Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 998
Filtrar
1.
Elife ; 122024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298260

RESUMEN

Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.


Asunto(s)
Actomiosina , Permeabilidad Capilar , Células Endoteliales de la Vena Umbilical Humana , Animales , Humanos , Actomiosina/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ratones , Serpinas/metabolismo , Serpinas/genética , Ratones Noqueados , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Fibras de Estrés/metabolismo , Células Endoteliales/metabolismo , Proteínas Portadoras
2.
Genes (Basel) ; 15(9)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39336709

RESUMEN

Germline variants in the NSD1 gene are responsible for Sotos syndrome, while somatic variants promote neoplastic cell transformation. Our previous studies revealed three alternative RNA isoforms of NSD1 present in fibroblast cell lines (FBs): the canonical full transcript and 2 alternative transcripts, termed AT2 (NSD1 Δ5Δ7) and AT3 (NSD1 Δ19-23 at the 5' end). The precise molecular pathways affected by each specific isoform of NSD1 are uncharacterized to date. To elucidate the role of these isoforms, their expression was suppressed by siRNA knockdown in FBs and protein expression and transcriptome data was explored. We demonstrate that one gene target of NSD1 isoform AT2 is ARP3 actin-related protein 3 homolog B (ACTR3B). We show that loss of both canonical NSD1 and AT2 isoforms impaired the ability of fibroblasts to regulate the actin cytoskeleton, and we observed that this caused selective loss of stress fibers. Our findings provide novel insights into NSD1 function by distinguishing isoform function and demonstrating an essential role of NSD1 in regulating the actin cytoskeleton and stress fiber formation in fibroblasts.


Asunto(s)
Citoesqueleto de Actina , Fibroblastos , N-Metiltransferasa de Histona-Lisina , Isoformas de Proteínas , Fibroblastos/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , División Celular/genética , Línea Celular , Empalme Alternativo , Fibras de Estrés/metabolismo
3.
PLoS Comput Biol ; 20(8): e1012312, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39102394

RESUMEN

Cells exhibit various morphological characteristics due to their physiological activities, and changes in cell morphology are inherently accompanied by the assembly and disassembly of the actin cytoskeleton. Stress fibers are a prominent component of the actin-based intracellular structure and are highly involved in numerous physiological processes, e.g., mechanotransduction and maintenance of cell morphology. Although it is widely accepted that variations in cell morphology interact with the distribution and localization of stress fibers, it remains unclear if there are underlying geometric principles between the cell morphology and actin cytoskeleton. Here, we present a machine learning system that uses the diffusion model to convert the cell shape to the distribution and alignment of stress fibers. By training with corresponding cell shape and stress fibers datasets, our system learns the conversion to generate the stress fiber images from its corresponding cell shape. The predicted stress fiber distribution agrees well with the experimental data. With this conversion relation, our system allows for performing virtual experiments that provide a visual map showing the probability of stress fiber distribution from the virtual cell shape. Our system potentially provides a powerful approach to seek further hidden geometric principles regarding how the configuration of subcellular structures is determined by the boundary of the cell structure; for example, we found that the stress fibers of cells with small aspect ratios tend to localize at the cell edge while cells with large aspect ratios have homogenous distributions.


Asunto(s)
Citoesqueleto de Actina , Forma de la Célula , Biología Computacional , Modelos Biológicos , Fibras de Estrés , Citoesqueleto de Actina/metabolismo , Fibras de Estrés/metabolismo , Forma de la Célula/fisiología , Aprendizaje Automático , Humanos , Difusión , Animales
4.
Cell Mol Life Sci ; 81(1): 291, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970683

