Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 148(22)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34698814

RESUMEN

Actomyosin contraction shapes the Drosophila eye's panoramic view. The convex curvature of the retinal epithelium, organized in ∼800 close-packed ommatidia, depends upon a fourfold condensation of the retinal floor mediated by contraction of actin stress fibers in the endfeet of interommatidial cells (IOCs). How these tensile forces are coordinated is not known. Here, we discover a previously unobserved phenomenon: Ca2+ waves regularly propagate across the IOC network in pupal and adult eyes. Genetic evidence demonstrates that IOC waves are independent of phototransduction, but require the inositol 1,4,5-triphosphate receptor (IP3R), suggesting that these waves are mediated by Ca2+ releases from endoplasmic reticulum stores. Removal of IP3R disrupts stress fibers in IOC endfeet and increases the basal retinal surface by ∼40%, linking IOC waves to facilitation of stress fiber contraction and floor morphogenesis. Furthermore, IP3R loss disrupts the organization of a collagen IV network underneath the IOC endfeet, implicating the extracellular matrix and its interaction with stress fibers in eye morphogenesis. We propose that coordinated cytosolic Ca2+ increases in IOC waves promote stress fiber contractions, ensuring an organized application of the planar tensile forces that condense the retinal floor. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Actinas/genética , Calcio/metabolismo , Morfogénesis/genética , Fibras de Estrés/genética , Citoesqueleto de Actina/genética , Actinas/metabolismo , Actomiosina/genética , Actomiosina/metabolismo , Animales , Señalización del Calcio/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Retículo Endoplásmico/genética , Pupa , Retina/crecimiento & desarrollo , Retina/metabolismo
2.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34575979

RESUMEN

MicroRNAs (miRNAs) play an essential role in the regulation of a number of physiological functions. miR-133a and other muscular miRs (myomiRs) play a key role in muscle cell growth and in some type of cancers. Here, we show that miR133a is upregulated in individuals that undertake physical exercise. We used a skeletal muscle differentiation model to dissect miR-133a's role and to identify new targets, identifying Tropomyosin-4 (TPM4). This protein is expressed during muscle differentiation, but importantly it is an essential component of microfilament cytoskeleton and stress fibres formation. The microfilament scaffold remodelling is an essential step in cell transformation and tumour progression. Using the muscle system, we obtained valuable information about the microfilament proteins, and the knowledge on these molecular players can be transferred to the cytoskeleton rearrangement observed in cancer cells. Further investigations showed a role of TPM4 in cancer physiology, specifically, we found that miR-133a downregulation leads to TPM4 upregulation in colon carcinoma (CRC), and this correlates with a lower patient survival. At molecular level, we demonstrated in myocyte differentiation that TPM4 is positively regulated by the TA isoform of the p63 transcription factor. In muscles, miR-133a generates a myogenic stimulus, reducing the differentiation by downregulating TPM4. In this system, miR-133a counteracts the differentiative TAp63 activity. Interestingly, in CRC cell lines and in patient biopsies, miR-133a is able to regulate TPM4 activity, while TAp63 is not active. The downregulation of the miR leads to TPM4 overexpression, this modifies the architecture of the cell cytoskeleton contributing to increase the invasiveness of the tumour and associating with a poor prognosis. These results add data to the interesting question about the link between physical activity, muscle physiology and protection against colorectal cancer. The two phenomena have in common the cytoskeleton remodelling, due to the TPM4 activity, that is involved in stress fibres formation.


Asunto(s)
Diferenciación Celular/genética , Neoplasias del Colon/genética , MicroARNs/genética , Factores de Transcripción/genética , Tropomiosina/genética , Proteínas Supresoras de Tumor/genética , Citoesqueleto de Actina/genética , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias del Colon/patología , Citoesqueleto/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células Musculares/citología , Desarrollo de Músculos/genética , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Fibras de Estrés/genética
3.
J Cell Biol ; 220(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33999101

RESUMEN

Rab40b is a SOCS box-containing protein that regulates the secretion of MMPs to facilitate extracellular matrix remodeling during cell migration. Here, we show that Rab40b interacts with Cullin5 via the Rab40b SOCS domain. We demonstrate that loss of Rab40b-Cullin5 binding decreases cell motility and invasive potential and show that defective cell migration and invasion stem from alteration to the actin cytoskeleton, leading to decreased invadopodia formation, decreased actin dynamics at the leading edge, and an increase in stress fibers. We also show that these stress fibers anchor at less dynamic, more stable focal adhesions. Mechanistically, changes in the cytoskeleton and focal adhesion dynamics are mediated in part by EPLIN, which we demonstrate to be a binding partner of Rab40b and a target for Rab40b-Cullin5-dependent localized ubiquitylation and degradation. Thus, we propose a model where Rab40b-Cullin5-dependent ubiquitylation regulates EPLIN localization to promote cell migration and invasion by altering focal adhesion and cytoskeletal dynamics.


