Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38542120

RESUMEN

China leads the world in freshwater pearl production, an industry in which the triangle sail mussel (Sinohyriopsis cumingii) plays a pivotal role. In this paper, we report a high-quality chromosome-level genome assembly of S. cumingii with a size of 2.90 Gb-the largest yet reported among bivalves-and 89.92% anchorage onto 19 linkage groups. The assembled genome has 37,696 protein-coding genes and 50.86% repeat elements. A comparative genomic analysis revealed expansions of 752 gene families, mostly associated with biomineralization, and 237 genes under strong positive selection. Notably, the fibrillin gene family exhibited gene family expansion and positive selection simultaneously, and it also exhibited multiple high expressions after mantle implantation by transcriptome analysis. Furthermore, RNA silencing and an in vitro calcium carbonate crystallization assay highlighted the pivotal role played by one fibrillin gene in calcium carbonate deposition and aragonite transformation. This study provides a valuable genomic resource and offers new insights into the mechanism of pearl biomineralization.


Asunto(s)
Bivalvos , Unionidae , Animales , Biomineralización/genética , Bivalvos/genética , Bivalvos/química , Unionidae/genética , Unionidae/metabolismo , Carbonato de Calcio , Agua Dulce , Fibrilinas/metabolismo
2.
Lab Chip ; 23(24): 5180-5194, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37981867

RESUMEN

Interstitial fluid uptake and retention by lymphatic vessels (LVs) play a role in maintaining interstitial fluid homeostasis. While it is well-established that intraluminal lymphatic valves in the collecting LVs prevent fluid backflow (secondary lymphatic valves), a separate valve system in the initial LVs that only permits interstitial fluid influx into the LVs, preventing fluid leakage back to the interstitium (primary lymphatic valves), remains incompletely understood. Although lymphatic dysfunction is commonly observed in inflammation and autoimmune diseases, how the primary lymphatic valves are affected by acute and chronic inflammation has scarcely been explored and even less so using in vitro lymphatic models. Here, we developed a human initial lymphatic vessel chip where interstitial fluid pressure and luminal fluid pressure are controlled to examine primary lymph valve function. In normal conditions, lymphatic drainage (fluid uptake) and permeability (fluid leakage) in engineered LVs were maintained high and low, respectively, which was consistent with our understanding of healthy primary lymph valves. Next, we examined the effects of acute and chronic inflammation. Under the acute inflammation condition with a TNF-α treatment (2 hours), degradation of fibrillin and impeded lymphatic drainage were observed, which were reversed by treatment with anti-inflammatory dexamethasone. Surprisingly, the chronic inflammation condition (repeated TNF-α treatments during 48 hours) deposited fibrillin to compensate for the fibrillin loss, showing no change in lymphatic drainage. Instead, the chronic inflammation condition led to cell death and disruption of lymphatic endothelial cell-cell junctions, increasing lymphatic permeability and fluid leakage. Our human lymphatic model shows two distinct mechanisms by which primary lymphatic valve dysfunction occurs in acute and chronic inflammation.


Asunto(s)
Vasos Linfáticos , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Vasos Linfáticos/metabolismo , Inflamación/metabolismo , Transporte Biológico , Fibrilinas/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 43(8): e339-e357, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37288573