RESUMEN

Plakophilin 4 (PKP4) is a component of cell-cell junctions that regulates intercellular adhesion and Rho-signaling during cytokinesis with an unknown function during epidermal differentiation. Here we show that keratinocytes lacking PKP4 fail to develop a cortical actin ring, preventing adherens junction maturation and generation of tissue tension. Instead, PKP4-depleted cells display increased stress fibers. PKP4-dependent RhoA localization at AJs was required to activate a RhoA-ROCK2-MLCK-MLC2 axis and organize actin into a cortical ring. AJ-associated PKP4 provided a scaffold for the Rho activator ARHGEF2 and the RhoA effectors MLCK and MLC2, facilitating the spatio-temporal activation of RhoA signaling at cell junctions to allow cortical ring formation and actomyosin contraction. In contrast, association of PKP4 with the Rho suppressor ARHGAP23 reduced ARHGAP23 binding to RhoA which prevented RhoA activation in the cytoplasm and stress fiber formation. These data identify PKP4 as an AJ component that transduces mechanical signals into cytoskeletal organization.


Asunto(s)
Actinas , Uniones Adherentes , Placofilinas , Proteína de Unión al GTP rhoA , Placofilinas/metabolismo , Placofilinas/genética , Proteína de Unión al GTP rhoA/metabolismo , Uniones Adherentes/metabolismo , Humanos , Actinas/metabolismo , Queratinocitos/metabolismo , Queratinocitos/citología , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética , Transducción de Señal , Fibras de Estrés/metabolismo , Células Cultivadas , Animales
5.
Nat Commun ; 15(1): 5711, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977673

RESUMEN

The cell cortex is a dynamic assembly formed by the plasma membrane and underlying cytoskeleton. As the main determinant of cell shape, the cortex ensures its integrity during passive and active deformations by adapting cytoskeleton topologies through yet poorly understood mechanisms. The spectrin meshwork ensures such adaptation in erythrocytes and neurons by adopting different organizations. Erythrocytes rely on triangular-like lattices of spectrin tetramers, whereas in neurons they are organized in parallel, periodic arrays. Since spectrin is ubiquitously expressed, we exploited Expansion Microscopy to discover that, in fibroblasts, distinct meshwork densities co-exist. Through biophysical measurements and computational modeling, we show that the non-polarized spectrin meshwork, with the intervention of actomyosin, can dynamically transition into polarized clusters fenced by actin stress fibers that resemble periodic arrays as found in neurons. Clusters experience lower mechanical stress and turnover, despite displaying an extension close to the tetramer contour length. Our study sheds light on the adaptive properties of spectrin, which participates in the protection of the cell cortex by varying its densities in response to key mechanical features.


Asunto(s)
Espectrina , Espectrina/metabolismo , Animales , Fibroblastos/metabolismo , Actomiosina/metabolismo , Ratones , Citoesqueleto/metabolismo , Estrés Mecánico , Membrana Celular/metabolismo , Forma de la Célula , Actinas/metabolismo , Fibras de Estrés/metabolismo , Humanos
6.
J Cell Biol ; 223(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39013281

RESUMEN

We previously identified talin rod domain-containing protein 1 (TLNRD1) as a potent actin-bundling protein in vitro. Here, we report that TLNRD1 is expressed in the vasculature in vivo. Its depletion leads to vascular abnormalities in vivo and modulation of endothelial cell monolayer integrity in vitro. We demonstrate that TLNRD1 is a component of the cerebral cavernous malformations (CCM) complex through its direct interaction with CCM2, which is mediated by a hydrophobic C-terminal helix in CCM2 that attaches to a hydrophobic groove on the four-helix domain of TLNRD1. Disruption of this binding interface leads to CCM2 and TLNRD1 accumulation in the nucleus and actin fibers. Our findings indicate that CCM2 controls TLNRD1 localization to the cytoplasm and inhibits its actin-bundling activity and that the CCM2-TLNRD1 interaction impacts endothelial actin stress fiber and focal adhesion formation. Based on these results, we propose a new pathway by which the CCM complex modulates the actin cytoskeleton and vascular integrity.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Células Endoteliales de la Vena Umbilical Humana , Humanos , Animales , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales/metabolismo , Adhesiones Focales/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Fibras de Estrés/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Unión Proteica , Ratones , Núcleo Celular/metabolismo , Talina
7.
Integr Biol (Camb) ; 162024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38900169