Asunto(s)
Citoesqueleto de Actina/genética , Actinas/genética , Proteínas del Citoesqueleto/genética , Movimiento Celular/genética , Matriz Extracelular/genética , Adhesiones Focales/genética , Humanos , Fibras de Estrés/genética
4.
Biomed Environ Sci ; 34(2): 139-151, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33685573

RESUMEN

OBJECTIVE: The underlying mechanism of Ezrin in ovarian cancer (OVCA) is far from being understood. Therefore, this study aimed to assess the role of Ezrin in OVCA cells (SKOV3 and CaOV3) and investigate the associated molecular mechanisms. METHODS: We performed Western blotting, reverse transcription-quantitative polymerase chain reaction, MTT, cell colony, cell wound healing, transwell migration and invasion, RhoA and Rac active pull down assays, and confocal immunofluorescence experiments to evaluate the functions and molecular mechanisms of Ezrin overexpression or knockdown in the proliferation and metastasis of OVCA cells. RESULTS: The ectopic expression of Ezrin significantly increased cell proliferation, invasiveness, and epithelial-mesenchymal transition (EMT) in OVCA cells. By contrast, the knockdown of endogenous Ezrin prevented OVCA cell proliferation, invasiveness, and EMT. Lastly, we observed that Ezrin can positively regulate the active forms of RhoA rather than Rac-1 in OVCA cells, thereby promoting robust stress fiber formation. CONCLUSION: Our results indicated that Ezrin regulates OVCA cell proliferation and invasiveness by modulating EMT and induces actin stress fiber formation by regulating Rho-GTPase activity, which provides novel insights into the treatment of the OVCA.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Neoplasias Ováricas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Proteínas del Citoesqueleto/genética , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Invasividad Neoplásica , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Fibras de Estrés/genética , Fibras de Estrés/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
5.
Sci Rep ; 10(1): 21675, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303826

RESUMEN

5-HT2A, a G-protein coupled receptor, is widely expressed in the human body, including in the gastrointestinal tract, platelets and the nervous system. It mediates various functions, for e.g. learning, memory, mood regulation, platelet aggregation and vasoconstriction, but its involvement in cell-adhesion remains largely unknown. Here we report a novel role for 5-HT2A in cell-matrix adhesion.In HEK293 cells, which are loosely adherent, expression and stimulation of human or rat 5-HT2A receptor by agonists such as serotonin or 2,5-dimethoxy-4-iodoamphetamine (DOI) led to a significant increase in adhesion, while inhibition of 5-HT2A by antipsychotics, such as risperidone, olanzapine or chlorpromazine prevented it. 5-HT2A activation gave rise to stress fibers in these cells and was also required for their maintenance. Mechanistically, the 5-HT2A-mediated adhesion was mediated by downstream PKC and Rho signaling. Since 5-HT2A is associated with many disorders such as dementia, depression and schizophrenia, its role in cell-matrix adhesion could have implications for neural circuits.


Asunto(s)
Uniones Célula-Matriz/genética , Uniones Célula-Matriz/metabolismo , Receptor de Serotonina 5-HT2A/fisiología , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Fibras de Estrés/efectos de los fármacos , Fibras de Estrés/genética , Fibras de Estrés/metabolismo , Anfetaminas/farmacología , Animales , Antipsicóticos/farmacología , Uniones Célula-Matriz/efectos de los fármacos , Clorpromazina/farmacología , Células HEK293 , Humanos , Trastornos Mentales/etiología , Trastornos Mentales/genética , Olanzapina/farmacología , Ratas , Risperidona/farmacología , Serotonina/farmacología
6.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32326615

RESUMEN

Non-muscle actins have been studied for many decades; however, the reason for the existence of both isoforms is still unclear. Here we show, for the first time, a successful inactivation of the ACTB (CRISPR clones with inactivated ACTB, CR-ACTB) and ACTG1 (CRISPR clones with inactivated ACTG1, CR-ACTG1) genes in human melanoma cells (A375) via the RNA-guided D10A mutated Cas9 nuclease gene editing [CRISPR/Cas9(D10A)] technique. This approach allowed us to evaluate how melanoma cell motility was impacted by the lack of either ß actin coded by ACTB or γ actin coded by ACTG1. First, we observed different distributions of ß and γ actin in the cells, and the absence of one actin isoform was compensated for via increased expression of the other isoform. Moreover, we noted that γ actin knockout had more severe consequences on cell migration and invasion than ß actin knockout. Next, we observed that the formation rate of bundled stress fibers in CR-ACTG1 cells was increased, but lamellipodial activity in these cells was impaired, compared to controls. Finally, we discovered that the formation rate of focal adhesions (FAs) and, subsequently, FA-dependent signaling were altered in both the CR-ACTB and CR-ACTG1 clones; however, a more detrimental effect was observed for γ actin-deficient cells. Our research shows that both non-muscle actins play distinctive roles in melanoma cells' FA formation and motility.


