Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 753
Filtrar
1.
Methods Enzymol ; 704: 345-361, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39300655

RESUMEN

The aromatic amino acid hydroxylases phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase utilize a non-heme iron to catalyze the hydroxylation of the aromatic rings of their amino acid substrates, with a tetrahydropterin serving as the source of the electrons necessary for the monooxygenation reaction. These enzymes have been subjected to a variety of biochemical and biophysical approaches, resulting in a detailed understanding of their structures and mechanism. We summarize here the experimental approaches that have led to this understanding.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/metabolismo , Fenilalanina Hidroxilasa/genética , Humanos , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/química , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/química , Animales , Pruebas de Enzimas/métodos
2.
Lifestyle Genom ; 17(1): 102-112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39079504

RESUMEN

BACKGROUND: Phenylketonuria (PKU) is an autosomal recessive genetic condition that results in reduced enzymatic functioning within the phenylalanine hydroxylase (PAH) pathway, which is involved in the metabolism of phenylalanine (Phe) into tyrosine (Tyr). Without dietary intervention, individuals with PKU exhibit significantly elevated levels of Phe, which is presumed to cause severe neurological dysfunction and other associated health risks. Carriers of PKU are heterozygotes for a PAH gene mutation and are typically described in the literature as "unaffected." However, decades of existing research challenges this classical thinking and it is plausible that these individuals currently classified as carriers may present with an intermediate phenotype or may be "moderately affected." SUMMARY: The purpose of this scoping review was to explore this hypothesis further, by searching for and summarizing existing literature on metabolism and health outcomes among PKU carriers. Preliminary research has suggested that some PKU carriers exhibit reduced PAH enzyme function, and relatedly, elevated circulating Phe levels compared to noncarriers. In addition, Phe dosing trials have further demonstrated that carriers have increased Phe levels and decreased Tyr levels compared to noncarriers. Because of these metabolic perturbations, it is biologically plausible for carriers to experience an intermediate phenotype in terms of metabolic consequences and clinical outcomes. While these outcomes have yet to be thoroughly explored, early research has found associations between PKU carrier status and lower IQs as well as decreased executive functioning, memory, processing speed, and inhibitory control. The PAH pathway is also involved in melanogenesis, and research has demonstrated increased melanoma risk among PKU carriers. However, there are many limitations to this research, and thus whether or not carriers are clinically impacted cannot yet be conclusively determined. KEY MESSAGE: Overall, while preliminary research suggests a possible intermediate phenotype among PKU carriers, the current available research is limited and PKU carriers are still clinically considered "unaffected." This review outlines the current literature while discussing future research endeavors related to the metabolism and health of PKU carriers.


Asunto(s)
Heterocigoto , Fenilalanina Hidroxilasa , Fenilalanina , Fenilcetonurias , Fenilcetonurias/genética , Humanos , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Fenilalanina/sangre , Fenilalanina/metabolismo , Fenotipo , Mutación , Tirosina
3.
Nucleic Acid Ther ; 34(3): 134-142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38591802

RESUMEN

The PAH gene encodes the hepatic enzyme phenylalanine hydroxylase (PAH), and its deficiency, known as phenylketonuria (PKU), leads to neurotoxic high levels of phenylalanine. PAH exon 11 is weakly defined, and several missense and intronic variants identified in patients affect the splicing process. Recently, we identified a novel intron 11 splicing regulatory element where U1snRNP binds, participating in exon 11 definition. In this work, we describe the implementation of an antisense strategy targeting intron 11 sequences to correct the effect of PAH mis-splicing variants. We used an in vitro assay with minigenes and identified splice-switching antisense oligonucleotides (SSOs) that correct the exon skipping defect of PAH variants c.1199+17G>A, c.1199+20G>C, c.1144T>C, and c.1066-3C>T. To examine the functional rescue induced by the SSOs, we generated a hepatoma cell model with variant c.1199+17G>A using CRISPR/Cas9. The edited cell line reproduces the exon 11 skipping pattern observed from minigenes, leading to reduced PAH protein levels and activity. SSO transfection results in an increase in exon 11 inclusion and corrects PAH deficiency. Our results provide proof of concept of the potential therapeutic use of a single SSO for different exonic and intronic splicing variants causing PAH exon 11 skipping in PKU.


Asunto(s)
Exones , Intrones , Oligonucleótidos Antisentido , Fenilalanina Hidroxilasa , Fenilcetonurias , Empalme del ARN , Humanos , Fenilcetonurias/genética , Fenilcetonurias/terapia , Fenilcetonurias/patología , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos Antisentido/farmacología , Exones/genética , Empalme del ARN/genética , Intrones/genética , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Empalme Alternativo/genética
4.
Hum Mol Genet ; 33(12): 1074-1089, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38520741

RESUMEN

We have generated using CRISPR/Cas9 technology a partially humanized mouse model of the neurometabolic disease phenylketonuria (PKU), carrying the highly prevalent PAH variant c.1066-11G>A. This variant creates an alternative 3' splice site, leading to the inclusion of 9 nucleotides coding for 3 extra amino acids between Q355 and Y356 of the protein. Homozygous Pah c.1066-11A mice, with a partially humanized intron 10 sequence with the variant, accurately recapitulate the splicing defect and present almost undetectable hepatic PAH activity. They exhibit fur hypopigmentation, lower brain and body weight and reduced survival. Blood and brain phenylalanine levels are elevated, along with decreased tyrosine, tryptophan and monoamine neurotransmitter levels. They present behavioral deficits, mainly hypoactivity and diminished social interaction, locomotor deficiencies and an abnormal hind-limb clasping reflex. Changes in the morphology of glial cells, increased GFAP and Iba1 staining signals and decreased myelinization are observed. Hepatic tissue exhibits nearly absent PAH protein, reduced levels of chaperones DNAJC12 and HSP70 and increased autophagy markers LAMP1 and LC3BII, suggesting possible coaggregation of mutant PAH with chaperones and subsequent autophagy processing. This PKU mouse model with a prevalent human variant represents a useful tool for pathophysiology research and for novel therapies development.


Asunto(s)
Modelos Animales de Enfermedad , Fenilalanina Hidroxilasa , Fenilcetonurias , Animales , Ratones , Fenilcetonurias/genética , Fenilcetonurias/patología , Fenilcetonurias/metabolismo , Humanos , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Sistemas CRISPR-Cas , Autofagia/genética , Mutación , Hígado/metabolismo , Hígado/patología
5.
J Genet Genomics ; 51(7): 703-713, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38461943

RESUMEN

The evolution of light-skin pigmentation among Eurasians is considered as an adaptation to the high-latitude environments. East Asians are ideal populations for studying skin color evolution because of the complex environment of East Asia. Here, we report a strong selection signal for the pigmentation gene phenylalanine hydroxylase (PAH) in light-skinned Han Chinese individuals. The intron mutation rs10778203 in PAH is enriched in East Asians and is significantly associated with skin color of the back of the hand in Han Chinese males (P < 0.05). In vitro luciferase and transcription factor binding assays show that the ancestral allele of rs10778203 could bind to SMAD2 and has a significant enhancer activity for PAH. However, the derived T allele (the major allele in East Asians) of rs10778203 decreases the binding activity of transcription factors and enhancer activity. Meanwhile, the derived T allele of rs10778203 shows a weaker ultraviolet radiation response in A375 cells and zebrafish embryos. Furthermore, rs10778203 decreases melanin production in transgenic zebrafish embryos after ultraviolet B (UVB) treatment. Collectively, PAH is a potential pigmentation gene that regulates skin tanning ability. Natural selection has enriched the adaptive allele, resulting in weakened tanning ability in East Asians, suggesting a unique genetic mechanism for evolutionary skin lightening in East Asians.