RESUMEN

Cells dynamically remodel their internal structures by modulating the arrangement of actin filaments (AFs). In this process, individual AFs exhibit stochastic behavior without knowing the macroscopic higher-order structures they are meant to create or disintegrate, but the mechanism allowing for such stochastic process-driven remodeling of subcellular structures remains incompletely understood. Here we employ percolation theory to explore how AFs interacting only with neighboring ones without recognizing the overall configuration can nonetheless create a substantial structure referred to as stress fibers (SFs) at particular locations. We determined the interaction probabilities of AFs undergoing cellular tensional homeostasis, a fundamental property maintaining intracellular tension. We showed that the duration required for the creation of SFs is shortened by the increased amount of preexisting actin meshwork, while the disintegration occurs independently of the presence of actin meshwork, suggesting that the coexistence of tension-bearing and non-bearing elements allows cells to promptly transition to new states in accordance with transient environmental changes. The origin of this asymmetry between creation and disintegration, consistently observed in actual cells, is elucidated through a minimal model analysis by examining the intrinsic nature of mechano-signal transmission. Specifically, unlike the symmetric case involving biochemical communication, physical communication to sense environmental changes is facilitated via AFs under tension, while other free AFs dissociated from tension-bearing structures exhibit stochastic behavior. Thus, both the numerical and minimal models demonstrate the essence of intracellular percolation, in which macroscopic asymmetry observed at the cellular level emerges not from microscopic asymmetry in the interaction probabilities of individual molecules, but rather only as a consequence of the manner of the mechano-signal transmission. These results provide novel insights into the role of the mutual interplay between distinct subcellular structures with and without tension-bearing capability. Insight: Cells continuously remodel their internal elements or structural proteins in response to environmental changes. Despite the stochastic behavior of individual structural proteins, which lack awareness of the larger subcellular structures they are meant to create or disintegrate, this self-assembly process somehow occurs to enable adaptation to the environment. Here we demonstrated through percolation simulations and minimal model analyses that there is an asymmetry in the response between the creation and disintegration of subcellular structures, which can aid environmental adaptation. This asymmetry inherently arises from the nature of mechano-signal transmission through structural proteins, namely tension-mediated information exchange within cells, despite the stochastic behavior of individual proteins lacking asymmetric characters in themselves.


Asunto(s)
Citoesqueleto de Actina , Modelos Biológicos , Procesos Estocásticos , Fibras de Estrés , Citoesqueleto de Actina/química , Fibras de Estrés/fisiología , Fibras de Estrés/metabolismo , Simulación por Computador , Mecanotransducción Celular/fisiología , Estrés Mecánico , Humanos , Animales , Actinas/metabolismo , Actinas/química
8.
Eur J Cell Biol ; 103(2): 151424, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38823166

RESUMEN

Actin is a central mediator of the chondrocyte phenotype. Monolayer expansion of articular chondrocytes on tissue culture polystyrene, for cell-based repair therapies, leads to chondrocyte dedifferentiation. During dedifferentiation, chondrocytes spread and filamentous (F-)actin reorganizes from a cortical to a stress fiber arrangement causing a reduction in cartilage matrix expression and an increase in fibroblastic matrix and contractile molecule expression. While the downstream mechanisms regulating chondrocyte molecular expression by alterations in F-actin organization have become elucidated, the critical upstream regulators of F-actin networks in chondrocytes are not completely known. Tropomyosin (TPM) and the RhoGTPases are known regulators of F-actin networks. The main purpose of this study is to elucidate the regulation of passaged chondrocyte F-actin stress fiber networks and cell phenotype by the specific TPM, TPM3.1, and the RhoGTPase, CDC42. Our results demonstrated that TPM3.1 associates with cortical F-actin and stress fiber F-actin in primary and passaged chondrocytes, respectively. In passaged cells, we found that pharmacological TPM3.1 inhibition or siRNA knockdown causes F-actin reorganization from stress fibers back to cortical F-actin and causes an increase in G/F-actin. CDC42 inhibition also causes formation of cortical F-actin. However, pharmacological CDC42 inhibition, but not TPM3.1 inhibition, leads to the re-association of TPM3.1 with cortical F-actin. Both TPM3.1 and CDC42 inhibition, as well as TPM3.1 knockdown, reduces nuclear localization of myocardin related transcription factor, which suppresses dedifferentiated molecule expression. We confirmed that TPM3.1 or CDC42 inhibition partially redifferentiates passaged cells by reducing fibroblast matrix and contractile expression, and increasing chondrogenic SOX9 expression. A further understanding on the regulation of F-actin in passaged cells may lead into new insights to stimulate cartilage matrix expression in cells for regenerative therapies.


Asunto(s)
Actinas , Desdiferenciación Celular , Condrocitos , Fibras de Estrés , Tropomiosina , Condrocitos/metabolismo , Condrocitos/citología , Fibras de Estrés/metabolismo , Animales , Actinas/metabolismo , Tropomiosina/metabolismo , Tropomiosina/genética , Fenotipo , Células Cultivadas , Proteína de Unión al GTP cdc42/metabolismo , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Transactivadores/metabolismo , Transactivadores/genética
9.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719752

RESUMEN

Septins are cytoskeletal proteins that participate in cell adhesion, migration, and polarity establishment. The septin subunit SEPT9 directly interacts with the single LIM domain of epithelial protein lost in neoplasm (EPLIN), an actin-bundling protein. Using a human SEPT9 KO fibroblast cell line, we show that cell adhesion and migration are regulated by the interplay between both proteins. The low motility of SEPT9-depleted cells could be partly rescued by increased levels of EPLIN. The normal organization of actin-related filopodia and stress fibers was directly dependent on the expression level of SEPT9 and EPLIN. Increased levels of SEPT9 and EPLIN enhanced the size of focal adhesions in cell protrusions, correlating with stabilization of actin bundles. Conversely, decreased levels had the opposite effect. Our work thus establishes the interaction between SEPT9 and EPLIN as an important link between the septin and the actin cytoskeleton, influencing cell adhesion, motility, and migration.


Asunto(s)
Adhesión Celular , Movimiento Celular , Fibroblastos , Adhesiones Focales , Proteínas con Dominio LIM , Septinas , Humanos , Septinas/metabolismo , Septinas/genética , Movimiento Celular/genética , Fibroblastos/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas con Dominio LIM/genética , Adhesiones Focales/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Seudópodos/metabolismo , Citoesqueleto de Actina/metabolismo , Línea Celular , Actinas/metabolismo , Fibras de Estrés/metabolismo
10.
Sci Rep ; 14(1): 12314, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811617

RESUMEN

Epithelial tissue forms and maintains a critical barrier function in the body. A novel culture design aimed at promoting uniform maturation of epithelial cells using liquid materials is described. Culturing Madin-Darby canine kidney (MDCK) cells at the liquid-liquid interface yielded reduced migration and stimulated active cell growth. Similar to solid-liquid interfaces, cells cultured on a fibronectin-coated liquid-liquid interface exhibited active migration and growth, ultimately reaching a confluent state. These cells exhibited reduced stress fiber formation and adopted a cobblestone-like shape, which led to their even distribution in the culture vessel. To inhibit stress fiber formation and apoptosis, the exposure of cells on liquid-liquid interfaces to Y27632, a specific inhibitor of the Rho-associated protein kinase (ROCK), facilitated tight junction formation (frequency of ZO-2-positive cells, FZ = 0.73). In Y27632-exposed cells on the liquid-liquid interface, the value obtained by subtracting the standard deviation of the ratio of nucleus densities in each region that compartmentalized a culture vessel from 1, denoted as HLN, was 0.93 ± 0.01, indicated even cell distribution in the culture vessel at t = 72 h. The behavior of epithelial cells on liquid-liquid interfaces contributes to the promotion of their uniform maturation.