Asunto(s)
Actinas/metabolismo , Sistemas CRISPR-Cas , Adhesiones Focales/metabolismo , Edición Génica/métodos , Técnicas de Inactivación de Genes/métodos , Melanoma/metabolismo , Actinas/análisis , Actinas/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/genética , Humanos , Lisofosfolípidos/farmacología , Melanoma/genética , Invasividad Neoplásica/genética , Isoformas de Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Fibras de Estrés/genética , Fibras de Estrés/metabolismo , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacología
7.
J Cell Biol ; 219(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32311005

RESUMEN

Microtubule-associated serine/threonine-protein kinase-like (MASTL) is a mitosis-accelerating kinase with emerging roles in cancer progression. However, possible cell cycle-independent mechanisms behind its oncogenicity remain ambiguous. Here, we identify MASTL as an activator of cell contractility and MRTF-A/SRF (myocardin-related transcription factor A/serum response factor) signaling. Depletion of MASTL increased cell spreading while reducing contractile actin stress fibers in normal and breast cancer cells and strongly impairing breast cancer cell motility and invasion. Transcriptome and proteome profiling revealed MASTL-regulated genes implicated in cell movement and actomyosin contraction, including Rho guanine nucleotide exchange factor 2 (GEF-H1, ARHGEF2) and MRTF-A target genes tropomyosin 4.2 (TPM4), vinculin (VCL), and nonmuscle myosin IIB (NM-2B, MYH10). Mechanistically, MASTL associated with MRTF-A and increased its nuclear retention and transcriptional activity. Importantly, MASTL kinase activity was not required for regulation of cell spreading or MRTF-A/SRF transcriptional activity. Taken together, we present a previously unknown kinase-independent role for MASTL as a regulator of cell adhesion, contractility, and MRTF-A/SRF activity.


Asunto(s)
Citoesqueleto de Actina/enzimología , Adhesión Celular/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal/genética , Transactivadores/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Núcleo Celular/metabolismo , Perfilación de la Expresión Génica , Humanos , Integrinas/genética , Integrinas/metabolismo , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Miosina Tipo IIB no Muscular/genética , Miosina Tipo IIB no Muscular/metabolismo , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteoma/metabolismo , ARN Interferente Pequeño , Factores de Intercambio de Guanina Nucleótido Rho/genética , Fibras de Estrés/genética , Fibras de Estrés/metabolismo , Transactivadores/genética , Transcriptoma/genética , Tropomiosina/genética , Tropomiosina/metabolismo , Vinculina/genética , Vinculina/metabolismo
8.
Cells ; 8(7)2019 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-31330900

RESUMEN

The Rho GTPases comprise a subfamily of the Ras superfamily of small GTPases. Their importance in regulation of cell morphology and cell migration is well characterized. According to the prevailing paradigm, Cdc42 regulates the formation of filopodia, Rac1 regulates the formation of lamellipodia, and RhoA triggers the assembly of focal adhesions. However, this scheme is clearly an oversimplification, as the Rho subfamily encompasses 20 members with diverse effects on a number of vital cellular processes, including cytoskeletal dynamics and cell proliferation, migration, and invasion. This article highlights the importance of the catalytic activities of the classical Rho GTPases Cdc42 and Rac1, in terms of their specific effects on the dynamic reorganization of the actin filament system. GTPase-deficient mutants of Cdc42 and Rac1 trigger the formation of broad lamellipodia and stress fibers, and fast-cycling mutations trigger filopodia formation and stress fiber dissolution. The filopodia response requires the involvement of the formin family of actin nucleation promotors. In contrast, the formation of broad lamellipodia induced by GTPase-deficient Cdc42 and Rac1 is mediated through Arp2/3-dependent actin nucleation.


