Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
J Neurodev Disord ; 16(1): 33, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907189

RESUMEN

BACKGROUND: Continued dietary treatment since early diagnosis through newborn screening programs usually prevents brain-related complications in phenylketonuria (PKU). However, subtle neurocognitive and brain alterations may be observed in some adult patients despite early treatment. Nevertheless, neuropsychological and neuroimaging studies in the field remain scarce. OBJECTIVES: This work aimed to determine possible neuropsychological and structural brain alterations in treated adult patients with PKU. METHODS: Thirty-five patients with PKU and 22 healthy controls (HC) underwent neuropsychological assessment and T1-weighted magnetic resonance imaging on a 3 T scanner. FreeSurfer (v.7.1) was used to obtain volumetric measures and SPSS (v27.0.1.0) was used to analyze sociodemographic, neuropsychological, volumetric, and clinical data (p < 0.05). RESULTS: Adult patients with PKU showed significantly lower performance than HC in Full Scale IQ (t = 2.67; p = .010) from the WAIS-IV. The PKU group also showed significantly lower volumes than HC in the pallidum (U = 224.000; p = .008), hippocampus (U = 243.000; p = .020), amygdala (U = 200.000; p = .002), and brainstem (t = 3.17; p = .006) as well as in total cerebral white matter volume (U = 175.000; p = .001). Blood phenylalanine (Phe) levels in PKU patients were negatively correlated with the pallidum (r = -0.417; p = .013) and brainstem (r = -0.455, p = .006) volumes. CONCLUSIONS: Adult patients with early-treated PKU showed significantly lower global intelligence than HC. Moreover, these patients showed reduced global white matter volume as well as reductions in the volume of several subcortical grey matter structures, which might be related to the existence of underlying neurodevelopmental alterations. Higher blood Phe levels were also negatively correlated with pallidum and brainstem, suggesting a higher vulnerability of these structures to Phe toxicity.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Fenilalanina , Fenilcetonurias , Humanos , Fenilcetonurias/sangre , Fenilcetonurias/patología , Fenilcetonurias/diagnóstico por imagen , Fenilalanina/sangre , Masculino , Femenino , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Adulto Joven , Pruebas Neuropsicológicas
2.
Nucleic Acid Ther ; 34(3): 134-142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38591802

RESUMEN

The PAH gene encodes the hepatic enzyme phenylalanine hydroxylase (PAH), and its deficiency, known as phenylketonuria (PKU), leads to neurotoxic high levels of phenylalanine. PAH exon 11 is weakly defined, and several missense and intronic variants identified in patients affect the splicing process. Recently, we identified a novel intron 11 splicing regulatory element where U1snRNP binds, participating in exon 11 definition. In this work, we describe the implementation of an antisense strategy targeting intron 11 sequences to correct the effect of PAH mis-splicing variants. We used an in vitro assay with minigenes and identified splice-switching antisense oligonucleotides (SSOs) that correct the exon skipping defect of PAH variants c.1199+17G>A, c.1199+20G>C, c.1144T>C, and c.1066-3C>T. To examine the functional rescue induced by the SSOs, we generated a hepatoma cell model with variant c.1199+17G>A using CRISPR/Cas9. The edited cell line reproduces the exon 11 skipping pattern observed from minigenes, leading to reduced PAH protein levels and activity. SSO transfection results in an increase in exon 11 inclusion and corrects PAH deficiency. Our results provide proof of concept of the potential therapeutic use of a single SSO for different exonic and intronic splicing variants causing PAH exon 11 skipping in PKU.


Asunto(s)
Exones , Intrones , Oligonucleótidos Antisentido , Fenilalanina Hidroxilasa , Fenilcetonurias , Empalme del ARN , Humanos , Fenilcetonurias/genética , Fenilcetonurias/terapia , Fenilcetonurias/patología , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos Antisentido/farmacología , Exones/genética , Empalme del ARN/genética , Intrones/genética , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Empalme Alternativo/genética
3.
Hum Mol Genet ; 33(12): 1074-1089, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38520741

