mo of age was conducted in a Brazilian municipality. The pregnant women were allocated to the control group (CG) or intervention group (IG) at the beginning of the pregnancy. The IG received three sessions of nutrition counseling throughout the pregnancy. Linear regression models were used to investigate the effect of the nutritional counseling on infant growth. RESULTS: One hundred ninety-five mother-infant pairs with complete data were included (96 CG, and 99 IG). The mean ± SD infant weight (g) at 6 mo was 7856.1 ± 1.1, and length (cm) was 67.0 ± 2.9. There were no differences in maternal and newborn characteristics between the groups. In the linear regression models, the counseling had no effect on anthropometric parameters of the infants at 6 mo of age: weight-for-length Z-score (ß 0.089 [95% CI -0.250; 0.427], P = 0.61); length-for-age Z-score (ß 0.032 [95% CI -0.299; 0.363], P = 0.85); weight-for-age Z-score (ß 0.070 [95% CI -0.260; 0.400], P = 0.68); BMI-age Z-score (ß 0.072 [95% CI -0.270; 0.414], P = 0.68). CONCLUSIONS: There was no effect on infant growth at 6 mo of age after the nutritional counseling during pregnancy. Future studies are needed to confirm this hypothesis.


Asunto(s)
Desarrollo Infantil , Consejo , Sobrepeso , Humanos , Femenino , Embarazo , Lactante , Consejo/métodos , Sobrepeso/terapia , Adulto , Brasil , Atención Prenatal/métodos , Complicaciones del Embarazo , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Modelos Lineales
14.
Acta Derm Venereol ; 104: adv24360, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38655655

RESUMEN

The World Allergy Organization recommends probiotics in the prevention of atopic dermatitis in high-risk populations. Mutations in the filaggrin gene (FLG) result in an increased risk of atopic dermatitis through disruption of the skin keratin layer. This exploratory study investigated whether the preventive effect of maternal probiotics was evident in children with and without FLG mutations. DNA was collected from children (n = 228) from the Probiotic in the Prevention of Allergy among Children in Trondheim (ProPACT) study. Samples were analysed for 3 common FLG mutations (R501X, R2447X, and 2282del4). Overall, 7% of children had heterozygous FLG mutations; each child had only one of the 3 mutations. Mutation status had no association with atopic dermatitis (RR = 1.1; 95% CI 0.5 to 2.3). The risk ratio (RR) for having atopic dermatitis following maternal probiotics was 0.6 (95% CI 0.4 to 0.9) and RR was similar if the child expressed an FLG mutation (RR = 0.6; 95% CI 0.1 to 4.1) or wildtype FLG (RR = 0.6; 95% CI 0.4 to 0.9). The preventive  effect of probiotics for atopic dermatitis was also evident in children without FLG mutation. Larger confirmatory studies are needed.


Asunto(s)
Dermatitis Atópica , Proteínas Filagrina , Proteínas de Filamentos Intermediarios , Mutación , Probióticos , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Dermatitis Atópica/genética , Dermatitis Atópica/prevención & control , Dermatitis Atópica/diagnóstico , Suplementos Dietéticos , Análisis Mutacional de ADN , Predisposición Genética a la Enfermedad , Heterocigoto , Proteínas de Filamentos Intermediarios/genética , Fenómenos Fisiologicos Nutricionales Maternos , Fenotipo , Probióticos/uso terapéutico , Probióticos/administración & dosificación , Factores de Riesgo , Resultado del Tratamiento
15.
Trials ; 25(1): 291, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689304