Asunto(s)
Fibras de Estrés/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Dominio Catalítico , Células Cultivadas , Humanos , Mutación , Seudópodos/genética , Seudópodos/metabolismo , Fibras de Estrés/genética , Proteína de Unión al GTP cdc42/química , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP rac1/química , Proteína de Unión al GTP rac1/genética
9.
J Cell Sci ; 132(15)2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31331962

RESUMEN

Co-polymers of tropomyosin and actin make up a major fraction of the actin cytoskeleton. Tropomyosin isoforms determine the function of an actin filament by selectively enhancing or inhibiting the association of other actin binding proteins, altering the stability of an actin filament and regulating myosin activity in an isoform-specific manner. Previous work has implicated specific roles for at least five different tropomyosin isoforms in stress fibres, as depletion of any of these five isoforms results in a loss of stress fibres. Despite this, most models of stress fibres continue to exclude tropomyosins. In this study, we investigate tropomyosin organisation in stress fibres by using super-resolution light microscopy and electron microscopy with genetically tagged, endogenous tropomyosin. We show that tropomyosin isoforms are organised in subdomains within the overall domain of stress fibres. The isoforms Tpm3.1 and 3.2 (hereafter Tpm3.1/3.2, encoded by TPM3) colocalise with non-muscle myosin IIa and IIb heads, and are in register, but do not overlap, with non-muscle myosin IIa and IIb tails. Furthermore, perturbation of Tpm3.1/3.2 results in decreased myosin IIa in stress fibres, which is consistent with a role for Tpm3.1 in maintaining myosin IIa localisation in stress fibres.


Asunto(s)
Miosina Tipo IIA no Muscular/metabolismo , Fibras de Estrés/metabolismo , Tropomiosina/metabolismo , Línea Celular Tumoral , Humanos , Miosina Tipo IIA no Muscular/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fibras de Estrés/genética , Tropomiosina/genética
10.
Am J Pathol ; 189(1): 177-189, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30312582

RESUMEN

Our group originally found and cloned cDNA for a 98-kDa type 1 transmembrane glycoprotein of unknown function. Because of its abundant expression in astrocytes, it was called the protein astroprincin (APCN). Two thirds of the evolutionarily conserved protein is intracytoplasmic, whereas the extracellular domain carries two N-glycosidic side chains. APCN is physiologically expressed in placental trophoblasts, skeletal and hearth muscle, and kidney and pancreas. Overexpression of APCN (cDNA) in various cell lines induced sprouting of slender projections, whereas knockdown of APCN expression by siRNA caused disappearance of actin stress fibers. Immunohistochemical staining of human cancers for endogenous APCN showed elevated expression in invasive tumor cells compared with intratumoral cells. Human melanoma cells (SK-MEL-28) transfected with APCN cDNA acquired the ability of invasive growth in semisolid medium (Matrigel) not seen with control cells. A conserved carboxyterminal stretch of 21 amino acids was found to be essential for APCN to induce cell sprouting and invasive growth. Yeast two-hybrid screening revealed several interactive partners, of which ornithine decarboxylase antizyme-1, NEEP21 (NSG1), and ADAM10 were validated by coimmunoprecipitation. This is the first functional description of APCN. These data show that APCN regulates the dynamics of the actin cytoskeletal and, thereby, the cell shape and invasive growth potential of tumor cells.


Asunto(s)
Forma de la Célula , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Células 3T3 , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Animales , Células COS , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Chlorocebus aethiops , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Células MCF-7 , Proteínas de la Membrana/genética , Ratones , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Proteínas de Neoplasias/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas , Conejos , Fibras de Estrés/genética , Fibras de Estrés/metabolismo , Fibras de Estrés/patología , Técnicas del Sistema de Dos Híbridos
11.
Sci Rep ; 8(1): 17670, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518778

RESUMEN

Contractile actomyosin bundles, stress fibers, contribute to morphogenesis, migration, and mechanosensing of non-muscle cells. In addition to actin and non-muscle myosin II (NMII), stress fibers contain a large array of proteins that control their assembly, turnover, and contractility. Calponin-3 (Cnn3) is an actin-binding protein that associates with stress fibers. However, whether Cnn3 promotes stress fiber assembly, or serves as either a positive or negative regulator of their contractility has remained obscure. Here, we applied U2OS osteosarcoma cells as a model system to study the function of Cnn3. We show that Cnn3 localizes to both NMII-containing contractile ventral stress fibers and transverse arcs, as well as to non-contractile dorsal stress fibers that do not contain NMII. Fluorescence-recovery-after-photobleaching experiments revealed that Cnn3 is a dynamic component of stress fibers. Importantly, CRISPR/Cas9 knockout and RNAi knockdown studies demonstrated that Cnn3 is not essential for stress fiber assembly. However, Cnn3 depletion resulted in increased and uncoordinated contractility of stress fibers that often led to breakage of individual actomyosin bundles within the stress fiber network. Collectively these results provide evidence that Cnn3 is dispensable for the assembly of actomyosin bundles, but that it is required for controlling proper contractility of the stress fiber network.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Microfilamentos/metabolismo , Fibras de Estrés/metabolismo , Proteínas de Unión al Calcio/análisis , Proteínas de Unión al Calcio/genética , Línea Celular Tumoral , Recuperación de Fluorescencia tras Fotoblanqueo , Silenciador del Gen , Humanos , Imagenología Tridimensional , Proteínas de Microfilamentos/análisis , Proteínas de Microfilamentos/genética , Imagen Óptica , Osteosarcoma/genética , Osteosarcoma/metabolismo , Fibras de Estrés/genética , Fibras de Estrés/ultraestructura , Calponinas
12.
Nat Cell Biol ; 20(3): 262-271, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29403039