RESUMEN

We have generated using CRISPR/Cas9 technology a partially humanized mouse model of the neurometabolic disease phenylketonuria (PKU), carrying the highly prevalent PAH variant c.1066-11G>A. This variant creates an alternative 3' splice site, leading to the inclusion of 9 nucleotides coding for 3 extra amino acids between Q355 and Y356 of the protein. Homozygous Pah c.1066-11A mice, with a partially humanized intron 10 sequence with the variant, accurately recapitulate the splicing defect and present almost undetectable hepatic PAH activity. They exhibit fur hypopigmentation, lower brain and body weight and reduced survival. Blood and brain phenylalanine levels are elevated, along with decreased tyrosine, tryptophan and monoamine neurotransmitter levels. They present behavioral deficits, mainly hypoactivity and diminished social interaction, locomotor deficiencies and an abnormal hind-limb clasping reflex. Changes in the morphology of glial cells, increased GFAP and Iba1 staining signals and decreased myelinization are observed. Hepatic tissue exhibits nearly absent PAH protein, reduced levels of chaperones DNAJC12 and HSP70 and increased autophagy markers LAMP1 and LC3BII, suggesting possible coaggregation of mutant PAH with chaperones and subsequent autophagy processing. This PKU mouse model with a prevalent human variant represents a useful tool for pathophysiology research and for novel therapies development.


Asunto(s)
Modelos Animales de Enfermedad , Fenilalanina Hidroxilasa , Fenilcetonurias , Animales , Ratones , Fenilcetonurias/genética , Fenilcetonurias/patología , Fenilcetonurias/metabolismo , Humanos , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Sistemas CRISPR-Cas , Autofagia/genética , Mutación , Hígado/metabolismo , Hígado/patología
4.
Stem Cell Res ; 77: 103407, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552357

RESUMEN

We employed a Sendai virus-based reprogramming method to transform human lymphoblastoid cell lines (LCL) derived from two individuals diagnosed with phenylketonuria (PKU) into induced pluripotent stem cells (iPSC). This reprogramming process involved the expression of the four Yamanaka factors: KLF4, OCT4, SOX2, and C-MYC. The resulting patient-specific iPSCs exhibited a normal karyotype and expressed endogenous pluripotent markers NANOG and OCT-4. Notably, these iPSCs demonstrated strong differentiation capabilities, giving rise to cell populations representing the ectoderm, endoderm, and mesoderm germ layers.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Factor 4 Similar a Kruppel , Fenilcetonurias , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Fenilcetonurias/metabolismo , Fenilcetonurias/patología , Línea Celular , Masculino , Linfocitos/metabolismo , Reprogramación Celular
5.
Stem Cell Res ; 77: 103405, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38555716

RESUMEN

Phenylketonuria is a rare autosomal recessive metabolic disorder mainly due to a significant reduction in the enzyme phenylalanine hydroxylase, resulting in elevation of phenylalanine in the blood. Here, we have established two fibroblast-derived induced pluripotent stem cell lines using Sendai virus-based reprogramming. The established induced pluripotent stem cell lines exhibited a normal karyotype and expressed markers of pluripotency assessed through quantitative PCR, flow cytometry and immunocytochemistry. These cell lines also demonstrated the ability to differentiate into the three primary germ layers of the human body, including ectoderm, endoderm, and mesoderm.


Asunto(s)
Diferenciación Celular , Fibroblastos , Células Madre Pluripotentes Inducidas , Fenilcetonurias , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Fenilcetonurias/metabolismo , Fenilcetonurias/patología , Fibroblastos/metabolismo , Línea Celular , Masculino , Niño
6.
Hepatology ; 79(5): 1088-1097, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37824086

RESUMEN

BACKGROUND AND AIMS: Hepatocyte transplantation for genetic liver diseases has several potential advantages over gene therapy. However, the low efficiency of cell engraftment has limited its clinical implementation. This problem could be overcome by selectively expanding transplanted donor cells until they replace enough of the liver mass to achieve therapeutic benefit. We previously described a gene therapy method to selectively expand hepatocytes deficient in cytochrome p450 reductase (Cypor) using acetaminophen (APAP). Because Cypor is required for the transformation of APAP to a hepatotoxic metabolite, Cypor-deficient cells are protected from toxicity and are able to expand following APAP-induced liver injury. Here, we apply this selection system to correct a mouse model of phenylketonuria by cell transplantation. APPROACH AND RESULTS: Hepatocytes from a wild-type donor animal were edited in vitro to create Cypor deficiency and then transplanted into phenylketonuric animals. Following selection with APAP, blood phenylalanine concentrations were fully normalized and remained stable following APAP withdrawal. Cypor-deficient hepatocytes expanded from < 1% to ~14% in corrected animals, and they showed no abnormalities in blood chemistries, liver histology, or drug metabolism. CONCLUSIONS: We conclude that APAP-mediated selection of transplanted hepatocytes is a potential therapeutic for phenylketonuria with long-term efficacy and a favorable safety profile.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Fenilcetonurias , Ratones , Animales , Acetaminofén , Hepatocitos/metabolismo , Hígado/patología , Fenilcetonurias/metabolismo , Fenilcetonurias/patología , Modelos Animales de Enfermedad , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Ratones Endogámicos C57BL
7.
Mov Disord ; 39(2): 249-258, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38014588