RESUMEN

BACKGROUND: Antenatal balanced energy and protein (BEP) supplements have well-documented benefits for pregnancy outcomes. However, considerable practical gaps remain in the effective and cost-effective delivery of antenatal BEP supplements at scale in low- and middle-income countries. METHODS: A randomized effectiveness study will be conducted in two sub-cities of Addis Ababa, Ethiopia, to evaluate the effectiveness, cost-effectiveness, and implementation of different targeting strategies of antenatal BEP supplements. Pregnant women aged 18 to 49, with a gestational age of 24 weeks or less, and attending antenatal visits in one of the nine study health facilities are eligible for enrollment. In six of the health facilities, participants will be randomized to one of three study arms: control (Arm 1), targeted BEP provision based on baseline nutritional status (Arm 2), and targeted BEP supplementation based on baseline nutritional status and monthly gestational weight gain (GWG) monitoring (Arm 3). In the remaining three facilities, participants will be assigned to universal BEP provision (Arm 4). Participants in Arms 2 and 3 will receive BEP supplements if they have undernutrition at enrollment, as defined by a baseline body mass index less than 18.5 kg/m2 or mid-upper arm circumference less than 23 cm. In Arm 3, in addition to targeting based on baseline undernutrition, regular weight measurements will be used to identify insufficient GWG and inform the initiation of additional BEP supplements. Participants in Arm 4 will receive BEP supplements until the end of pregnancy, regardless of baseline nutritional status or GWG. All participants will receive standard antenatal care, including iron and folic acid supplementation. A total of 5400 pregnant women will be enrolled, with 1350 participants in each arm. Participants will be followed up monthly during their visits to the antenatal facilities until delivery. Maternal and infant health status will be evaluated within 72 h after delivery and at 6 weeks postpartum. The effectiveness and cost-effectiveness of the different BEP targeting strategies in preventing adverse pregnancy outcomes will be compared across arms. Qualitative data will be analyzed to assess the feasibility, acceptability, and implementation of different supplementation strategies. DISCUSSION: This study will inform global recommendations and operational guidelines for the effective and cost-effective delivery of antenatal BEP supplements. The targeted approaches have the potential for broader scale-up in Ethiopia and other low-resource settings with a high burden of undernutrition among pregnant women. TRIAL REGISTRATION: ClinicalTrials.gov registration number: NCT06125860. Registered November 9, 2023.


Asunto(s)
Análisis Costo-Beneficio , Proteínas en la Dieta , Suplementos Dietéticos , Estado Nutricional , Atención Prenatal , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Embarazo , Femenino , Etiopía , Adulto , Atención Prenatal/métodos , Adulto Joven , Adolescente , Proteínas en la Dieta/administración & dosificación , Ingestión de Energía , Ganancia de Peso Gestacional , Persona de Mediana Edad , Estudios Multicéntricos como Asunto , Resultado del Tratamiento , Fenómenos Fisiologicos Nutricionales Maternos , Factores de Tiempo
16.
Reproduction ; 167(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38593828

RESUMEN

In brief: A ketogenic diet (KD) elevates blood ß-hydroxybutyrate to concentrations that are known to perturb the development, metabolism, histone acetylation and viability of preimplantation mouse embryos in culture. This study shows that a maternal KD changes available nutrient levels in the oviduct, leading to altered embryo development and epigenetic state in vivo. Abstract: A ketogenic diet elevates blood ß-hydroxybutyrate to concentrations that perturb the development, metabolism, histone acetylation (H3K27ac) and viability of preimplantation mouse embryos in vitro. However, whether a ketogenic diet alters ß-hydroxybutyrate concentrations within female reproductive fluid is unknown. This study aimed to quantify glucose and ß-hydroxybutyrate within mouse blood and oviduct fluid following standard diet and ketogenic diet consumption and to assess whether a maternal periconceptional ketogenic diet impacts in vivo embryo development and blastocyst H3K27ac. Female C57BL/6 × CBA mice were fed a standard or ketogenic diet (n = 24 each) for 24-27 days. Glucose and ß-hydroxybutyrate were quantified in blood via an electronic monitoring system and in oviduct fluid via ultramicrofluorescence. The developmental grade of flushed blastocysts was recorded, and blastocyst cell number and H3K27ac were assessed via immunofluorescence. A maternal ketogenic diet elevated ß-hydroxybutyrate in day 24 blood (P < 0.001) and oviduct fluid (P < 0.05) compared with a standard diet, whereas glucose was unchanged. A periconceptional ketogenic diet did not impact blastocyst cell number; however, it significantly delayed blastocyst development (P < 0.05) and reduced trophectoderm-specific H3K27ac (P < 0.05) compared with standard diet-derived embryos. Maternal ketogenic diet consumption is, therefore, associated with reproductive tract nutrient changes and altered embryonic development and epigenetics in vivo. Future studies to assess whether periconceptional/gestational ketogenic diet consumption impacts human preimplantation, fetal, and long-term offspring development and health are warranted.