RESUMEN

A robust nanopillar platform with increased spatial resolution reveals that perinuclear forces, originating from stress fibres spanning the nucleus of fibroblasts, are significantly higher on these nanostructured substrates than the forces acting on peripheral adhesions. Many perinuclear adhesions embrace several nanopillars at once, pulling them into ß1-integrin- and zyxin-rich clusters, which are able to translocate in the direction of cell motion without losing their tensile strength. The high perinuclear forces are greatly reduced upon inhibition of cell contractility or actin polymerization and disruption of the actin cap by KASH dominant-negative mutant expression. LMNA null fibroblasts have higher peripheral versus perinuclear forces, impaired perinuclear ß1-integrin recruitment, as well as YAP nuclear translocation, functional alterations that can be rescued by lamin A expression. These highly tensed actin-cap fibres are required for YAP nuclear signalling and thus play far more important roles in sensing nanotopographies and mechanochemical signal conversion than previously thought.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Materiales Biocompatibles Revestidos , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Mecanotransducción Celular , Nanopartículas , Nanotecnología/métodos , Fosfoproteínas/metabolismo , Fibras de Estrés/metabolismo , Actinina/genética , Actinina/metabolismo , Transporte Activo de Núcleo Celular , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Reguladoras de la Apoptosis/genética , Adhesión Celular , Proteínas de Ciclo Celular , Movimiento Celular , Células Cultivadas , Microambiente Celular , Módulo de Elasticidad , Fibroblastos/ultraestructura , Fibronectinas/química , Integrina beta1/genética , Integrina beta1/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Ratones , Microscopía Confocal , Microscopía Fluorescente , Matriz Nuclear/metabolismo , Matriz Nuclear/ultraestructura , Fosfoproteínas/genética , Poliestirenos/química , Ratas , Fibras de Estrés/genética , Fibras de Estrés/ultraestructura , Estrés Mecánico , Propiedades de Superficie , Imagen de Lapso de Tiempo , Proteínas Señalizadoras YAP , Zixina/genética , Zixina/metabolismo
13.
J Am Soc Nephrol ; 29(1): 155-167, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28993503

RESUMEN

Intronic variants of the MYH9 gene that encodes the nonmuscle myosin heavy chain IIA are associated with diabetic nephropathy in European Americans and with sickle cell disease-associated nephropathy. However, the causal functional variants of MYH9 have remained elusive. Rare missense mutations in MYH9 cause macrothrombocytopenia and are occasionally associated with development of nephropathy. The E1841K mutation is among the common MYH9 missense mutations and has been associated with nephropathy in some carriers. To determine the contribution of the E1841K mutation in kidney disease, we studied the effects of the E1841K mutation in mice subjected to high salt or angiotensin II (Ang II) as models of hypertension and in mice subjected to renal mass reduction as a model of CKD. Despite similar levels of BP among wild-type (MYH9+/+ ) mice and mice heterozygous (MYH9+/E1841K ) and homozygous (MYH9E1841K/E1841K ) for the mutation in each model, MYH9E1841K/E1841K mice exhibited mildly increased albuminuria in response to high salt; severe albuminuria, nephrinuria, FSGS, and podocyte foot effacement in Ang II-induced hypertension; and early mortality in the renal mass reduction model. Treatment with candesartan during Ang II-induced hypertension attenuated kidney disease development in MYH9E1841K/E1841K mice. In vitro, isolated primary podocytes from MYH9E1841K/E1841K mice exhibited increased lamellipodia formation and reorganization of F-actin stress fibers. Wound healing assays revealed that MYH9+/+ podocytes had the lowest migration rate, followed by MYH9+/E1841K then MYH9E1841K/E1841K podocytes. In conclusion, the MYH9 E1841K variant alters podocyte cytoskeletal structure and renders podocytes more susceptible to injury after a damaging stimulus.