RESUMEN

Recent studies show that pathogenic variants in DNAJC12, a co-chaperone for monoamine synthesis, may cause mild hyperphenylalaninemia with infantile dystonia, young-onset parkinsonism, developmental delay and cognitive deficits. DNAJC12 has been included in newborn screening, most revealingly in Spain, and those results highlight the importance of genetic diagnosis and early intervention in combating human disease. However, practitioners may be unaware of these advances and it is probable that many patients, especially adults, have yet to receive molecular testing for DNAJC12. Hence, this review summarizes genotype-phenotype relationships and treatment paradigms for patients with pathogenic variants in DNAJC12. It provides an overview of the structure of DNAJC12 protein, known genetic variants, domains, and binding partners, and elaborates on its role in monoamine synthesis, disease etiology, and pathogenesis. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Trastornos del Movimiento , Trastornos Parkinsonianos , Fenilcetonurias , Adulto , Humanos , Recién Nacido , Aminas , Trastornos del Movimiento/genética , Trastornos Parkinsonianos/genética , Fenilcetonurias/genética , Fenilcetonurias/patología , Proteínas Represoras/genética
8.
Sci Rep ; 11(1): 22886, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819582

RESUMEN

Phenylketonuria (PKU) is a genetic deficiency of phenylalanine hydroxylase (PAH) in liver resulting in blood phenylalanine (Phe) elevation and neurotoxicity. A pegylated phenylalanine ammonia lyase (PEG-PAL) metabolizing Phe into cinnamic acid was recently approved as treatment for PKU patients. A potentially one-time rAAV-based delivery of PAH gene into liver to convert Phe into tyrosine (Tyr), a normal way of Phe metabolism, has now also entered the clinic. To understand differences between these two Phe lowering strategies, we evaluated PAH and PAL expression in livers of PAHenu2 mice on brain and liver functions. Both lowered brain Phe and increased neurotransmitter levels and corrected animal behavior. However, PAL delivery required dose optimization, did not elevate brain Tyr levels and resulted in an immune response. The effect of hyperphenylalanemia on liver functions in PKU mice was assessed by transcriptome and proteomic analyses. We observed an elevation in Cyp4a10/14 proteins involved in lipid metabolism and upregulation of genes involved in cholesterol biosynthesis. Majority of the gene expression changes were corrected by PAH and PAL delivery though the role of these changes in PKU pathology is currently unclear. Taken together, here we show that blood Phe lowering strategy using PAH or PAL corrects both brain pathology as well as previously unknown lipid metabolism associated pathway changes in liver.


Asunto(s)
Terapia Genética , Hígado/enzimología , Fenilanina Amoníaco-Liasa/metabolismo , Fenilalanina Hidroxilasa/metabolismo , Fenilalanina/sangre , Fenilcetonurias/terapia , Transcriptoma , Animales , Biomarcadores/sangre , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Perfilación de la Expresión Génica , Masculino , Ratones Noqueados , Fenilanina Amoníaco-Liasa/genética , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/sangre , Fenilcetonurias/genética , Fenilcetonurias/patología , Proteoma , Proteómica
9.
J Pediatr Endocrinol Metab ; 34(9): 1157-1167, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34214291