Asunto(s)
Movimiento Celular , Células Epiteliales , Perros , Células Epiteliales/citología , Células Epiteliales/metabolismo , Animales , Células de Riñón Canino Madin Darby , Uniones Estrechas/metabolismo , Proliferación Celular , Técnicas de Cultivo de Célula/métodos , Amidas/farmacología , Piridinas/farmacología , Apoptosis , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores , Fibras de Estrés/metabolismo , Diferenciación Celular
11.
J Biol Chem ; 300(1): 105580, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141763

RESUMEN

Cancer cells acquire malignant phenotypes through an epithelial-mesenchymal transition, which is induced by environmental factors or extracellular signaling molecules, including transforming growth factor-ß (TGF-ß). Among epithelial-mesenchymal transition-associated cell responses, cell morphological changes and cell motility are closely associated with remodeling of the actin stress fibers. Here, we examined the TGF-ß signaling pathways leading to these cell responses. Through knockdown experiments in A549 lung adenocarcinoma cells, we found that Smad3-mediated induction of Snail, but not that of Slug, is indispensable for morphological changes, stress fiber formation, and enhanced motility in cells stimulated with TGF-ß. Ectopic expression of Snail in SMAD3-knockout cells rescued the defect in morphological changes and stress fiber formation by TGF-ß, indicating that the role of Smad3 in these responses is to upregulate Snail expression. Mechanistically, Snail is required for TGF-ß-induced upregulation of Wnt5b, which in turn activates RhoA and subsequent stress fiber formation in cooperation with phosphoinositide 3-kinase. However, ectopic expression of Snail in SMAD3-knockout cells failed to rescue the defect in cell motility enhancement by TGF-ß, indicating that activation of the Smad3/Snail/Wnt5b axis is indispensable but not sufficient for enhancing cell motility; a Smad3-dependent but Snail-independent pathway to activate Rac1 is additionally required. Therefore, the Smad3-dependent pathway leading to enhanced cell motility has two branches: a Snail-dependent branch to activate RhoA and a Snail-independent branch to activate Rac1. Coordinated activation of these branches, together with activation of non-Smad signaling pathways, mediates enhanced cell motility induced by TGF-ß.


Asunto(s)
Transducción de Señal , Proteína smad3 , Factores de Transcripción de la Familia Snail , Fibras de Estrés , Factor de Crecimiento Transformador beta , Proteínas de Unión al GTP rho , Humanos , Células A549 , Movimiento Celular , Células Epiteliales/metabolismo , Células Epiteliales/patología , Transición Epitelial-Mesenquimal , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteína smad3/deficiencia , Proteína smad3/genética , Proteína smad3/metabolismo , Factores de Transcripción de la Familia Snail/deficiencia , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Fibras de Estrés/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Activación Enzimática , Actinas/metabolismo , Mesodermo/metabolismo , Mesodermo/patología
12.
Respir Res ; 24(1): 318, 2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38105232

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease (ILD) with unknown etiology, characterized by sustained damage repair of epithelial cells and abnormal activation of fibroblasts, the underlying mechanism of the disease remains elusive. METHODS: To evaluate the role of Tuftelin1 (TUFT1) in IPF and elucidate its molecular mechanism. We investigated the level of TUFT1 in the IPF and bleomycin-induced mouse models and explored the influence of TUFT1 deficiency on pulmonary fibrosis. Additionally, we explored the effect of TUFT1 on the cytoskeleton and illustrated the relationship between stress fiber and pulmonary fibrosis. RESULTS: Our results demonstrated a significant upregulation of TUFT1 in IPF and the bleomycin (BLM)-induced fibrosis model. Disruption of TUFT1 exerted inhibitory effects on pulmonary fibrosis in both in vivo and in vitro. TUFT1 facilitated the assembly of microfilaments in A549 and MRC-5 cells, with a pronounced association between TUFT1 and Neuronal Wiskott-Aldrich syndrome protein (N-WASP) observed during microfilament formation. TUFT1 can promote the phosphorylation of tyrosine residue 256 (Y256) of the N-WASP (pY256N-WASP). Furthermore, TUFT1 promoted transforming growth factor-ß1 (TGF-ß1) induced fibroblast activation by increasing nuclear translocation of pY256N-WASP in fibroblasts, while wiskostatin (Wis), an N-WASP inhibitor, suppressed these processes. CONCLUSIONS: Our findings suggested that TUFT1 plays a critical role in pulmonary fibrosis via its influence on stress fiber, and blockade of TUFT1 effectively reduces pro-fibrotic phenotypes. Pharmacological targeting of the TUFT1-N-WASP axis may represent a promising therapeutic approach for pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Animales , Ratones , Bleomicina/toxicidad , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Enfermedades Pulmonares Intersticiales/metabolismo , Ratones Endogámicos C57BL , Fibras de Estrés/metabolismo , Factor de Crecimiento Transformador beta1/farmacología
13.
Sci Rep ; 13(1): 8662, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248294

RESUMEN

Stress fibers are actomyosin bundles that regulate cellular mechanosensation and force transduction. Interacting with the extracellular matrix through focal adhesion complexes, stress fibers are highly dynamic structures regulated by myosin motors and crosslinking proteins. Under external mechanical stimuli such as tensile forces, the stress fiber remodels its architecture to adapt to external cues, displaying properties of viscoelastic materials. How the structural remodeling of stress fibers is related to the generation of contractile force is not well understood. In this work, we simulate mechanochemical dynamics and force generation of stress fibers using the molecular simulation platform MEDYAN. We model stress fiber as two connecting bipolar bundles attached at the ends to focal adhesion complexes. The simulated stress fibers generate contractile force that is regulated by myosin motors and [Formula: see text]-actinin crosslinkers. We find that stress fibers enhance contractility by reducing the distance between actin filaments to increase crosslinker binding, and this structural remodeling ability depends on the crosslinker turnover rate. Under tensile pulling force, the stress fiber shows an instantaneous increase of the contractile forces followed by a slow relaxation into a new steady state. While the new steady state contractility after pulling depends only on the overlap between actin bundles, the short-term contractility enhancement is sensitive to the tensile pulling distance. We further show that this mechanical response is also sensitive to the crosslinker turnover rate. Our results provide new insights into the stress fiber mechanics that have significant implications for understanding cellular adaptation to mechanical signaling.


Asunto(s)
Actinina , Fibras de Estrés , Actinina/metabolismo , Fibras de Estrés/metabolismo , Miosinas/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Citoesqueleto de Actina/metabolismo
14.
Mol Biol Cell ; 34(6): ar62, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36989016

RESUMEN

Mammalian cell migration in open spaces requires F-actin polymerization and myosin contraction. While many studies have focused on myosin's coupling to focal adhesion and stress fibers, the indirect effect of myosin contraction on cell migration through actin depolymerization is not well studied. In this work, we quantified how cell velocity and effective power output are influenced by the rate of actin depolymerization, which is affected by myosin contraction. In addition, we derived scaling laws to provide physical insights into cell migration. Model analysis shows that the cell migration velocity displays a biphasic dependence on the rate of actin depolymerization and myosin contraction. Our model further predicts that the effective cell energy output depends not only on the cell velocity but also on myosin contractility. The work has implications on in vivo processes such as immune response and cancer metastasis, where cells overcome barriers imposed by the physical environment.


Asunto(s)
Actinas , Miosinas , Animales , Actinas/metabolismo , Miosinas/metabolismo , Movimiento Celular/fisiología , Citoesqueleto de Actina/metabolismo , Fibras de Estrés/metabolismo , Mamíferos/metabolismo
15.
Mol Biol Cell ; 34(4): ar34, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36884293

RESUMEN

The Rho family of small GTPases is a key regulator of cytoskeletal actin polymerization. Although the ubiquitination of Rho proteins is reported to control their activity, the mechanisms by which the ubiquitination of Rho family proteins is controlled by ubiquitin ligases have yet to be elucidated. In this study, we identified BAG6 as the first factor needed to prevent the ubiquitination of RhoA, a critical Rho family protein in F-actin polymerization. We found that BAG6 is necessary for stress fiber formation by stabilizing endogenous RhoA. BAG6 deficiency enhanced the association between RhoA and Cullin-3-based ubiquitin ligases, thus promoting its polyubiquitination and subsequent degradation, leading to the abrogation of actin polymerization. In contrast, the restoration of RhoA expression through transient overexpression rescued the stress fiber formation defects induced by BAG6 depletion. BAG6 was also necessary for the appropriate assembly of focal adhesions as well as cell migration events. These findings reveal a novel role for BAG6 in maintaining the integrity of actin fiber polymerization and establish BAG6 as a RhoA-stabilizing holdase, which binds to and supports the function of RhoA.


Asunto(s)
Actinas , Ubiquitina , Ubiquitina/metabolismo , Actinas/metabolismo , Fibras de Estrés/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Citoesqueleto/metabolismo , Ligasas/metabolismo
16.
Commun Biol ; 6(1): 29, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631535

RESUMEN

Signaling through cAMP/protein kinase A (PKA) promotes endothelial barrier function to prevent plasma leakage induced by inflammatory mediators. The discovery of PKA substrates in endothelial cells increases our understanding of the molecular mechanisms involved in vessel maturation. In this study, we evaluate a cAMP inducer, forskolin, and a phospho-PKA substrate antibody to identify ZNF185 as a PKA substrate. ZNF185 interacts with PKA and colocalizes with F-actin in endothelial cells. Both ZNF185 and F-actin accumulate in the plasma membrane region in response to forskolin to stabilize the cortical actin structure. By contrast, ZNF185 knockdown disrupts actin filaments and promotes stress fiber formation without inflammatory mediators. Constitutive activation of RhoA is induced by ZNF185 knockdown, which results in forskolin-resistant endothelial barrier dysfunction. Knockout of mouse Zfp185 which is an orthologous gene of human ZNF185 increases vascular leakage in response to inflammatory stimuli in vivo. Thrombin protease is used as a positive control to assemble stress fibers via RhoA activation. Unexpectedly, ZNF185 is cleaved by thrombin, resulting in an N-terminal actin-targeting domain and a C-terminal PKA-interacting domain. Irreversible dysfunction of ZNF185 protein potentially causes RhoA-dependent stress fiber formation by thrombin.


Asunto(s)
Actinas , Células Endoteliales , Proteínas con Dominio LIM , Fibras de Estrés , Proteína de Unión al GTP rhoA , Animales , Humanos , Ratones , Actinas/metabolismo , Colforsina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas del Citoesqueleto/metabolismo , Células Endoteliales/metabolismo , Proteínas con Dominio LIM/metabolismo , Ratones Noqueados , Proteína de Unión al GTP rhoA/metabolismo , Fibras de Estrés/metabolismo , Trombina/farmacología , Trombina/metabolismo
17.
Methods Mol Biol ; 2600: 169-182, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36587097

RESUMEN

A family of proteins have been identified that recognize damaged, strained actin filaments in stress fibers. These proteins are often referred to as strain- or force-sensing and trigger downstream signaling mechanisms that can facilitate repair at these strain sites. Here we describe a method using high-resolution microscopy to screen and quantify the mechanosensitive recruitment of proteins to these stress fiber strain sites. Strain sites are induced using spatially controlled illumination of UV light to locally damage actin stress fibers. Recruitment of potential strain-sensing proteins can then either be compared to (Blanchoin, Physiol Rev 94, 235-263, 2014) a known control (e.g., zyxin-GFP) or (Hoffman, Mol Biol Cell 23, 1846-1859, 2012) the pre-damaged stress fiber protein distribution. With this method, strain-sensing proteins and their dynamic association with stress fiber strain sites can be reproducibly measured and compared.


Asunto(s)
Actinas , Fibras de Estrés , Fibras de Estrés/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Transducción de Señal , Fenómenos Mecánicos
18.
J Cell Biol ; 222(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36574264

RESUMEN

Contractile epithelial tubes are found in various organs, such as lung airways and blood capillaries. Their ability to sense luminal pressure and respond with adequate contractility is essential for their physiology, and its mis-regulation results in diseases such as asthma and hypertension. Here, we describe a mechanoresponsive regulatory pathway downstream of tissue stretching that controls contraction of the C. elegans spermatheca, a tubular structure where fertilization occurs. Using live-imaging, we show that ovulation-induced stretching of spermathecal cells leads to recruitment of the RhoGEF RHGF-1 to stress fibers, which activates RHO-1 and myosin II in a positive feedback loop. Through deletion analysis, we identified the PDZ domain of RHGF-1 as responsible for F-actin binding, and genetic epistasis analysis with the RhoGAP spv-1 demonstrated that tension-dependent recruitment of RHGF-1 to F-actin is required for robust spermathecal contractility. Our study illustrates how mechanosensitive regulators of Rho GTPases provide epithelial tubes the ability to tune their contractility in response to internal pressure.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Femenino , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Actinas/metabolismo , Fibras de Estrés/metabolismo , Contracción Muscular , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteínas Activadoras de GTPasa/metabolismo
19.
PLoS One ; 17(11): e0276909, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36342915

RESUMEN

Fluorescence recovery after photobleaching (FRAP) is a versatile technique to evaluate the intracellular molecular exchange called turnover. Mechanochemical models of FRAP typically consider the molecular diffusion and chemical reaction that simultaneously occur on a time scale of seconds to minutes. Particularly for long-term measurements, however, a mechanical advection effect can no longer be ignored, which transports the proteins in specific directions within the cells and accordingly shifts the spatial distribution of the local chemical equilibrium. Nevertheless, existing FRAP models have not considered the spatial shift, and as such, the turnover rate is often analyzed without considering the spatiotemporally updated chemical equilibrium. Here we develop a new FRAP model aimed at long-term measurements to quantitatively determine the two distinct effects of the advection and chemical reaction, i.e., the different major sources of the change in fluorescence intensity. To validate this approach, we carried out FRAP experiments on actin in stress fibers over a time period of more than 900 s, and the advection rate was shown to be comparable in magnitude to the chemical dissociation rate. We further found that the actin-myosin interaction and actin polymerization differently affect the advection and chemical dissociation. Our results suggest that the distinction between the two effects is indispensable to extract the intrinsic chemical properties of the actin cytoskeleton from the observations of complicated turnover in cells.


Asunto(s)
Actinas , Fibras de Estrés , Actinas/metabolismo , Fibras de Estrés/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Citoesqueleto de Actina/metabolismo , Fotoblanqueo
20.
Nat Commun ; 13(1): 6032, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229430

RESUMEN

Contractile actomyosin bundles are key force-producing and mechanosensing elements in muscle and non-muscle tissues. Whereas the organization of muscle myofibrils and mechanism regulating their contractility are relatively well-established, the principles by which myosin-II activity and force-balance are regulated in non-muscle cells have remained elusive. We show that Caldesmon, an important component of smooth muscle and non-muscle cell actomyosin bundles, is an elongated protein that functions as a dynamic cross-linker between myosin-II and tropomyosin-actin filaments. Depletion of Caldesmon results in aberrant lateral movement of myosin-II filaments along actin bundles, leading to irregular myosin distribution within stress fibers. This manifests as defects in stress fiber network organization and contractility, and accompanied problems in cell morphogenesis, migration, invasion, and mechanosensing. These results identify Caldesmon as critical factor that ensures regular myosin-II spacing within non-muscle cell actomyosin bundles, and reveal how stress fiber networks are controlled through dynamic cross-linking of tropomyosin-actin and myosin filaments.


Asunto(s)
Fibras de Estrés , Tropomiosina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Músculo Liso/metabolismo , Miosina Tipo II/metabolismo , Miosinas/metabolismo , Fibras de Estrés/metabolismo , Tropomiosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...