Asunto(s)
Ácido 3-Hidroxibutírico , Dieta Cetogénica , Desarrollo Embrionario , Histonas , Ratones Endogámicos C57BL , Animales , Femenino , Histonas/metabolismo , Ratones , Acetilación , Ácido 3-Hidroxibutírico/sangre , Ácido 3-Hidroxibutírico/metabolismo , Embarazo , Blastocisto/metabolismo , Ratones Endogámicos CBA , Oviductos/metabolismo , Nutrientes/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos
17.
Nutrients ; 16(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38674907

RESUMEN

Gestational diabetes mellitus (GDM) is one of the common complications during pregnancy. Numerous studies have shown that GDM is associated with a series of adverse effects on both mothers and offspring. Due to the particularity of pregnancy, medical nutrition treatment is considered to be the first choice for the treatment of GDM. This contribution reviews the research progress of medical nutrition treatment in GDM, summarizes the international recommendations on the intake of various nutrients and the influence of nutrients on the prevalence of GDM, and the improvement effect of nutritional intervention on it, in order to provide references for research in related fields of GDM and the targeted development of enteral nutrition.


Asunto(s)
Diabetes Gestacional , Terapia Nutricional , Humanos , Embarazo , Diabetes Gestacional/dietoterapia , Diabetes Gestacional/terapia , Femenino , Terapia Nutricional/métodos , Fenómenos Fisiologicos Nutricionales Maternos
18.
J Nutr Biochem ; 128: 109625, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521130

RESUMEN

Maternal obesity might induce obesity and metabolic alterations in the progeny. The study aimed to determine the effect of supplementing obese mothers with Mel (Mel) on thermogenesis and inflammation. C57BL/6 female mice (mothers) were fed from weaning to 12 weeks control diet (C, 17% kJ as fat) or a high-fat diet (HF, 49% kJ as fat) and then matted with male mice fed the control diet. Melatonin (10 mg/kg daily) was supplemented to mothers during gestation and lactation, forming the groups C, CMel, HF, and HFMel (n = 10/group). Twelve-week male offspring were studied (plasma biochemistry, immunohistochemistry, protein, and gene expressions at the hypothalamus - Hyp, subcutaneous white adipose tissue - sWAT, and interscapular brown adipose tissue - iBAT). Comparing HFMel vs. HF offspring, fat deposits and plasmatic proinflammatory markers decreased. Also, HFMel showed decreased Hyp proinflammatory markers and neuropeptide Y (anabolic) expression but improved proopiomelanocortin (catabolic) expression. Besides, HFMel sWAT adipocytes changed to a beige phenotype with-beta-3 adrenergic receptor and uncoupling protein-1 activation, concomitant with browning genes activation, triggering the iBAT thermogenic activity. In conclusion, compelling evidence indicated the beneficial effects of supplementing obese mothers with Mel on the health of their mature male offspring. Mel led to sWAT browning-related gene enhancement, increased iBAT thermogenis, and mitigated hypothalamic inflammation. Also, principal component analysis of the data significantly separated the untreated obese mother progeny from the progeny of treated obese mothers. If confirmed in humans, the findings encourage a future guideline recommending Mel supplementation during pregnancy and breastfeeding.