RESUMEN

OBJECTIVES: This study aimed to evaluate the biochemical factors, genetic mutations, outcome of treatment, and clinical follow-up data of Iranian patients with tetrahydrobiopterin (BH4) deficiency from April/2016 to March/2020. METHODS: Forty-seven BH4 deficiency patients were included in the study and underwent biochemical and genetic analyses. The clinical outcomes of the patients were evaluated after long-term treatment. RESULTS: Out of the 47 (25 females and 22 males) BH4 deficiency patients enrolled in the study, 23 were Dihydropteridine reductase (DHPR) deficient patients, 23 were 6-pyruvoyl-tetrahydropterin synthase (PTPS) deficient patients, and one was GTP-Cyclohydrolase 1 deficiency (GTPCH-1) patient. No clinical symptoms were observed in 10 of the DHPR deficient patients (before and after the treatment). Also, most patients diagnosed at an early age had a proper response to the treatment. However, drug therapy did not improve clinical symptoms in three of the patients diagnosed at the age of over 10 years. Also, 16 PTPS deficiency patients who were detected within 6 months and received treatment no clinical symptoms were presented. One of the patients was detected with GTPCH deficiency. Despite being treated with BH4, this patient suffered from a seizure, movement disorder, mental retardation, speech difficulty, and hypotonia. CONCLUSIONS: The study results showed that neonatal screening should be carried out in all patients with hyperphenylalaninemia because early diagnosis and treatment can reduce symptoms and prevent neurological impairments. Although the BH4 deficiency outcomes are highly variable, early diagnosis and treatment in the first months of life are crucial for good outcomes.


Asunto(s)
Biopterinas/análogos & derivados , Fenilcetonurias/tratamiento farmacológico , Adolescente , Biopterinas/uso terapéutico , Niño , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Irán , Masculino , Fenilcetonurias/patología , Pronóstico
10.
Am J Med Genet A ; 185(11): 3350-3358, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34165242

RESUMEN

From Sir Archibald Garrod's initial description of the tetrad of albinism, alkaptonuria, cystinuria, and pentosuria to today, the field of medicine dedicated to inborn errors of metabolism has evolved from disease identification and mechanistic discovery to the development of therapies designed to subvert biochemical defects. In this review, we highlight major milestones in the treatment and diagnosis of inborn errors of metabolism, starting with dietary therapy for phenylketonuria in the 1950s and 1960s, and ending with current approaches in genetic manipulation.


Asunto(s)
Albinismo/terapia , Alcaptonuria/terapia , Cistinuria/terapia , Errores Innatos del Metabolismo/terapia , Albinismo/genética , Albinismo/metabolismo , Albinismo/patología , Alcaptonuria/genética , Alcaptonuria/metabolismo , Alcaptonuria/patología , Errores Innatos del Metabolismo de los Carbohidratos/genética , Errores Innatos del Metabolismo de los Carbohidratos/metabolismo , Errores Innatos del Metabolismo de los Carbohidratos/patología , Errores Innatos del Metabolismo de los Carbohidratos/terapia , Cistinuria/genética , Cistinuria/metabolismo , Cistinuria/patología , Humanos , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/patología , Fenilcetonurias/genética , Fenilcetonurias/metabolismo , Fenilcetonurias/patología , Fenilcetonurias/terapia , Deshidrogenasas del Alcohol de Azúcar/deficiencia , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Xilulosa/genética , Xilulosa/metabolismo
11.
Mol Genet Metab ; 133(2): 123-136, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33903016

RESUMEN

Tetrahydrobiopterin (BH4) deficiency is caused by genetic variants in the three genes involved in de novo cofactor biosynthesis, GTP cyclohydrolase I (GTPCH/GCH1), 6-pyruvoyl-tetrahydropterin synthase (PTPS/PTS), sepiapterin reductase (SR/SPR), and the two genes involved in cofactor recycling, carbinolamine-4α-dehydratase (PCD/PCBD1) and dihydropteridine reductase (DHPR/QDPR). Dysfunction in BH4 metabolism leads to reduced cofactor levels and may result in systemic hyperphenylalaninemia and/or neurological sequelae due to secondary deficiency in monoamine neurotransmitters in the central nervous system. More than 1100 patients with BH4 deficiency and 800 different allelic variants distributed throughout the individual genes are tabulated in database of pediatric neurotransmitter disorders PNDdb. Here we provide an update on the molecular-genetic analysis and structural considerations of these variants, including the clinical courses of the genotypes. From a total of 324 alleles, 11 are associated with the autosomal recessive form of GTPCH deficiency presenting with hyperphenylalaninemia (HPA) and neurotransmitter deficiency, 295 GCH1 variant alleles are detected in the dominant form of L-dopa-responsive dystonia (DRD or Segawa disease) while phenotypes of 18 alleles remained undefined. Autosomal recessive variants observed in the PTS (199 variants), PCBD1 (32 variants), and QDPR (141 variants) genes lead to HPA concomitant with central monoamine neurotransmitter deficiency, while SPR deficiency (104 variants) presents without hyperphenylalaninemia. The clinical impact of reported variants is essential for genetic counseling and important for development of precision medicine.


Asunto(s)
Oxidorreductasas de Alcohol/genética , GTP Ciclohidrolasa/genética , Fenilcetonurias/genética , Liasas de Fósforo-Oxígeno/genética , Biopterinas/análogos & derivados , Biopterinas/genética , Biopterinas/metabolismo , Dihidropteridina Reductasa/genética , Distonía/genética , Distonía/metabolismo , Distonía/patología , Predisposición Genética a la Enfermedad , Humanos , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/patología , Proteínas Asociadas a Microtúbulos/genética , Fenilcetonurias/clasificación , Fenilcetonurias/metabolismo , Fenilcetonurias/patología , Trastornos Psicomotores/genética , Trastornos Psicomotores/metabolismo , Trastornos Psicomotores/patología
12.
PLoS One ; 16(4): e0249608, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33822819

RESUMEN

A timely detection of patients with tetrahydrobiopterin (BH4) -deficient types of hyperphenylalaninemia (HPABH4) is important for assignment of correct therapy, allowing to avoid complications. Often HPABH4 patients receive the same therapy as phenylalanine hydroxylase (PAH) -deficiency (phenylketonuria) patients-dietary treatment-and do not receive substitutive BH4 therapy until the diagnosis is confirmed by molecular genetic means. In this study, we present a cohort of 30 Russian patients with HPABH4 with detected variants in genes causing different types of HPA. Family diagnostics and biochemical urinary pterin spectrum analyses were carried out. HPABH4A is shown to be the prevalent type, 83.3% of all HPABH4 cases. The mutation spectrum for the PTS gene was defined, the most common variants in Russia were p.Thr106Met-32%, p.Asn72Lys-20%, p.Arg9His-8%, p.Ser32Gly-6%. We also detected 7 novel PTS variants and 3 novel QDPR variants. HPABH4 prevalence was estimated to be 0.5-0.9% of all HPA cases in Russia, which is significantly lower than in European countries on average, China, and Saudi Arabia. The results of this research show the necessity of introducing differential diagnostics for HPABH4 into neonatal screening practice.


Asunto(s)
Mutación , Fenilalanina Hidroxilasa/deficiencia , Fenilcetonurias/epidemiología , Liasas de Fósforo-Oxígeno/deficiencia , Estudios de Casos y Controles , Humanos , Fenilcetonurias/genética , Fenilcetonurias/patología , Liasas de Fósforo-Oxígeno/genética , Pronóstico , Estudios Retrospectivos , Federación de Rusia/epidemiología
13.
Mol Genet Metab ; 133(1): 49-55, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33766497

RESUMEN

BACKGROUND: In patients with phenylketonuria, stability of blood phenylalanine and tyrosine concentrations might influence brain chemistry and therefore patient outcome. This study prospectively investigated the effects of tetrahydrobiopterin (BH4), as a chaperone of phenylalanine hydroxylase on diurnal and day-to-day variations of blood phenylalanine and tyrosine concentrations. METHODS: Blood phenylalanine and tyrosine were measured in dried blood spots (DBS) four times daily for 2 days (fasting, before lunch, before dinner, evening) and once daily (fasting) for 6 days in a randomized cross-over design with a period with BH4 and a period without BH4. The sequence was randomized. Eleven proven BH4 responsive PKU patients participated, 5 of them used protein substitutes during BH4 treatment. Natural protein intake and protein substitute dosing was adjusted during the period without BH4 in order to keep DBS phenylalanine levels within target range. Patients filled out a 3-day food diary during both study periods. Variations of DBS phenylalanine and Tyr were expressed in standard deviations (SD) and coefficient of variation (CV). RESULTS: BH4 treatment did not significantly influence day-to-day phenylalanine and tyrosine variations nor diurnal phenylalanine variations, but decreased diurnal tyrosine variations (median SD 17.6 µmol/l, median CV 21.3%, p = 0.01) compared to diet only (median SD 34.2 µmol/l, median CV 43.2%). Consequently, during BH4 treatment diurnal phenylalanine/tyrosine ratio variation was smaller, while fasting tyrosine levels tended to be higher. CONCLUSION: BH4 did not impact phenylalanine variation but decreased diurnal tyrosine and phenylalanine/tyrosine ratio variations, possibly explained by less use of protein substitute and increased tyrosine synthesis.


Asunto(s)
Biopterinas/análogos & derivados , Fenilalanina Hidroxilasa/genética , Fenilalanina/sangre , Fenilcetonurias/tratamiento farmacológico , Tirosina/sangre , Adulto , Biopterinas/efectos adversos , Biopterinas/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Niño , Preescolar , Pruebas con Sangre Seca , Femenino , Humanos , Masculino , Fenilalanina Hidroxilasa/antagonistas & inhibidores , Fenilcetonurias/genética , Fenilcetonurias/patología
14.
Am J Med Genet A ; 185(7): 1991-2002, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33765361

RESUMEN

Neurotoxic effects caused by high phenylalanine (Phe) in patients with phenylketonuria (PKU) can be avoided through dietary treatment. However, achieving the recommended Phe levels has been a challenge. This study aimed to investigate factors associated with adherence to PKU treatment among patients followed at a medical genetics public service in southern Brazil. Twenty-nine patients (early diagnosed, n = 20; late-diagnosed, n = 9) with classical (n = 16) or mild PKU (n = 13) aged 6-34 years (16.4 ± 7.5) and 16 caregivers were included. Blood Phe levels were recorded, and assessment tools measuring barriers to treatment, IQ, knowledge about disease, treatment, and perceived adherence were collected. Classical PKU patients showed higher current blood Phe levels than mild PKU patients (U = 37.000, p = 0.003). Lifetime and childhood Phe levels were associated with recent metabolic control (τ = 0.76, p = 0.000; τ = 0.70, p = 0.000, respectively). The perception of barriers to treatment was associated with a higher blood Phe level (τ = 0.39, p = 0.003). Tolerance to Phe, metabolic control throughout childhood, and perceived difficulty in living with demands of treatment are important factors of greater vulnerability to poor adherence in PKU patients.


Asunto(s)
Dieta , Fenilalanina/sangre , Fenilcetonurias/dietoterapia , Fenilcetonurias/genética , Adolescente , Brasil/epidemiología , Niño , Femenino , Humanos , Masculino , Fenilalanina/efectos adversos , Fenilcetonurias/sangre , Fenilcetonurias/patología , Adulto Joven
15.
Mol Neurobiol ; 58(6): 2897-2909, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33550493

RESUMEN

Phenylketonuria (PKU) is an inborn error of metabolism caused by phenylalanine hydroxylase (PAH) deficiency and characterized by elevated plasma levels of phenylalanine (hyperphenylalaninemia-HPA). In severe cases, PKU patients present with neurological dysfunction and hepatic damage, but the underlying mechanisms are not fully elucidated. Other forms of HPA also characterized by neurological symptoms occur in rare instances due to defects in the metabolism of the PAH cofactor tetrahydrobiopterin. This review aims to gather the knowledge acquired on the phenylalanine-induced toxicity focusing on findings obtained from pre-clinical studies. Mounting evidence obtained from PKU genetic mice, rats submitted to different HPA models, and cell cultures exposed to phenylalanine has shown that high levels of this amino acid impair mitochondrial bioenergetics, provoke changes in oxidative and inflammatory status, and induce apoptosis. Noteworthy, some data demonstrated that phenylalanine-induced oxidative stress occurs specifically in mitochondria. Further studies have shown that the metabolites derived from phenylalanine, namely phenylpyruvate, phenyllactate, and phenylacetate, also disturb oxidative status. Therefore, it may be presumed that mitochondrial damage is one of the most important mechanisms responsible for phenylalanine toxicity. It is expected that the findings reviewed here may contribute to the understanding of PKU and HPA pathophysiology and to the development of novel therapeutic strategies for these disorders.


Asunto(s)
Inflamación/patología , Mitocondrias/patología , Estrés Oxidativo , Fenilcetonurias/patología , Fenilcetonurias/fisiopatología , Animales , Modelos Animales de Enfermedad , Inflamación/complicaciones , Oxidación-Reducción , Fenilcetonurias/complicaciones
16.
Mol Genet Metab ; 132(3): 173-179, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33602601

RESUMEN

Osteopenia occurs in a subset of phenylalanine hydroxylase (PAH) deficient phenylketonuria (PKU) patients. While osteopenia is not fully penetrant in patients, the Pahenu2 classical PKU mouse is universally osteopenic, making it an ideal model of the phenotype. Pahenu2 Phe management, with a Phe-fee amino acid defined diet, does not improve bone density as histomorphometry metrics remain indistinguishable from untreated animals. Previously, we demonstrated Pahenu2 mesenchymal stem cells (MSCs) display impaired osteoblast differentiation. Oxidative stress is recognized in PKU patients and PKU animal models. Pahenu2 MSCs experience oxidative stress determined by intracellular superoxide over-representation. The deleterious impact of oxidative stress on mitochondria is recognized. Oximetry applied to Pahenu2 MSCs identified mitochondrial stress by increased basal respiration with concurrently reduced maximal respiration and respiratory reserve. Proton leak secondary to mitochondrial complex 1 dysfunction is a recognized superoxide source. Respirometry applied to Pahenu2 MSCs, in the course of osteoblast differentiation, identified a partial complex 1 deficit. Pahenu2 MSCs treated with the antioxidant resveratrol demonstrated increased mitochondrial mass by MitoTracker green labeling. In hyperphenylalaninemic conditions, resveratrol increased in situ alkaline phosphatase activity suggesting partial recovery of Pahenu2 MSCs osteoblast differentiation. Up-regulation of oxidative energy production is required for osteoblasts differentiation. Our data suggests impaired Pahenu2 MSC developmental competence involves an energy deficit. We posit energy support and oxidative stress reduction will enable Pahenu2 MSC differentiation in the osteoblast lineage to subsequently increase bone density.


Asunto(s)
Enfermedades Óseas Metabólicas/genética , Estrés Oxidativo/genética , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/genética , Fosfatasa Alcalina/genética , Animales , Densidad Ósea/genética , Enfermedades Óseas Metabólicas/complicaciones , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Enfermedades Óseas Metabólicas/patología , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Fenilalanina/genética , Fenilcetonurias/complicaciones , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/patología , Resveratrol/farmacología
17.
Mol Genet Metab ; 132(4): 215-219, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33610470

RESUMEN

BACKGROUND: A subset of patients with phenylketonuria benefit from treatment with tetrahydrobiopterin (BH4), although there is no consensus on the definition of BH4 responsiveness. The aim of this study therefore was to gain insight into the definitions of long-term BH4 responsiveness being used around the world. METHODS: We performed a web-based survey targeting healthcare professionals involved in the treatment of PKU patients. Data were analysed according to geographical region (Europe, USA/Canada, other). RESULTS: We analysed 166 responses. Long-term BH4 responsiveness was commonly defined using natural protein tolerance (95.6%), improvement of metabolic control (73.5%) and increase in quality of life (48.2%). When a specific value for a reduction in phenylalanine concentrations was reported (n = 89), 30% and 20% were most frequently used as cut-off values (76% and 19% of respondents, respectively). When a specific relative increase in natural protein tolerance was used to define long-term BH4 responsiveness (n = 71), respondents most commonly reported cut-off values of 30% and 100% (28% of respondents in both cases). Respondents from USA/Canada (n = 50) generally used less strict cut-off values compared to Europe (n = 96). Furthermore, respondents working within the same center answered differently. CONCLUSION: The results of this study suggest a very heterogeneous situation on the topic of defining long-term BH4 responsiveness, not only at a worldwide level but also within centers. Developing a strong evidence- and consensus-based definition would improve the quality of BH4 treatment.


Asunto(s)
Biopterinas/análogos & derivados , Fenilalanina/genética , Fenilcetonurias/tratamiento farmacológico , Biopterinas/efectos adversos , Biopterinas/uso terapéutico , Canadá/epidemiología , Europa (Continente)/epidemiología , Humanos , Fenilalanina/sangre , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/sangre , Fenilcetonurias/epidemiología , Fenilcetonurias/patología , Estados Unidos/epidemiología
18.
Proteins ; 89(6): 683-696, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33491267

RESUMEN

Phenylketonuria (PKU) is a genetic disorder that if left untreated can lead to behavioral problems, epilepsy, and even mental retardation. PKU results from mutations within the phenylalanine-4-hydroxylase (PAH) gene that encodes for the PAH protein. The study of all PAH causing mutations is improbable using experimental techniques. In this study, a collection of in silico resources, sorting intolerant from tolerant, Polyphen-2, PhD-SNP, and MutPred were used to identify possible pathogenetic and deleterious PAH non-synonymous single nucleotide polymorphisms (nsSNPs). We identified two variants of PAH, I65N and L311P, to be the most deleterious and disease causing nsSNPs. Molecular dynamics (MD) simulations were carried out to characterize these point mutations on the atomic level. MD simulations revealed increased flexibility and a decrease in the hydrogen bond network for both mutants compared to the native protein. Free energy calculations using the MM/GBSA approach found that BH4 , a drug-based therapy for PKU patients, had a higher binding affinity for I65N and L311P mutants compared to the wildtype protein. We also identify important residues in the BH4 binding pocket that may be of interest for the rational drug design of other PAH drug-based therapies. Lastly, free energy calculations also determined that the I65N mutation may impair the dimerization of the N-terminal regulatory domain of PAH.


Asunto(s)
Coenzimas/química , Fenilalanina Hidroxilasa/química , Fenilcetonurias/genética , Mutación Puntual , Polimorfismo de Nucleótido Simple , Sitios de Unión , Biopterinas/análogos & derivados , Coenzimas/metabolismo , Diseño de Fármacos , Expresión Génica , Humanos , Enlace de Hidrógeno , Cinética , Simulación de Dinámica Molecular , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/metabolismo , Fenilcetonurias/patología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Especificidad por Sustrato , Termodinámica
19.
Mol Genet Metab ; 132(1): 11-18, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33334682

RESUMEN

Even with early and continuous treatment, individuals with phenylketonuria (PKU) may exhibit abnormalities of cortical white matter (WM). The present study utilizes a new analysis approach called Automated Fiber-Tract Quantification (AFQ) to advance our understanding of the tract-specific patterns of change in WM abnormalities in individuals with early-treated PKU (ETPKU). Diffusion Tensor Imaging (DTI) data from a sample of 22 individuals with ETPKU and a demographically-matched sample of 21 healthy individuals without PKU was analyzed using AFQ. In addition, a subsample of 8 individuals with ETPKU was reevaluated six months later after demonstrating a significant reduction in blood phe levels following initiation of sapropterin treatment. Within-tract AFQ analyses revealed significant location-by-group interactions for several WM tracts throughout the brain. In most cases, ETPKU-related disruptions in mean diffusivity (MD) were more apparent in posterior (as compared to anterior) aspects of a given tract. Reduction in blood phe levels with the aforementioned ETPKU subsample was associated with a similar pattern of improvement (posterior-to-anterior) within most tracts. Taken together, these findings suggest that there is a systematic pattern of change in WM abnormalities in individuals with ETPKU in a posterior-to-anterior manner along individual WM tracts.


Asunto(s)
Encéfalo/metabolismo , Leucoencefalopatías/diagnóstico , Fenilcetonurias/diagnóstico , Sustancia Blanca/metabolismo , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Cognición/fisiología , Imagen de Difusión Tensora , Femenino , Humanos , Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/metabolismo , Masculino , Fenilcetonurias/diagnóstico por imagen , Fenilcetonurias/metabolismo , Fenilcetonurias/patología , Sustancia Blanca/anomalías , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Adulto Joven
20.
J Neurosci Res ; 99(1): 349-360, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32141105

RESUMEN

White matter pathologies, as well as intellectual disability, microcephaly, and other central nervous system injuries, are clinical traits commonly ascribed to classic phenylketonuria (PKU). PKU is an inherited metabolic disease elicited by the deficiency of phenylalanine hydroxylase. Accumulation of l-phenylalanine (Phe) and its metabolites is found in tissues and body fluids in phenylketonuric patients. In order to mitigate the clinical findings, rigorous dietary Phe restriction constitutes the core of therapeutic management in PKU. Myelination is the process whereby the oligodendrocytes wrap myelin sheaths around the axons, supporting the conduction of action potentials. White matter injuries are implicated in the brain damage related to PKU, especially in untreated or poorly treated patients. The present review summarizes evidence toward putative mechanisms driving the white matter pathology in PKU patients.


Asunto(s)
Encéfalo/patología , Fenilcetonurias/patología , Sustancia Blanca/patología , Encéfalo/metabolismo , Humanos , Fenilcetonurias/metabolismo , Sustancia Blanca/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...