Asunto(s)
Albuminuria/genética , Movimiento Celular/genética , Miosina Tipo IIA no Muscular/genética , Podocitos/ultraestructura , Insuficiencia Renal Crónica/genética , Actinas/metabolismo , Angiotensina II , Animales , Antihipertensivos/uso terapéutico , Bencimidazoles/uso terapéutico , Compuestos de Bifenilo , Presión Sanguínea/genética , Células Cultivadas , Modelos Animales de Enfermedad , Genotipo , Hipertensión/inducido químicamente , Hipertensión/genética , Hipertensión/fisiopatología , Masculino , Ratones , Mutación Missense , Cadenas Pesadas de Miosina , Nefrectomía , Podocitos/fisiología , Cultivo Primario de Células , Insuficiencia Renal Crónica/patología , Cloruro de Sodio Dietético/administración & dosificación , Fibras de Estrés/genética , Tetrazoles/uso terapéutico
14.
Biochim Biophys Acta Mol Cell Res ; 1864(12): 2272-2282, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28919351

RESUMEN

Extravasation is a rate-limiting step of tumor metastasis, for which adhesion to endothelium of circulating tumor cells (CTCs) is the prerequisite. The suspension state of CTCs undergoing detachment from primary tumor is a persistent biomechanical cue, which potentially regulates the biophysical characteristics and cellular behaviors of tumor cells. In this study, breast tumor cells MDA-MB-231 in suspension culture condition were used to investigate the effect of suspension state on reattachment of CTCs. Our study demonstrated that suspension state significantly increased the adhesion ability of breast tumor cells. In addition, suspension state markedly promoted the formation of stress fibers and focal adhesions and reduced the motility in reattached breast cancer cells. Moreover, lamin A/C was reversibly accumulated at posttranscriptional level under suspension state, improving the cell stiffness of reattached breast cancer cells. Disruption of actin cytoskeleton by cytochalasin D caused lamin A/C accumulation. Conversely, decreasing actomyosin contraction by ROCK inhibitor Y27632 reduced lamin A/C level. Knocking down lamin A/C weakened the suspension-induced increase of adhesion, and also abolished the suspension-induced decrease of motility and increase of stress fibers and focal adhesion in reattaching tumor cells, suggesting a crucial role of lamin A/C. In conclusion, it was demonstrated that suspension state promoted the reattachment of breast tumor cells by up-regulating lamin A/C via cytoskeleton disruption. These findings highlight the important role of suspension state for tumor cells in tumor metastasis.


Asunto(s)
Neoplasias de la Mama/genética , Adhesión Celular/genética , Lamina Tipo A/genética , Células Neoplásicas Circulantes/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Amidas/farmacología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Endotelio , Femenino , Adhesiones Focales/genética , Técnicas de Silenciamiento del Gen , Humanos , Lamina Tipo A/biosíntesis , Células Neoplásicas Circulantes/patología , Piridinas/farmacología , Fibras de Estrés/genética , Quinasas Asociadas a rho/antagonistas & inhibidores
15.
Oncol Rep ; 38(2): 829-836, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28656206

RESUMEN

Malignant glioma is a clinically formidable disease. It commonly leads to death within 5 years after diagnosis. Physicians are often baffled since the inevitable diffuse invasion deteriorates clinical outcomes rapidly. Therefore, cancerous infiltration presents a foremost challenge to all therapeutic strategies on glioblastoma multiforme (GBM). Previously, we demonstrated that nicotinic acid (NA) possesses a brand new function by targeting F-actin stress fibers. By treating HEK293 or NIH3T3 cells with a certain concentration of NA, the F-actin stress fiber was significantly disassembled. This notable finding inspired us to explore NA further in cancer cell lines, such as GBM cells, since F-actin stress fibers are the critical foundation of cell migration, proliferation and numerous essential signaling pathways. Expectedly, we observed that optimized concentrations of NA, 3.5 mM and 7.0 mM, detached U251 from culturing petri dishes. Moreover, 7.0 mM of NA was capable of disrupting the leading-edge assembly. Additionally, we collected paraffin specimens from 85 GBM patients and evaluated the expression pattern of paxillin. Notably, we found that discernable paxillin signals were detected in 67 out of 85 samples. Given that leading edge is critical for cancer cell migration, we propose that NA treatment may be developed into a potential therapy for malignant glioma.


Asunto(s)
Actinas/genética , Proliferación Celular/efectos de los fármacos , Glioma/tratamiento farmacológico , Niacina/administración & dosificación , Paxillin/genética , Animales , Movimiento Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/genética , Glioma/patología , Células HEK293 , Humanos , Masculino , Ratones , Células 3T3 NIH , Invasividad Neoplásica/patología , Adhesión en Parafina , Transducción de Señal/efectos de los fármacos , Fibras de Estrés/efectos de los fármacos , Fibras de Estrés/genética
16.
Hum Mol Genet ; 26(7): 1294-1304, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28175289

RESUMEN

Filamins are a family of actin-binding proteins responsible for diverse biological functions in the context of regulating actin dynamics and vesicle trafficking. Disruption of these proteins has been implicated in multiple human developmental disorders. To investigate the roles of different filamin isoforms, we focused on FlnA and FlnB interactions in the cartilage growth plate, since mutations in both molecules cause chondrodysplasias. Current studies show that FlnA and FlnB share a common function in stabilizing the actin cytoskeleton, they physically interact in the cytoplasm of chondrocytes, and loss of FlnA enhances FlnB expression of chondrocytes in the growth plate (and vice versa), suggesting compensation. Prolonged FlnB loss, however, promotes actin-stress fiber formation following plating onto an integrin activating substrate whereas FlnA inhibition leads to decreased actin formation. FlnA more strongly binds RhoA, although both filamins overlap with RhoA expression in the cell cytoplasm. FlnA promotes RhoA activation whereas FlnB indirectly inhibits this pathway. Moreover, FlnA loss leads to diminished expression of ß1-integrin, whereas FlnB loss promotes integrin expression. Finally, fibronectin mediated integrin activation has been shown to activate RhoA and activated RhoA leads to stress fiber formation and cell spreading. Fibronectin stimulation in null FlnA cells impairs enhanced spreading whereas FlnB inhibited cells show enhanced spreading. While filamins serve a primary static function in stabilization of the actin cytoskeleton, these studies are the first to demonstrate a dynamic and antagonistic relationship between different filamin isoforms in the dynamic regulation of integrin expression, RhoGTPase activity and actin stress fiber remodeling.


Asunto(s)
Filaminas/genética , Fibras de Estrés/genética , Proteína de Unión al GTP rhoA/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Condrocitos/metabolismo , Fibronectinas/metabolismo , Filaminas/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Placa de Crecimiento/metabolismo , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Unión Proteica , Fibras de Estrés/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
17.
PLoS One ; 11(12): e0168641, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27992599

RESUMEN

The small GTPase RhoA regulates the actin cytoskeleton to affect multiple cellular processes including endocytosis, migration and adhesion. RhoA activity is tightly regulated through several mechanisms including GDP/GTP cycling, phosphorylation, glycosylation and prenylation. Previous reports have also reported that cleavage of the carboxy-terminus inactivates RhoA. Here, we describe a novel mechanism of RhoA proteolysis that generates a stable amino-terminal RhoA fragment (RhoA-NTF). RhoA-NTF is detectable in healthy cells and tissues and is upregulated following cell stress. Overexpression of either RhoA-NTF or the carboxy-terminal RhoA cleavage fragment (RhoA-CTF) induces the formation of disorganized actin stress fibres. RhoA-CTF also promotes the formation of disorganized actin stress fibres and nuclear actin rods. Both fragments disrupt the organization of actin stress fibres formed by endogenous RhoA. Together, our findings describe a novel RhoA regulatory mechanism.


Asunto(s)
Estrés Oxidativo/fisiología , Proteolisis , Fibras de Estrés/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Células COS , Chlorocebus aethiops , Ratones , Fibras de Estrés/genética , Proteínas de Unión al GTP rho/genética , Proteína de Unión al GTP rhoA
18.
Oncol Rep ; 36(5): 2641-2646, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27667169

RESUMEN

Despite growing evidence indicating that astrocyte elevated gene-1 (AEG-1) plays pivotal roles in tumor progression in various types of human cancers including brain tumors; to date, its role in the regulation of mesenchymal transition is not clear in glioblastoma. In the present study, we investigated the contribution of AEG-1 to stress fiber formation and then the acquisition of mesenchymal characteristics of glioblastoma cells. Gain- and loss-of-function studies in normal immortalized primary human fetal astrocytes (IM-PHFAs) and glioblastoma cells revealed that overexpression of AEG-1 increased expression of mesenchymal markers including N-cadherin and two mesenchymal transition­inducing transcription factors ZEB1 and Slug but decreased epithelial markers E-cadherin and ZO-1. In addition, knockdown of AEG-1 suppressed invasive ability and migration of glioblastoma cells. Overexpression of AEG-1 also induced stress fiber formation and activated the Rho GTPase signaling pathways in glioblastoma cells. Consistently, treatment with an RhoA inhibitor decreased AEG-1-mediated stress fiber formation in glioblastoma cells. Collectively, our findings suggest that AEG-1 promotes mesenchymal transition in glioblastoma through the regulation of the Rho signaling pathway, resulting in tumor invasion, a primary characteristic of malignant brain tumors.


Asunto(s)
Astrocitos/metabolismo , Moléculas de Adhesión Celular/genética , Glioblastoma/genética , Proteínas de Unión al GTP rho/genética , Antígenos CD , Astrocitos/citología , Astrocitos/patología , Cadherinas , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioblastoma/patología , Humanos , Proteínas de la Membrana , Invasividad Neoplásica/genética , Cultivo Primario de Células , Proteínas de Unión al ARN , Transducción de Señal , Fibras de Estrés/genética , Proteínas de Unión al GTP rho/biosíntesis
19.
Biochim Biophys Acta ; 1862(8): 1453-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27112274

RESUMEN

In humans, more than 200 missense mutations have been identified in the ACTA1 gene. The exact molecular mechanisms by which, these particular mutations become toxic and lead to muscle weakness and myopathies remain obscure. To address this, here, we performed a molecular dynamics simulation, and we used a broad range of biophysical assays to determine how the lethal and myopathy-related H40Y amino acid substitution in actin affects the structure, stability, and function of this protein. Interestingly, our results showed that H40Y severely disrupts the DNase I-binding-loop structure and actin filaments. In addition, we observed that normal and mutant actin monomers are likely to form distinctive homopolymers, with mutant filaments being very stiff, and not supporting proper myosin binding. These phenomena underlie the toxicity of H40Y and may be considered as important triggering factors for the contractile dysfunction, muscle weakness and disease phenotype seen in patients.


Asunto(s)
Actinas , Enfermedades Genéticas Congénitas , Simulación de Dinámica Molecular , Enfermedades Musculares , Mutación Missense , Fibras de Estrés , Actinas/química , Actinas/genética , Actinas/metabolismo , Sustitución de Aminoácidos , Animales , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Estructura Secundaria de Proteína , Fibras de Estrés/genética , Fibras de Estrés/metabolismo , Relación Estructura-Actividad
20.
Cell Death Dis ; 7: e2142, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26986510

RESUMEN

Podocyte apoptosis is a major mechanism that leads to proteinuria in many chronic kidney diseases. However, the concert mechanisms that cause podocyte apoptosis in these kidney diseases are not fully understood. The Rho family of small GTPases has been shown to be required in maintaining podocyte structure and function. Recent studies have indicated that podocyte-specific deletion of Cdc42 in vivo, but not of RhoA or Rac1, leads to congenital nephrotic syndrome and glomerulosclerosis. However, the underlying cellular events in podocyte controlled by Cdc42 remain unclear. Here, we assessed the cellular mechanisms by which Cdc42 regulates podocyte apoptosis. We found that the expression of Cdc42 and its activity were significantly decreased in high glucose-, lipopolysaccharide- or adriamycin-injured podocytes. Reduced Cdc42 expression in vitro and in vivo by small interfering RNA and selective Cdc42 inhibitor ML-141, respectively, caused podocyte apoptosis and proteinuria. Our results further demonstrated that insufficient Cdc42 or Nwasp, its downstream effector, could decrease the mRNA and protein expression of YAP, which had been regarded as an anti-apoptosis protein in podocyte. Moreover, our data indicated that the loss of stress fibers caused by Cdc42/Nwasp deficiency also decreased Yes-associated protein (YAP) mRNA and protein expression, and induced podocyte apoptosis. Podocyte apoptosis induced by Cdc42/Nwasp/stress fiber deficiency was significantly inhibited by overexpressing-active YAP. Thus, the Cdc42/Nwasp/stress fibers/YAP signal pathway may potentially play an important role in regulating podocyte apoptosis. Maintaining necessary Cdc42 would be one potent way to prevent proteinuria kidney diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Fosfoproteínas/metabolismo , Podocitos/metabolismo , Transducción de Señal , Fibras de Estrés/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Proteína de Unión al GTP cdc42/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Humanos , Fosfoproteínas/genética , Podocitos/patología , Proteinuria/genética , Proteinuria/metabolismo , Proteinuria/patología , Fibras de Estrés/genética , Fibras de Estrés/patología , Factores de Transcripción , Proteína Neuronal del Síndrome de Wiskott-Aldrich/genética , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...