Asunto(s)
Dieta Alta en Grasa , Suplementos Dietéticos , Hipotálamo , Inflamación , Melatonina , Ratones Endogámicos C57BL , Obesidad Materna , Termogénesis , Animales , Termogénesis/efectos de los fármacos , Femenino , Melatonina/farmacología , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Masculino , Embarazo , Obesidad Materna/metabolismo , Inflamación/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Fenómenos Fisiologicos Nutricionales Maternos , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética
19.
J Physiol Biochem ; 80(2): 407-420, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492180

RESUMEN

Current study investigated the impact of maternal and postnatal overnutrition on phenotype of adipose, in relation to offspring thermogenesis and sex. Female C57BL/6 J mice were fed with CHOW or high fat diet (HFD) for 2 weeks before mating, throughout gestation and lactation. At weaning, pups were fed to 9 weeks old with CHOW or HFD, which resulted in four groups for each gender--male or female: CHOW-CHOW (CC), CHOW-HFD (CH), HFD-CHOW (HC), HFD-HFD (HH). Maternal and post-weaning HFD enhanced thermogenic factors such as Acox1, Dio2 and Cox8b in iBAT of male and female offspring, but increased SIRT1, PGC-1α and UCP1 only in female. However, Acox1, Dio2 and Cox8b mRNA expression and SIRT1, PGC-1α and UCP1 protein expression were only enhanced upon maternal and post-weaning HFD in sWAT and pWAT of female offspring. Increased metrnl expression in adipose were observed in sex- and depot-specific manner, while enhanced circulating metrnl level was only observed in male offspring undergoing maternal HFD. Palmitic acid changed metrnl expression during preadipocytes differentiation and siRNA-mediated knockdown of metrnl inhibited preadipocyte differentiation. Female offspring were more prone to resist adverse outcomes induced by maternal and post-weaning overnutrition, which probably related to metrnl expression and thermogenesis.


Asunto(s)
Dieta Alta en Grasa , Ratones Endogámicos C57BL , Hipernutrición , Caracteres Sexuales , Termogénesis , Animales , Femenino , Masculino , Dieta Alta en Grasa/efectos adversos , Hipernutrición/metabolismo , Embarazo , Ratones , Efectos Tardíos de la Exposición Prenatal/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética
20.
J Nutr Biochem ; 128: 109618, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38462210

RESUMEN

A maternal low-protein diet during pregnancy can increase children's susceptibility to diabetes mellitus in adulthood. However, whether long noncoding RNAs (lncRNAs) in islets participate in the development of diabetes in adult offspring following maternal protein restriction is not fully understood. Female mice were fed a low-protein (LP) diet or control diet throughout gestation and lactation. The male offspring were then randomly divided into two groups according to maternal diet: offspring from control diet group dams (Ctrl group) and offspring from LP group dams (LP group). We observed the glucose metabolism of adult offspring. A lncRNA microarray was constructed for the islets from the LP group and Ctrl group to explore the differently expressed lncRNAs. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes analyses were subsequently used to predict the functions of the differently expressed lncRNAs. The body weight from birth to 12 weeks of age was significantly lower in the LP offspring. Adult LP offspring exhibited impaired glucose tolerance and decreased insulin secretion, consistent with the reduction in ß-cell proliferation. According to the lncRNA microarray, four lncRNAs, three upregulated lncRNAs, and one downregulated lncRNA were differently expressed in LP offspring islets compared with Ctrl offspring. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that these differentially expressed lncRNAs were mostly associated with the hypoxia-inducible factor-1α signaling pathway. Additionally, we validated the expression of these four differentially expressed lncRNAs via quantitative real-time polymerase chain reaction. Our findings demonstrated the expression patterns of lncRNAs in islets from adult offspring of mothers who consumed a maternal low-protein diet.


Asunto(s)
Dieta con Restricción de Proteínas , Islotes Pancreáticos , Fenómenos Fisiologicos Nutricionales Maternos , ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Femenino , Embarazo , Masculino , Islotes Pancreáticos/metabolismo , Efectos Tardíos de la Exposición Prenatal , Ratones , Ratones Endogámicos C57BL , Insulina/metabolismo , Glucosa/metabolismo , Intolerancia a la Glucosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA