Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(31): e202406008, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38713131

RESUMEN

Biocatalytic hydroamination of alkenes is an efficient and selective method to synthesize natural and unnatural amino acids. Phenylalanine ammonia-lyases (PALs) have been previously engineered to access a range of substituted phenylalanines and heteroarylalanines, but their substrate scope remains limited, typically including only arylacrylic acids. Moreover, the enantioselectivity in the hydroamination of electron-deficient substrates is often poor. Here, we report the structure-based engineering of PAL from Planctomyces brasiliensis (PbPAL), enabling preparative-scale enantioselective hydroaminations of previously inaccessible yet synthetically useful substrates, such as amide- and ester-containing fumaric acid derivatives. Through the elucidation of cryo-electron microscopy (cryo-EM) PbPAL structure and screening of the structure-based mutagenesis library, we identified the key active site residue L205 as pivotal for dramatically enhancing the enantioselectivity of hydroamination reactions involving electron-deficient substrates. Our engineered PALs demonstrated exclusive α-regioselectivity, high enantioselectivity, and broad substrate scope. The potential utility of the developed biocatalysts was further demonstrated by a preparative-scale hydroamination yielding tert-butyl protected l-aspartic acid, widely used as intermediate in peptide solid-phase synthesis.


Asunto(s)
Ácido Aspártico , Fenilanina Amoníaco-Liasa , Ingeniería de Proteínas , Estereoisomerismo , Ácido Aspártico/química , Ácido Aspártico/análogos & derivados , Fenilanina Amoníaco-Liasa/metabolismo , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/genética , Biocatálisis , Estructura Molecular
2.
Enzyme Microb Technol ; 176: 110423, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38442476

RESUMEN

Phenylalanine ammonia-lyase (PAL) plays a pivotal role in the biosynthesis of phenylalanine. PAL from Zea mays (ZmPAL2) exhibits a bi-function of direct deamination of L-phenylalanine (L-Phe) or L-tyrosine(-L-Tyr) to form trans-cinnamic acid or p-coumaric acid. trans-Cinnamic acid and p-coumaric acid are mainly used in flavors and fragrances, food additives, pharmaceutical and other fields. Here, the Activity of ZmPAL2 toward L-Phe or L-Tyr was improved by using semi-rational and rational designs. The catalytic efficiency (kcat/Km) of mutant PT10 (V258I/I459V/Q484N) against L-Phe was 30.8 µM-1 s-1, a 4.5-fold increase compared to the parent, and the catalytic efficiency of mutant PA1 (F135H/I459L) to L-tyrosine exhibited 8.6 µM-1 s-1, which was 1.6-fold of the parent. The yield of trans-cinnamic acid in PT10 reached 30.75 g/L with a conversion rate of 98%. Meanwhile, PA1 converted L-Tyr to yield 3.12 g/L of p-coumaric acid with a conversion rate of 95%. Suggesting these two engineered ZmPAL2 to be valuable biocatalysts for the synthesis of trans-cinnamic acid and p-coumaric acid. In addition, MD simulations revealed that the underlying mechanisms of the increased catalytic efficiency of both mutant PT10 and PA1 are attributed to the substrate remaining stable within the pocket and closer to the catalytically active site. This also provides a new perspective on engineered PAL.


Asunto(s)
Cinamatos , Ácidos Cumáricos , Fenilanina Amoníaco-Liasa , Zea mays , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/química , Fenilalanina , Tirosina
3.
Biochem Genet ; 62(1): 413-435, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37358673

RESUMEN

The phenylalanine ammonia lyase (PAL) catalyses the first step of phenylpropanoid metabolic pathway which leads to the biosynthesis of a diverse group of secondary metabolites. Orchids serve as a rich source of metabolites and the availability of genome or transcriptome for selected orchid species provides an opportunity to analyse the PAL genes in orchids. In the present study, 21 PAL genes were characterized using bioinformatics tools in nine orchid species (Apostasia shenzhenica, Cypripedium formosanum, Dendrobium catenatum, Phalaenopsis aphrodite, Phalaenopsis bellina, Phalaenopsis equestris, Phalaenopsis lueddemanniana, Phalaenopsis modesta and Phalaenopsis schilleriana). Multiple sequence alignment confirmed the presence of PAL-specific conserved domains (N-terminal, MIO, core, shielding and C-terminal domain). All these proteins were predicted to be hydrophobic in nature and to have cytoplasmic localisation. Structural modelling depicted the presence of alpha helices, extended strands, beta turns and random coils in their structure. Ala-Ser-Gly triad known for substrate binding and catalysis of MIO-domain was found to be completely conserved in all the proteins. Phylogenetic study showed that the PALs of pteridophytes, gymnosperms and angiosperms clustered together in separate clades. Expression profiling showed tissue-specific expression for all the 21 PAL genes in the various reproductive and vegetative tissues which suggested their diverse role in growth and development. This study provides insights to the molecular characterization of PAL genes which may help in developing biotechnological strategies to enhance the synthesis of phenylpropanoids in orchids and other heterologous systems for pharmaceutical applications.


Asunto(s)
Fenilanina Amoníaco-Liasa , Transcriptoma , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/metabolismo , Metabolismo Secundario , Filogenia , Alineación de Secuencia
4.
Biotechnol J ; 19(1): e2300275, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37861236

RESUMEN

Phenylalanine ammonia-lyase (PAL) is a crucial enzyme for various biotechnology applications, such as producing phenols, antioxidants, and nutraceuticals. However, feedback inhibition from its product, cinnamic acid, limits its forward reaction rate. Therefore, this study aims to address the feedback inhibition in PAL using enzyme engineering strategies. Random and site-directed mutagenesis approaches were utilized to screen mutant enzymes with ameliorated tolerance against cinnamic acid. A thermotolerant and cinnamate-tolerant mutant was rationally identified using a high throughput screening method and subsequent biochemical characterization. We evaluated cinnamate affinity among the seven rationally selected mutations, and the T102E mutation was identified as the most promising mutant. This mutant showed a six-fold reduction in the affinity of PAL for cinnamic acid and a two-fold increase in operational stability compared with native PAL. Furthermore, the enzyme was immobilized on carbon nanotubes to increase its robustness and reusability. The immobilized mutant PAL showed greater efficiency in the deamination of phenylalanine present in protein hydrolysate than its free form. The rationale behind the enhancement of cinnamate tolerance was validated using molecular dynamic simulations. Overall, the knowledge of the sequence-function relationship of PAL was applied to drive enzyme engineering to develop highly tolerant PAL.


Asunto(s)
Nanotubos de Carbono , Fenilanina Amoníaco-Liasa , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/metabolismo , Retroalimentación , Cinamatos , Biotransformación
5.
J Biotechnol ; 377: 43-52, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37890533

RESUMEN

In this study we assessed the applicability of the recently reported ancestral l-amino acid oxidase (AncLAAO), for the development of an enzyme-coupled phenylalanine ammonia-lyase (PAL) activity assay. Firstly, the expression and isolation of the AncLAAO-N1 was optimized, followed by activity tests of the obtained octameric N-terminal His-tagged enzyme towards various phenylalanine analogues to assess the compatibility of its substrate scope with that of the well-characterized PALs. AncLAAO-N1 showed high catalytic efficiency towards phenylalanines mono-, di-, or multiple-substituted in the meta- or para-positions, with ortho- substituted substrates being poorly transformed, these results highlighting the significant overlap between its substrate scope and those of PALs. After successful set-up of the AncLAAO-PAL coupled solid phase assay, in a 'proof of concept' approach we demonstrated its applicability for the high-throughput activity screens of PAL-libraries, by screening the saturation mutagenesis-derived I460NNK variant library of PAL from Petroselinum crispum, using p-MeO-phenylalanine as model substrate. Notably, the hits revealed by the coupled assay comprised all the active PAL variants: I460V, I460T, I460S, I460L, previously identified from the tested PAL-library by other assays. Our results validate the applicability of AncLAAO for coupled enzyme systems with phenylalanine ammonia-lyases, including cell-based assays suitable for the high-throughput screening of directed evolution-derived PAL-libraries.


Asunto(s)
L-Aminoácido Oxidasa , Fenilanina Amoníaco-Liasa , Fenilanina Amoníaco-Liasa/química , Fenilalanina/metabolismo , Catálisis
6.
Chembiochem ; 24(23): e202300584, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37747300

RESUMEN

Aromatic ammonia lyases (AALs) are important enzymes for biocatalysis as they enable the asymmetric synthesis of chiral l-α-amino acids from the corresponding α,ß-unsaturated precursors. AALs have very similar protein structures and active site pockets but exhibit strict substrate specificity towards tyrosine, phenylalanine, or histidine. Herein, through systematic bioinformatics and structural analysis, we discovered eight new motifs of amino acid residues in AALs. After introducing them - as well as four already known motifs - into different AALs, we learned that altering the substrate specificity by engineering the substrate switch motif in phenylalanine ammonia lyases (PALs), phenylalanine/tyrosine ammonia lyases (PTALs), and tyrosine ammonia lyases (TALs) was only partially successful. However, we discovered that three previously unknown residue combinations introduced a substrate switch from tyrosine to phenylalanine in TAL, which was converted up to 20-fold better compared to the wild-type TAL enzyme.


Asunto(s)
Amoníaco-Liasas , Liasas , Liasas/metabolismo , Amoníaco-Liasas/química , Fenilanina Amoníaco-Liasa/química , Aminoácidos/metabolismo , Fenilalanina , Tirosina , Especificidad por Sustrato
7.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2818-2838, 2023 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-37584134

RESUMEN

Phenylalanine ammonia-lyase (PAL) is the key entry enzyme of plant phenylpropanoid pathway. It plays an important role in the biosynthesis of podophyllotoxin, an anti-tumor lignan that is currently produced from its main natural source Sinopodophyllum hexandrum (Royle) Ying. In this study, we cloned the gene ShPAL encoding phenylalanine ammonia-lyase by RT-PCR from the root of S. hexandrum ecotype inhabited in the Aba' district, Sichuan, based on its public SRA transcriptome data-package. Bioinformatics analyses showed that the ShPAL-encoded protein is composed of 711 amino acids, contains the conserved domains of PAL, and has the signature motif within the active center of aromatic ammonia-lyases. Moreover, ShPAL protein was predicted to have a secondary structure mainly composed of α-helix and random coil, a typical 'seahorse' shape monomer tertiary structure, and a homologous tetramer three-dimensional structure by Swiss-Modelling. The phylogenetic lineage analysis indicated ShPAL was of the highest sequence identity and the shortest evolutionary distance with the PAL of Epimedium sagittatum from the same Berberidaceae family. Subcellular localization experiments showed that ShPAL protein was mainly distributed in the cytoplasm, despite of a minority on the endoplasmic reticulum membrane. Furthermore, ShPAL protein was recombinantly expressed in Escherichia coli and purified by histidine-tag affinity chromatography. Its enzymatic activity was determined up to 20.91 U/mg, with the optimum temperature of 41 ℃ and pH of 9.0. In contrast, the enzyme activity of its F130H mutant decreased by about 23.6%, yet with the same trends of change with temperature and pH, confirming that phenylalanine at this position does affect the substrate specificity of PAL. Both the wild type and the mutant have relatively poor thermostability, but good pH-stability. These results may help to further investigate the regulatory role of PAL in the process of podophyllotoxin biosynthesis and advance the heterologous synthesis of podophyllotoxin to protect the germplasm resource of S. hexandrum. They also demonstrate that ShPAL has a potential application in biochemical industry and biomedicine.


Asunto(s)
Fenilanina Amoníaco-Liasa , Podofilotoxina , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/metabolismo , Filogenia , Clonación Molecular
8.
J Biomol Struct Dyn ; 41(4): 1295-1308, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34963417

RESUMEN

Phenylalanine ammonia-lyase (PAL) is a key gateway enzyme that connects the phenylpropanoid pathway to primary metabolism. The phenylpropanoid pathway plays a vital role in the growth and environmental adaptation of many plants leading to the production of valuable bioactive compounds with industrial and medical applications. In the present study, nine putative PAL genes from three orchids were identified; five in Apostasia shenzhenica and two each in Dendrobium catenatum and Phalaenopsis equestris. Eighteen motifs and four major conserved functional domains were identified as reported in PAL proteins of other species. All the nine PALs were stable based on their computed physicochemical properties and localized in the cytoplasm. The three-dimensional structures of PALs revealed a homo-tetrameric structure consisting of four identical subunits. A total of 21 cis-regulatory elements with known functions were identified from the promoter regions of all PALs which are responsible for various plant responses to light, stress and growth regulators like auxins, gibberellins and abscisic acid. Phylogenetic analysis showed that the studied PAL proteins clustered in two major clades (clade I and II), placing dicot and monocot PALs in two separate monophyletic clades. In silico gene expression of the identified PALs in different vegetative and reproductive tissues revealed the differential expressions based on tissue type and disclosed that the expression of PAL genes was upregulated in all the tissues examined with an exception of PePAL leaf samples where no expression was detected, however, the same being highly expressed in reproductive tissues (PePAL1-labellum; PePAL2-sepal). In case of AsPALs, the expression was found to be highest in reproductive tissues (AsPAL4-maximum in inflorescence). On the other hand, the expression of DcPALs was found to be highest in vegetative tissues (DcPAL2-maximum in root). Based on the medicinal importance of orchids and the significant role of PAL genes in synthesis of bioactive compounds, the functional characterization of PAL genes can be further exploited in genetic improvement of medicinal orchids.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Dendrobium , Dendrobium/genética , Dendrobium/metabolismo , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Filogenia , Ácido Abscísico , Familia de Multigenes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
J Org Chem ; 88(2): 852-862, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36583610

RESUMEN

An efficient preparative-scale synthetic procedure of l-phenylalanine derivatives has been developed using mutant variants of phenylalanine ammonia-lyase from Arabidopsis thaliana (AtPAL). After rigorous reaction engineering, the AtPAL-catalyzed hydroamination reaction of cinnamic acids provided several unnatural amino acids of high synthetic value, such as (S)-m- and (S)-p-methoxyphenylalanine; (S)-o- and (S)-m-methylphenylalanine; and (S)-o- and (S)-p-bromophenylalanine at preparative scale, significantly surpassing the catalytic efficiency in terms of conversions and yields of the previously reported PcPAL-based biotransformations. The AtPAL variants tolerated high substrate and product concentrations, representing an important extension of the PAL-toolbox, while the engineered biocatalytic procedures of improved E-factor and space-time yields fulfill the requirements of sustainable and green chemistry, providing facile access to valuable amino acid building blocks.


Asunto(s)
Arabidopsis , Fenilanina Amoníaco-Liasa , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/metabolismo , Fenilalanina , Aminoácidos , Biocatálisis
10.
AAPS PharmSciTech ; 23(8): 297, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376608

RESUMEN

We propose encapsulating phenylalanine ammonia lyase (PAL)-bovine serum albumin (BSA) mixtures as potential oral therapy for the management of phenylketonuria. PAL will metabolize phenylalanine in the gastrointestinal tract while BSA will minimize product inhibition and allow PAL to work at its Vmax. We intend manufacturing microcapsules using spray drying and the proteins will be exposed to heat. In the current pre-formulation studies, we determined the effect of elevated temperatures on the structure and activity of PAL-BSA mixtures and evaluated the stabilizing potential of excipients. Exposure of PAL to 75°C decreased its Vmax. BSA exacerbated the elevated temperature-mediated decrease in PAL Vmax and completely lost the ability to protect PAL from trans cinnamic acid (TCA)-mediated product inhibition. Circular dichroism studies revealed that elevated temperatures did not affect the secondary structure of PAL but decreased BSA α-helicity. Binding experiments showed that elevated temperature-mediated loss in BSA α-helicity was associated with markedly decreased binding and sequestration of TCA, which accounts for the inability of BSA to relieve PAL product inhibition. Sucrose, trehalose, and low concentrations of sodium dodecyl sulfate conferred concentration dependent stabilization of BSA secondary structure against thermal denaturation. The sugars enhanced PAL Vmax, markedly improved TCA binding to BSA, and restored the ability of BSA to relieve PAL product inhibition. PAL-BSA mixtures exposed to elevated temperatures in the presence of sucrose and trehalose exhibited high and constant PAL activity. The results justify inclusion of these sugars in the eventual microcapsule manufacturing process.


Asunto(s)
Fenilanina Amoníaco-Liasa , Tensoactivos , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/metabolismo , Albúmina Sérica Bovina/química , Excipientes , Temperatura , Trehalosa , Azúcares , Cápsulas , Sacarosa
11.
Chin J Nat Med ; 20(7): 527-536, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35907651

RESUMEN

Phenylalanine ammonia-lyase (PAL), which catalyzes the conversion from L-phenylalanine to trans-cinnamic acid, is a well-known key enzyme and a connecting step between primary and secondary metabolisms in the phenylpropanoid biosynthetic pathway of plants and microbes. Schisandra chinensis, a woody vine plant belonging to the family of Magnoliaceae, is a rich source of dibenzocyclooctadiene lignans exhibiting potent activity. However, the functional role of PAL in the biosynthesis of lignan is relatively limited, compared with those in lignin and flavonoids biosynthesis. Therefore, it is essential to clone and characterize the PAL genes from this valuable medicinal plant. In this study, molecular cloning and characterization of three PAL genes (ScPAL1-3) from S. chinensis was carried out. ScPALs were cloned using RACE PCR. The sequence analysis of the three ScPALs was carried out to give basic characteristics followed by docking analysis. In order to determine their catalytic activity, recombinant protein was obtained by heterologous expression in pCold-TF vector in Escherichia coli (BL21-DE3), followed by Ni-affinity purification. The catalytic product of the purified recombinant proteins was verified using RP-HPLC through comparing with standard compounds. The optimal temperature, pH value and effects of different metal ions were determined. Vmax, Kcat and Km values were determined under the optimal conditions. The expression of three ScPALs in different tissues was also determined. Our work provided essential information for the function of ScPALs.


Asunto(s)
Fenilanina Amoníaco-Liasa , Schisandra , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Fenilalanina/genética , Fenilalanina/metabolismo , Fenilanina Amoníaco-Liasa/química , Proteínas Recombinantes , Schisandra/genética
12.
Int J Biol Macromol ; 213: 574-588, 2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35643154

RESUMEN

Drought is one of the key threatening environmental factors for plant and agriculture. Phenylalanine ammonia lyase (PAL) is a key enzyme involved in plant defense against abiotic stress, however, the role of PAL in drought tolerance remains elusive. Here, a PAL member (FuPAL1) containing noncanonical Ala-Ser-Gly triad was isolated from Fritillaria unibracteata, one important alpine pharmaceutical plant. FuPAL1, mainly distributed in cytosol, was more conserved than FuCOMT and FuCHI at both nucleotide and amino acid levels. FuPAL1 was overexpressed in Escherichia coli and the purified recombinant FuPAL1 protein showed catalytic preference on L-Phe than L-Tyr. Homology modeling and site-mutation of FuPAL1 exhibited FuPAL1 took part in the ammonization process by forming MIO-like group, and Phe141, Ser208, Ileu218 and Glu490 played key roles in substrate binding and (or) catalysis. HPLC analysis showed that lignin and salicylic acid levels increased but total flavonoid levels decreased in FuPAL1 transgenic Arabidopsis compared to wild-type plants. Moreover, FuPAL1 transgenic Arabidopsis significantly enhanced its drought tolerance, which suggested that FuPAL1 mediated tolerance to drought by inducing the biosynthesis and accumulation of salicylic acid and lignin. Taken together, our results confirmed that the FuPAL1 played an important role in drought tolerance, and FuPAL1 might be a valuable target for genetic improvement of drought resistance in future.


Asunto(s)
Arabidopsis , Fritillaria , Arabidopsis/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Fenilanina Amoníaco-Liasa/química , Proteínas de Plantas/química , Ácido Salicílico/metabolismo , Transducción de Señal
13.
Protein J ; 41(3): 414-423, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35713742

RESUMEN

Phenylalanine ammonia lyase (PAL) catalyzes the deamination of phenylalanine to cinnamic acid and ammonia. It plays a crucial role in the formation of secondary metabolites through the phenylpropanoid pathway. Recently there has been growing interest in exploring the biochemical properties of PAL for its clinical and commercial applications. PAL as a key component has been used in metabolic engineering and synthetic biology. Due to its high substrate specificity and catalytic efficacy, PAL has opened a new area of interest in the biomedical field. PAL has been frequently used in the enzyme replacement therapy of phenylketonuria, cancer treatment and microbial production of l-phe the precursor of noncalorific sweetener aspartame (Methyl L-α-aspartyl-l-phenylalaninate), antimicrobial and health supplements. PAL occurs in few plants, fungi, bacteria, and cyanobacteria. The present investigation is a preliminary study in which an attempt has been made for the isolation, partial purification, and biochemical characterization of PAL (crude and partially purified) from Spirulina CPCC-695. Partially purified PAL exhibited higher enzymatic activity and protein content than the crude enzyme. Molecular weight of the crude and partially purified PAL was ~ 66 kDa. The optimum temperature and pH for PAL activity was observed as 30 â„ƒ and 8.0 respectively. l-Phe was the most preferred substrate (100 mM) whereas gallic acid showed maximum inhibition of PAL activity. Enzyme kinetics suggested good catalytic efficacy of the PAL enzyme and affinity towards substrate. Both the enzyme (crude and partially purified) showed less than 5% haemolysis suggesting the biocompatible nature of PAL.


Asunto(s)
Fenilcetonurias , Spirulina , Humanos , Fenilalanina/metabolismo , Fenilalanina/uso terapéutico , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/metabolismo , Fenilcetonurias/tratamiento farmacológico , Especificidad por Sustrato
14.
ACS Synth Biol ; 10(5): 1087-1094, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33880917

RESUMEN

Baicalein and scutellarein are bioactive flavonoids isolated from the traditional Chinese medicine Scutellaria baicalensis Georgi; however, there is a lack of effective strategies for producing baicalein and scutellarein. In this study, we developed a sequential self-assembly enzyme reactor involving two enzymes in the baicalein pathway with a pair of protein-peptide interactions in E. coli. These domains enabled us to optimize the stoichiometry of two baicalein biosynthetic enzymes recruited to be an enzymes complex. This strategy reduces the accumulation of intermediates and removes the pathway bottleneck. With this strategy, we successfully promoted the titer of baicalein by 6.6-fold (from 21.6 to 143.5 mg/L) and that of scutellarein by 1.4-fold (from 84.3 to 120.4 mg/L) in a flask fermentation, respectively. Furthermore, we first achieved the de novo biosynthesis of baicalein directly from glucose, and the strain was capable of producing 214.1 mg/L baicalein by fed-batch fermentation. This work provides novel insights for future optimization and large-scale fermentation of baicalein and scutellarein.


Asunto(s)
Apigenina/biosíntesis , Reactores Biológicos , Medicamentos Herbarios Chinos/metabolismo , Escherichia coli/metabolismo , Flavanonas/biosíntesis , Ingeniería Metabólica/métodos , Extractos Vegetales/biosíntesis , Técnicas de Cultivo Celular por Lotes/métodos , Escherichia coli/genética , Fermentación , Glucosa/metabolismo , Malonil Coenzima A/metabolismo , Microorganismos Modificados Genéticamente , Dominios PDZ , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/metabolismo , Scutellaria baicalensis , Sirolimus/metabolismo
15.
Appl Biochem Biotechnol ; 193(4): 1099-1115, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33411135

RESUMEN

A putative aromatic amino acid ammonia-lyase gene (named Pl-pal) was discovered in Photorhabdus luminescens DSM 3368. BLAST and phylogenetic analyses predicted that this enzyme is a histidine ammonia-lyase, whereas sequence alignment suggested that it is more likely a phenylalanine ammonia-lyase (PAL). This gene was amplified from P. luminescens and expressed in Escherichia coli BL21(DE3). The function of Pl-PAL (58 kDa) was characterized by in vitro enzymatic reactions with L-phenylalanine (L-Phe), L-tyrosine (L-Tyr), L-histidine (L-His), and L-tryptophan (L-Trp). Pl-PAL can convert L-Phe and L-Tyr to trans-cinnamic acid and p-coumaric acid, respectively, but had no function on L-His and L-Trp. The optimum temperature and pH were determined to be 40 °C and 11.0, respectively. Under the optimal conditions, Pl-PAL had a kcat/Km value of 0.52 s-1 mM-1 with L-Phe as the substrate, while only 0.013 s-1 mM-1 for L-Tyr. Therefore, the primary function of Pl-PAL was determined to be PAL. The Pl-pal-harboring E. coli strain was used as a whole-cell biocatalyst to produce trans-cinnamic acid from L-Phe. The overall molar conversion rate and productivity were 65.98% and 228.10 mg L-1 h-1, respectively, after the cells were repeatedly utilized 7 times. This work thus provides a promising strain for industrial production of trans-cinnamic acid.


Asunto(s)
Proteínas Bacterianas , Fenilanina Amoníaco-Liasa , Photorhabdus , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/genética , Photorhabdus/enzimología , Photorhabdus/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
16.
J Plant Physiol ; 257: 153339, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33383401

RESUMEN

Rehmannia glutinosa production is affected by the replanting disease, which involves autotoxic harm mediated by specific endogenous allelochemicals in root exudates. Many phenolics that act as allelochemical agents are mostly phenylpropanoid products of secondary metabolism in plants. Phenylalanine ammonia-lyase (PAL) is the first enzyme that catalyses the deamination of l-phenylalanine for entrance into the phenylpropanoid pathway. PAL family genes have been isolated and functionally characterized in many plant species. However, PAL family genes involved in phenolic biosynthesis remain largely uncharacterized in R. glutinosa. Here, we identified and characterized four PAL family genes (RgPAL2 to RgPAL5) in the species whose sequences exhibited highly conserved domains of PALs according to in silico analysis, implying their potential function in phenolic biosynthesis. Overexpression of RgPALs in R. glutinosa enhanced phenolic production, verifying that RgPAL family genes participate in phenolic biosynthesis pathways. Moreover, we found that the release of several allelopathic phenolics from the roots of RgPAL-overexpressing transgenic R. glutinosa increased, implying that the RgPALs positively promote their release. Importantly, under continuous monoculture stress, we found that the RgPAL transgenic plants exhibited more significant autotoxic harm than did non-transgenic (WT) plants by activating the phenolics/phenylpropanoid pathway, indicating that RgPAL family genes function as positive regulators of the replanting disease development in R. glutinosa. This study revealed that RgPAL family genes are involved in the biosynthesis and release of several phenolics and positively control the replanting disease development in R. glutinosa, laying a foundation for further clarification of the molecular mechanisms underlying the disease formation.


Asunto(s)
Fenoles/metabolismo , Fenilanina Amoníaco-Liasa/genética , Proteínas de Plantas/genética , Rehmannia/genética , Secuencia de Aminoácidos , Familia de Multigenes , Orobanchaceae/química , Orobanchaceae/genética , Orobanchaceae/metabolismo , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Rehmannia/química , Rehmannia/enzimología , Rehmannia/metabolismo , Alineación de Secuencia
17.
Biochimie ; 177: 142-152, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32828824

RESUMEN

Phenylalanine ammonia lyase (PAL) has recently emerged as an important therapeutic enzyme with several biomedical applications. The enzyme catabolizes l-phenylalanine to trans-cinnamate and ammonia. PAL is widely distributed in higher plants, some algae, ferns, and microorganisms, but absent in animals. Although microbial PAL has been extensively exploited in the past for producing industrially important metabolites, its high substrate specificity and catalytic efficacy lately spurred interest in its biomedical applications. PEG-PAL drug named Palynziq™, isolated from Anabaena variabilis has been recently approved for the treatment of adult phenylketonuria (PKU) patients. Further, it has exhibited high potency in regressing tumors and treating tyrosine related metabolic abnormalities like tyrosinemia. Several therapeutically valuable metabolites have been biosynthesized via its catalytic action including dietary supplements, antimicrobial peptides, aspartame, amino-acids, and their derivatives. This review focuses on all the prospective biomedical applications of PAL. It also provides an overview of the structure, production parameters, and various strategies to improve the therapeutic potential of this enzyme. Engineered PAL with improved pharmacodynamic and pharmacokinetic properties will further establish this enzyme as a highly efficient biological drug.


Asunto(s)
Proteínas Bacterianas/farmacología , Proteínas Bacterianas/uso terapéutico , Fenilanina Amoníaco-Liasa/farmacología , Fenilanina Amoníaco-Liasa/uso terapéutico , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Animales , Antiinfecciosos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Suplementos Dietéticos , Humanos , Neoplasias/tratamiento farmacológico , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/genética
18.
Biomolecules ; 10(6)2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486192

RESUMEN

Phenylalanine ammonia-lyases (PALs) are attractive biocatalysts for the stereoselective synthesis of non-natural phenylalanines. The rational design of PALs with extended substrate scope, highlighted the substrate specificity-modulator role of residue I460 of Petroselinum crispum PAL. Herein, saturation mutagenesis at key residue I460 was performed in order to identify PcPAL variants of enhanced activity or to validate the superior catalytic properties of the rationally explored I460V PcPAL compared with the other possible mutant variants. After optimizations, the saturation mutagenesis employing the NNK-degeneracy generated a high-quality transformant library. For high-throughput enzyme-activity screens of the mutant library, a PAL-activity assay was developed, allowing the identification of hits showing activity in the reaction of non-natural substrate, p-MeO-phenylalanine. Among the hits, besides the known I460V PcPAL, several mutants were identified, and their increased catalytic efficiency was confirmed by biotransformations using whole-cells or purified PAL-biocatalysts. Variants I460T and I460S were superior to I460V-PcPAL in terms of catalytic efficiency within the reaction of p-MeO-Phe. Moreover, I460T PcPAL maintained the high specificity constant of the wild-type enzyme for the natural substrate, l-Phe. Molecular docking supported the favorable substrate orientation of p-MeO-cinnamic acid within the active site of I460T variant, similarly as shown earlier for I460V PcPAL (PDB ID: 6RGS).


Asunto(s)
Petroselinum/enzimología , Fenilanina Amoníaco-Liasa/genética , Biocatálisis , Simulación del Acoplamiento Molecular , Mutación , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/metabolismo
19.
Sci Rep ; 10(1): 3651, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32107425

RESUMEN

Phenylketonuria is a genetic disorder affecting the metabolism of phenylalanine (phe) due to a deficiency in the enzyme phenylalanine hydroxylase. This disorder is characterized by an elevated phe blood level, which can lead to severe intellectual disabilities in newborns. The current strategy to prevent these devastating consequences is limited to a life-long phe-free diet, which implies major lifestyle changes and restrictions. Recently, an injectable enzyme replacement therapy, Pegvaliase, has been approved for treating phenylketonuria, but is associated with significant side-effects. In this study a phe-metabolizing system suitable for oral delivery is designed to overcome the need for daily injections. Active phenylalanine ammonia-lyase (PAL), an enzyme that catalyses phe metabolism, is loaded into mesoporous silica microparticles (MSP) with pore sizes ranging from 10 to 35 nm. The surface of the MSP is lined with a semipermeable barrier to allow permeation of phe while blocking digestive enzymes that degrade PAL. The enzymatic activity can be partially preserved in vitro by coating the MSP with poly(allylamine) and poly(acrylic acid)-bowman birk (protease inhibitor) conjugate. The carrier system presented herein may provide a general approach to overcome gastro-intestinal proteolytic digestion and to deliver active enzymes to the intestinal lumen for prolonged local action.


Asunto(s)
Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/farmacocinética , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Portadores de Fármacos/uso terapéutico , Terapia de Reemplazo Enzimático , Humanos , Fenilanina Amoníaco-Liasa/uso terapéutico , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/enzimología , Porosidad , Proteínas Recombinantes/uso terapéutico , Dióxido de Silicio/química , Dióxido de Silicio/farmacocinética , Dióxido de Silicio/uso terapéutico
20.
Sci Rep ; 10(1): 1315, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992763

RESUMEN

Phenylalanine/tyrosine ammonia-lyases (PAL/TALs) have been approved by the FDA for treatment of phenylketonuria and may harbour potential for complementary treatment of hereditary tyrosinemia Type I. Herein, we explore ancestral sequence reconstruction as an enzyme engineering tool to enhance the therapeutic potential of PAL/TALs. We reconstructed putative ancestors from fungi and compared their catalytic activity and stability to two modern fungal PAL/TALs. Surprisingly, most putative ancestors could be expressed as functional tetramers in Escherichia coli and thus retained their ability to oligomerize. All ancestral enzymes displayed increased thermostability compared to both modern enzymes, however, the increase in thermostability was accompanied by a loss in catalytic turnover. One reconstructed ancestral enzyme in particular could be interesting for further drug development, as its ratio of specific activities is more favourable towards tyrosine and it is more thermostable than both modern enzymes. Moreover, long-term stability assessment showed that this variant retained substantially more activity after prolonged incubation at 25 °C and 37 °C, as well as an increased resistance to incubation at 60 °C. Both of these factors are indicative of an extended shelf-life of biopharmaceuticals. We believe that ancestral sequence reconstruction has potential for enhancing the properties of enzyme therapeutics, especially with respect to stability. This work further illustrates that resurrection of putative ancestral oligomeric proteins is feasible and provides insight into the extent of conservation of a functional oligomerization surface area from ancestor to modern enzyme.


Asunto(s)
Suplementos Dietéticos , Terapia de Reemplazo Enzimático , Fenilanina Amoníaco-Liasa/uso terapéutico , Tirosinemias/terapia , Animales , Activación Enzimática , Terapia de Reemplazo Enzimático/métodos , Estabilidad de Enzimas , Hongos/clasificación , Hongos/enzimología , Hongos/genética , Humanos , Cinética , Modelos Moleculares , Fenilanina Amoníaco-Liasa/administración & dosificación , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/clasificación , Conformación Proteica , Proteínas Recombinantes , Relación Estructura-Actividad , Termodinámica , Tirosinemias/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...