Asunto(s)
Pueblos del Este de Asia , Pigmentación de la Piel , Animales , Humanos , Masculino , Alelos , Animales Modificados Genéticamente , Evolución Biológica , Pueblos del Este de Asia/genética , Melaninas/metabolismo , Melaninas/genética , Mutación , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Polimorfismo de Nucleótido Simple , Selección Genética , Pigmentación de la Piel/genética , Pigmentación de la Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Pez Cebra/genética
6.
Curr Drug Saf ; 19(2): 208-217, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36999718

RESUMEN

Phenylalanine, an essential amino acid, is the "building block" of protein. It has a tremendous role in different aspects of metabolic events. The tyrosine pathway is the prime one and is typically used to degrade dietary phenylalanine. Phenylalanine exceeds its limit in bodily fluids and the brain when the enzyme, phenylalanine decarboxylase, phenylalanine transaminase, phenylalanine hydroxylase (PAH) or its cofactor tetrahydrobiopterin (BH4) is deficient causes phenylketonuria, schizophrenia, attentiondeficit/ hyperactivity disorder and another neuronal effect. Tyrosine, an amino acid necessary for synthesizing the pigments in melanin, is produced by its primary metabolic pathway. Deficiency/abnormality in metabolic enzymes responsible for the catabolism pathway of Phenylalanine causes an accumulation of the active intermediate metabolite, resulting in several abnormalities, such as developmental delay, tyrosinemias, alkaptonuria, albinism, hypotension and several other undesirable conditions. Dietary restriction of the amino acid(s) can be a therapeutic approach to avoid such undesirable conditions when the level of metabolic enzyme is unpredictable. After properly identifying the enzymatic level, specific pathophysiological conditions can be managed more efficiently.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Humanos , Fenilalanina/metabolismo , Fenilcetonurias/metabolismo , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/metabolismo , Aminoácidos , Tirosina/metabolismo
7.
Discov Med ; 35(177): 533-538, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553307

RESUMEN

BACKGROUND: Phenylalanine hydroxylase deficiency (PAHD) is an autosomal recessive disorder affecting phenylalanine (Phe) metabolism caused by mutations in the phenylalanine hydroxylase (PAH) gene. It has a complex phenotype with many variants and genotypes in various populations. This study sets out to analyze the screening results of children with phenylketonuria (PKU) in Yinchuan City and characterize the mutation variants of the PAH gene. METHODS: Phenylketonuria screening results were retrospectively analyzed in 398,605 neonates (207,361 males and 191,244 females) born in different maternity hospitals in Yinchuan City between January 2017 and December 2021. Screening for genetic metabolic diseases was performed with parental consent at their own expense. A comprehensive diagnosis was performed by integrating tandem mass spectrometry (MS/MS) findings with clinical presentations. High-throughput sequencing (HTS) was used to detect genetic and metabolic disease-associated genes in children with PKU who were clinically diagnosed and voluntarily tested. The identified loci were validated through Sanger sequencing and parental verification. RESULTS: Among the screened newborns, 45 (11.3/100,000) PKU cases were diagnosed. In the 38 cases that underwent self-financed PAH sequencing, 56 mutations were detected in 76 chromosomes, with an overall detection rate of 73.7%. All patients harbored mutant genes, and the 56 mutations detected identified represented 14 variants, including 8 missense mutations, 2 splicing mutations, 2 nonsense mutations, and 2 silent mutations. The mutations were primarily distributed in exons 2, 3, 6, 7, 9, 11, and intron 4, with the highest frequency observed in exon 7 (25 [44.7%]), followed by exon 11 (15 [26.7%]). The most prevalent mutations were exon 7-p.R252W (10 [17.9%]) and exon 7-p.R261Q (8 [14.3%]). CONCLUSIONS: The PAH gene mutations in children with PKU in Yinchuan City are predominantly concentrated in exons 6, 7, and 11, with the highest detection rates observed for p.R252W and p.R261Q mutations.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Embarazo , Masculino , Niño , Femenino , Humanos , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Estudios Retrospectivos , Espectrometría de Masas en Tándem , Fenilcetonurias/epidemiología , Fenilcetonurias/genética , Fenilcetonurias/diagnóstico , Mutación , Genotipo
8.
Nat Commun ; 14(1): 3451, 2023 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301931

RESUMEN

Phenylketonuria (PKU), an autosomal recessive disorder caused by pathogenic variants in the phenylalanine hydroxylase (PAH) gene, results in the accumulation of blood phenylalanine (Phe) to neurotoxic levels. Current dietary and medical treatments are chronic and reduce, rather than normalize, blood Phe levels. Among the most frequently occurring PAH variants in PKU patients is the P281L (c.842C>T) variant. Using a CRISPR prime-edited hepatocyte cell line and a humanized PKU mouse model, we demonstrate efficient in vitro and in vivo correction of the P281L variant with adenine base editing. With the delivery of ABE8.8 mRNA and either of two guide RNAs in vivo using lipid nanoparticles (LNPs) in humanized PKU mice, we observe complete and durable normalization of blood Phe levels within 48 h of treatment, resulting from corrective PAH editing in the liver. These studies nominate a drug candidate for further development as a definitive treatment for a subset of PKU patients.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Ratones , Animales , Fenilcetonurias/genética , Fenilcetonurias/terapia , Fenilcetonurias/metabolismo , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Modelos Animales de Enfermedad
9.
Hum Genomics ; 17(1): 36, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098607

RESUMEN

BACKGROUND: Phenylketonuria (PKU) is a common, congenital, autosomal recessive, metabolic disorder caused by Phenylalanine hydroxylase (PAH) variants. METHODS: 967 PKU patients from Gansu, China were genotyped by Sanger sequencing, multiplex ligation-dependent probe amplification, and whole exome sequencing. We analyzed the variants of PAH exons, their flanking sequences, and introns. RESULTS: The detection of deep intronic variants in PAH gene can significantly improve the genetic diagnostic rate of PKU. The distribution of PAH variants among PKU subtypes may be related to the unique genetic background in Gansu, China. CONCLUSION: The identification of PAH hotspot variants will aid the development of large-scale neonatal genetic screening for PKU. The five new PAH variants found in this study further expand the spectrum of PAH variants. Genotype-phenotype correlation analysis may help predict the prognosis of PKU patients and enable precise treatment regimens to be developed.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Humanos , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Fenilcetonurias/genética , Fenilcetonurias/diagnóstico , Mutación , Genotipo , Estudios de Asociación Genética , China , Fenotipo
10.
J Mol Diagn ; 25(5): 284-294, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36849017

RESUMEN

Phenylalanine hydroxylase (PAH) deficiency or phenylketonuria (PKU) is the most common cause of hyperphenylalaninemia (HPA), and approximately 5% of patients remain genetically unsolved. Identifying deep intronic PAH variants may help improve their molecular diagnostic rate. Next-generation sequencing was utilized to detect the whole PAH gene in 96 patients with genetically unsolved HPA from 2013 to 2022. The effects of deep intronic variants on pre-mRNA splicing were investigated by minigene-based assay. The allelic phenotype values of recurrent deep intronic variants were calculated. Twelve deep intronic PAH variants, located in intron 5 (c.509+434C>T), intron 6 (c.706+288T>G, c.706+519T>C, c.706+531T>C, c.706+535G>T, c.706+600A>C, c.706+603T>G, and c.706+608A>C), intron 10 (c.1065+241C>A and c.1065+258C>A), and intron 11 (c.1199+502A>T and c.1199+745T>A) were identified in 80.2% (77/96) patients. Ten of the 12 variants were novel, and they all generated pseudoexons in mRNA, leading to frameshift or lengthened proteins. The most prevalent deep intronic variant was c.1199+502A>T, followed by c.1065+241C>A, c.1065+258C>A, and c.706+531T>C. The metabolic phenotypes of the four variants were assigned as classic PKU, mild HPA, mild HPA, and mild PKU, respectively. The results suggest that deep intronic PAH variants improved the diagnostic rate from 95.3% to 99.3% in the overall patients with HPA. Our data demonstrate the importance of assessing noncoding variants in genetic diseases. Pseudoexon inclusion caused by deep intronic variants may represent a recurrent mechanism.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Humanos , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Genotipo , Intrones/genética , Fenilcetonurias/diagnóstico , Fenilcetonurias/genética , Mutación , Fenotipo
11.
Mol Genet Metab ; 138(3): 107509, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36791482

RESUMEN

Phenylketonuria (PKU, MIM #261600) is one of the most common inborn errors of metabolism (IEM) with an incidence of 1:10000 in the European population. PKU is caused by autosomal recessive mutations in phenylalanine hydroxylase (PAH) and manifests with elevation of phenylalanine (Phe) in plasma and urine. Untreated PKU manifests with intellectual disability including seizures, microcephaly and behavioral abnormalities. Early treatment and good compliance result in a normal intellectual outcome in many but not in all patients. This study examined plasma metabolites in patients with PKU (n = 27), hyperphenylalaninemia (HPA, n = 1) and healthy controls (n = 32) by LC- MS/MS. We hypothesized that PKU patients would exhibit a distinct "submetabolome" compared to that of healthy controls. We further hypothesized that the submetabolome of PKU patients with good metabolic control would resemble that of healthy controls. Results from this study show: (i) Distinct clustering of healthy controls and PKU patients based on polar metabolite profiling, (ii) Increased and decreased concentrations of metabolites within and afar from the Phe pathway in treated patients, and (iii) A specific PKU-submetabolome independently of metabolic control assessed by Phe in plasma. We examined the relationship between PKU metabolic control and extended metabolite profiles in plasma. The PKU submetabolome characterized in this study represents the combined effects of dietary adherence, adjustments in metabolic pathways to compensate for defective Phe processing, as well as metabolic derangements that could not be corrected with dietary management even in patients classified as having good metabolic control. New therapeutic targets may be uncovered to approximate the PKU submetabolome to that of healthy controls and prevent long-term organ damage.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Humanos , Punto Alto de Contagio de Enfermedades , Espectrometría de Masas en Tándem , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Fenilalanina , Análisis por Conglomerados
12.
Arch Biochem Biophys ; 735: 109518, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36639008

RESUMEN

The aromatic amino acid hydroxylases phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase are non-heme iron enzymes that catalyze key physiological reactions. This review discusses the present understanding of the common catalytic mechanism of these enzymes and recent advances in understanding the relationship between their structures and their regulation.


Asunto(s)
Oxigenasas de Función Mixta , Fenilalanina Hidroxilasa , Oxigenasas de Función Mixta/química , Triptófano Hidroxilasa/química , Triptófano Hidroxilasa/metabolismo , Tirosina 3-Monooxigenasa/química , Tirosina 3-Monooxigenasa/metabolismo , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/metabolismo , Aminoácidos Aromáticos , Catálisis
13.
Cell Biol Toxicol ; 39(5): 2295-2310, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35449354

RESUMEN

Phenylalanine hydroxylase (PAH) is the key enzyme in phenylalanine metabolism, deficiency of which is associated with the most common metabolic phenotype of phenylketonuria (PKU) and hyperphenylalaninemia (HPA). A bulk of PKU disease-associated missense mutations in the PAH gene have been studied, and the consequence of each PAH variant vary immensely. Prior research established that PKU-associated variants possess defects in protein folding with reduced cellular stability leading to rapid degradation. However, recent evidence revealed that PAH tetramers exist as a mixture of resting state and activated state whose transition depends upon the phenylalanine concentration and certain PAH variants that fail to modulate the structural equilibrium are associated with PKU disease. Collectively, these findings framed our understanding of the complex genotype-phenotype correlation in PKU. In the current study, we substantiate a link between PAH protein stability and its degradation by the ubiquitin-mediated proteasomal degradation system. Here, we provide an evidence that PAH protein undergoes ubiquitination and proteasomal degradation, which can be reversed by deubiquitinating enzymes (DUBs). We identified USP19 as a novel DUB that regulates PAH protein stability. We found that ectopic expression of USP19 increased PAH protein level, whereas depletion of USP19 promoted PAH protein degradation. Our study indicates that USP19 interacts with PAH and prevents polyubiquitination of PAH subsequently extending the half-life of PAH protein. Finally, the increase in the level of PAH protein by the deubiquitinating activity of USP19 resulted in enhanced metabolic function of PAH. In summary, our study identifies the role of USP19 in regulating PAH protein stability and promotes its metabolic activity. Graphical highlights 1. E3 ligase Cdh1 promotes PAH protein degradation leading to insufficient cellular amount of PAH causing PKU. 2. A balance between E3 ligase and DUB is important to regulate the proteostasis of PAH. 3. USP19 deubiquitinates and stabilizes PAH further protecting it from rapid degradation. 4. USP19 increases the enzymatic activity of PAH, thus maintaining normal Phe levels.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Humanos , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/metabolismo , Fenilcetonurias/genética , Ubiquitina-Proteína Ligasas/metabolismo , Estabilidad Proteica , Fenilalanina/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo
14.
Arch Biochem Biophys ; 729: 109378, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-35995215

RESUMEN

Phenylalanine hydroxylase (PheH) is a pterin-dependent, mononuclear nonheme iron(II) oxygenase that uses the oxidative power of O2 to hydroxylate phenylalanine to form tyrosine. PheH is a member of a superfamily of O2-activating enzymes that utilizes a common metal binding motif: the 2-His-1-carboxylate facial triad. Like most members of this superfamily, binding of substrates to PheH results in a reorganization of its active site to allow O2 activation. Exploring the energetics of each step before O2 activation can provide mechanistic insight into the initial steps that support the highly specific O2 activation pathway carried out by this metalloenzyme. Here the thermal stability of PheH and its substrate complexes were investigated under an anaerobic environment by using differential scanning calorimetry. In context with known binding constants for PheH, a thermodynamic cycle associated with iron(II), tetrahydrobiopterin (BH4), and phenylalanine binding to the active site was generated, showing a distinctive cooperativity between the binding of BH4 and Phe. The addition of phenylalanine and BH4 to PheH·Fe increased the stability of this enzyme (ΔTm of 8.5 (±0.7) °C with an associated δΔH of 43.0 (±2.9) kcal/mol). The thermodynamic data presented here gives insight into the complicated interactions between metal center, cofactor, and substrate, and how this interplay sets the stage for highly specific, oxidative C-H activation in this enzyme.


Asunto(s)
Metaloproteínas , Fenilalanina Hidroxilasa , Biopterinas/análogos & derivados , Chromobacterium , Compuestos Ferrosos , Hierro/metabolismo , Cinética , Metaloproteínas/metabolismo , Fenilalanina/metabolismo , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/metabolismo , Pterinas/química , Pterinas/metabolismo , Termodinámica , Tirosina
15.
Hum Genomics ; 16(1): 22, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35854334

RESUMEN

This review discusses the epidemiology, pathophysiology, genetic etiology, and management of phenylketonuria (PKU). PKU, an autosomal recessive disease, is an inborn error of phenylalanine (Phe) metabolism caused by pathogenic variants in the phenylalanine hydroxylase (PAH) gene. The prevalence of PKU varies widely among ethnicities and geographic regions, affecting approximately 1 in 24,000 individuals worldwide. Deficiency in the PAH enzyme or, in rare cases, the cofactor tetrahydrobiopterin results in high blood Phe concentrations, causing brain dysfunction. Untreated PKU, also known as PAH deficiency, results in severe and irreversible intellectual disability, epilepsy, behavioral disorders, and clinical features such as acquired microcephaly, seizures, psychological signs, and generalized hypopigmentation of skin (including hair and eyes). Severe phenotypes are classic PKU, and less severe forms of PAH deficiency are moderate PKU, mild PKU, mild hyperphenylalaninaemia (HPA), or benign HPA. Early diagnosis and intervention must start shortly after birth to prevent major cognitive and neurological effects. Dietary treatment, including natural protein restriction and Phe-free supplements, must be used to maintain blood Phe concentrations of 120-360 µmol/L throughout the life span. Additional treatments include the casein glycomacropeptide (GMP), which contains very limited aromatic amino acids and may improve immunological function, and large neutral amino acid (LNAA) supplementation to prevent plasma Phe transport into the brain. The synthetic BH4 analog, sapropterin hydrochloride (i.e., Kuvan®, BioMarin), is another potential treatment that activates residual PAH, thus decreasing Phe concentrations in the blood of PKU patients. Moreover, daily subcutaneous injection of pegylated Phe ammonia-lyase (i.e., pegvaliase; PALYNZIQ®, BioMarin) has promised gene therapy in recent clinical trials, and mRNA approaches are also being studied.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Humanos , Fenilalanina/metabolismo , Fenilalanina/uso terapéutico , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Fenilalanina Hidroxilasa/uso terapéutico , Fenilcetonurias/genética , Fenilcetonurias/terapia
16.
Nutr Rev ; 80(10): 2100-2112, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35551410

RESUMEN

Phenylketonuria (PKU) is a rare genetic disease that causes brain toxicity due to the inability of the body to convert dietary phenylalanine to tyrosine by the action of phenylalanine hydroxylase. The only treatment for PKU so far is lifelong dietary intervention to ensure normal human growth and neurodevelopment. However, in adults, low long-term adherence to this type of dietary intervention has been observed. Given the important role of the intestinal microbiota in the process of digestion and disease prevention, probiotics could be a therapeutic strategy to help degrade dietary phenylalanine, reducing its levels before ingestion. Genetically modified probiotics designed as live biotherapeutic agents for the treatment of specific diseases are sophisticated alternative therapeutic strategies. In this review, the focus is on demonstrating what has been elucidated so far about the use of next-generation probiotics as a therapeutic strategy in the treatment of individuals with PKU. The results described in the literature are encouraging and use genetically modified engineered probiotics showing efficacy both in vitro and in vivo. These probiotics appear to be suitable for meeting the unmet need for new drugs for PKU.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Probióticos , Adulto , Dieta , Humanos , Fenilalanina/metabolismo , Fenilalanina/uso terapéutico , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Fenilalanina Hidroxilasa/uso terapéutico , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/genética , Probióticos/uso terapéutico
17.
Acta Crystallogr D Struct Biol ; 78(Pt 5): 586-598, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35503207

RESUMEN

Phenylalanine hydroxylase (PAH), which belongs to the aromatic amino-acid hydroxylase family, is involved in protein synthesis and pyomelanine production through the hydroxylation of phenylalanine to tyrosine. In this study, the crystal structure of PAH from Bacillus cereus ATCC 14579 (BcPAH) with an additional 280 amino acids in the C-terminal region was determined. The structure of BcPAH consists of three distinct domains: a core domain with two additional inserted α-helices and two novel auxiliary domains: BcPAH-AD1 and BcPAH-AD2. Structural homologues of BcPAH-AD1 and BcPAH-AD2 are known to be involved in mRNA regulation and protein-protein interactions, and thus it was speculated that BcPAH might utilize the auxiliary domains for interaction with its partner proteins. Furthermore, phylogenetic tree analysis revealed that the three-domain PAHs, including BcPAH, are completely distinctive from both conventional prokaryotic PAHs and eukaryotic PAHs. Finally, biochemical studies of BcPAH showed that BcPAH-AD1 might be important for the structural integrity of the enzyme and that BcPAH-AD2 is related to enzyme stability and/or activity. Investigations into the intracellular functions of the two auxiliary domains and the relationship between these functions and the activity of PAH are required.


Asunto(s)
Fenilalanina Hidroxilasa , Bacillus cereus/metabolismo , Estabilidad de Enzimas , Oxigenasas de Función Mixta , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Filogenia
18.
J Pediatr Endocrinol Metab ; 35(3): 387-391, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35026061

RESUMEN

OBJECTIVES: Phenylketonuria (PKU) is an inherited autosomal recessive disorder of phenylalanine metabolism. It is mainly caused by a deficiency in phenylalanine hydroxylase (PAH) and frequently diagnosed with Sanger sequencing. To some extent, allelic dropout can explain the inconsistency in genotype and phenotype. METHODS: Three families were evaluated through DNA sequence analysis, multiplex ligation-dependent probe amplification (MLPA) and prenatal diagnosis technologies. The possibility of inconsistency in phenotype and genotype with c.331C>T variant was analysed. RESULTS: Through pedigree analysis, three mothers carried a homozygous c.331C>T variant, which was a false-positive result. New primers were used, and this error was caused by allelic dropout. In this case, c.158G>A was likely a benign variant. CONCLUSIONS: Sequence variants in primer-binding regions could cause allelic dropout, creating unpredictable errors in genotyping. Our results emphasised the need for careful measures to treat genotype-phenotype inconsistencies.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Alelos , Femenino , Genotipo , Humanos , Mutación , Fenotipo , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Fenilcetonurias/diagnóstico , Fenilcetonurias/genética , Embarazo
19.
Sci China Life Sci ; 65(4): 718-730, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-32815069

RESUMEN

Genome editing through adeno-associated viral (AAV) vectors is a promising gene therapy strategy for various diseases, especially genetic disorders. However, homologous recombination (HR) efficiency is extremely low in adult animal models. We assumed that increasing AAV transduction efficiency could increase genome editing activity, especially HR efficiency, for in vivo gene therapy. Firstly, a mouse phenylketonuria (PKU) model carrying a pathogenic R408W mutation in phenylalanine hydroxylase (Pah) was generated. Through co-delivery of the general AAV receptor (AAVR), we found that AAVR could dramatically increase AAV transduction efficiency in vitro and in vivo. Furthermore, co-delivery of SaCas9/sgRNA/donor templates with AAVR via AAV8 vectors increased indel rate over 2-fold and HR rate over 15-fold for the correction of the single mutation in PahR408W mice. Moreover, AAVR co-injection successfully increased the site-specific insertion rate of a 1.4 kb Pah cDNA by 11-fold, bringing the HR rate up to 7.3% without detectable global off-target effects. Insertion of Pah cDNA significantly decreased the Phe level and ameliorated PKU symptoms. This study demonstrates a novel strategy to dramatically increase AAV transduction which substantially enhanced in vivo genome editing efficiency in adult animal models, showing clinical potential for both conventional and genome editing-based gene therapy.


Asunto(s)
Hepatopatías , Fenilalanina Hidroxilasa , Fenilcetonurias , Animales , ADN Complementario , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Edición Génica , Vectores Genéticos/genética , Ratones , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Fenilcetonurias/genética , Fenilcetonurias/terapia
20.
J Biomol Struct Dyn ; 40(19): 9018-9029, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33970801

RESUMEN

Phenylketonuria is an autosomal recessive disorder caused by mutations in the phenylalanine hydroxylase gene. In phenylketonuria causes various symptoms including severe mental retardation. PAH gene of a classical Phenylketonuria patient was sequenced, and two novel heterozygous mutations, p.Y198N and p.Y204F, were found. This study aimed to reveal the impacts of these variants on the structural stability of the PAH enzyme. In-silico analyses using prediction tools and molecular dynamics simulations were performed. Mutations were introduced to the wild type catalytic monomer and full length tetramer crystal structures. Variant pathogenicity analyses predicted p.Y198N to be damaging, and p.Y204F to be benign by some prediction tools and damaging by others. Simulations suggested p.Y198N mutation cause significant fluctuations in the spatial organization of two catalytic residues in the temperature accelerated MD simulations with the monomer and increased root-mean-square deviations in the tetramer structure. p.Y204F causes noticeable changes in the spatial positioning of T278 suggesting a possible segregation from the catalytic site in temperature accelerated MD simulations with the monomer. This mutation also leads to increased root-mean-square fluctuations in the regulatory domain which may lead to conformational change resulting in inhibition of dimerization and enzyme activation. Our study reports two novel mutations in the PAH gene and gives insight to their effects on the PAH activity. MD simulations did not yield conclusive results that explains the phenotype but gave plausible insight to possible effects which should be investigated further with in-silico and in-vitro studies to assess the roles of these mutations in etiology of PKU. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Humanos , Simulación de Dinámica Molecular , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/metabolismo , Fenilcetonurias/genética , Mutación , Dominio Catalítico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...