RESUMEN

BACKGROUND: Thoracic aortic aneurysms (TAAs) are abnormal aortic dilatations and a major cardiovascular complication of Marfan syndrome. We previously demonstrated a critical role for vascular smooth muscle (VSM) SirT1 (sirtuin-1), a lysine deacetylase, against maladaptive aortic remodeling associated with chronic oxidative stress and aberrant activation of MMPs (matrix metalloproteinases). METHODS: In this study, we investigated whether redox dysregulation of SirT1 contributed to the pathogenesis of TAA using fibrillin-1 hypomorphic mice (Fbn1mgR/mgR), an established model of Marfan syndrome prone to aortic dissection/rupture. RESULTS: Oxidative stress markers 3-nitrotyrosine and 4-hydroxynonenal were significantly elevated in aortas of patients with Marfan syndrome. Moreover, reversible oxidative post-translational modifications (rOPTM) of protein cysteines, particularly S-glutathionylation, were dramatically increased in aortas of Fbn1mgR/mgR mice, before induction of severe oxidative stress markers. Fbn1mgR/mgR aortas and VSM cells exhibited an increase in rOPTM of SirT1, coinciding with the upregulation of acetylated proteins, an index of decreased SirT1 activity, and increased MMP2/9 activity. Mechanistically, we demonstrated that TGFß (transforming growth factor beta), which was increased in Fbn1mgR/mgR aortas, stimulated rOPTM of SirT1, decreasing its deacetylase activity in VSM cells. VSM cell-specific deletion of SirT1 in Fbn1mgR/mgR mice (SMKO-Fbn1mgR/mgR) caused a dramatic increase in aortic MMP2 expression and worsened TAA progression, leading to aortic rupture in 50% of SMKO-Fbn1mgR/mgR mice, compared with 25% of Fbn1mgR/mgR mice. rOPTM of SirT1, rOPTM-mediated inhibition of SirT1 activity, and increased MMP2/9 activity were all exacerbated by the deletion of Glrx (glutaredoxin-1), a specific deglutathionylation enzyme, while being corrected by overexpression of Glrx or of an oxidation-resistant SirT1 mutant in VSM cells. CONCLUSIONS: Our novel findings strongly suggest a causal role of S-glutathionylation of SirT1 in the pathogenesis of TAA. Prevention or reversal of SirT1 rOPTM may be a novel therapeutic strategy to prevent TAA and TAA dissection/ruptures in individuals with Marfan syndrome, for which, thus far, no targeted therapy has been developed.


Asunto(s)
Aneurisma de la Aorta Torácica , Rotura de la Aorta , Síndrome de Marfan , Ratones , Animales , Síndrome de Marfan/complicaciones , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Fibrilinas/metabolismo , Músculo Liso Vascular/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Proteínas de Microfilamentos/metabolismo , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/prevención & control , Fibrilina-1/genética , Fibrilina-1/metabolismo , Rotura de la Aorta/prevención & control , Factor de Crecimiento Transformador beta/metabolismo , Oxidación-Reducción , Modelos Animales de Enfermedad , Glutarredoxinas/metabolismo , Glutarredoxinas/uso terapéutico
4.
Plant Physiol ; 193(1): 643-660, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37233026

RESUMEN

Chromoplasts are plant organelles with a unique ability to sequester and store massive carotenoids. Chromoplasts have been hypothesized to enable high levels of carotenoid accumulation due to enhanced sequestration ability or sequestration substructure formation. However, the regulators that control the substructure component accumulation and substructure formation in chromoplasts remain unknown. In melon (Cucumis melo) fruit, ß-carotene accumulation in chromoplasts is governed by ORANGE (OR), a key regulator for carotenoid accumulation in chromoplasts. By using comparative proteomic analysis of a high ß-carotene melon variety and its isogenic line low-ß mutant that is defective in CmOr with impaired chromoplast formation, we identified carotenoid sequestration protein FIBRILLIN1 (CmFBN1) as differentially expressed. CmFBN1 expresses highly in melon fruit tissue. Overexpression of CmFBN1 in transgenic Arabidopsis (Arabidopsis thaliana) containing ORHis that genetically mimics CmOr significantly enhances carotenoid accumulation, demonstrating its involvement in CmOR-induced carotenoid accumulation. Both in vitro and in vivo evidence showed that CmOR physically interacts with CmFBN1. Such an interaction occurs in plastoglobules and results in promoting CmFBN1 accumulation. CmOR greatly stabilizes CmFBN1, which stimulates plastoglobule proliferation and subsequently carotenoid accumulation in chromoplasts. Our findings show that CmOR directly regulates CmFBN1 protein levels and suggest a fundamental role of CmFBN1 in facilitating plastoglobule proliferation for carotenoid sequestration. This study also reveals an important genetic tool to further enhance OR-induced carotenoid accumulation in chromoplasts in crops.


Asunto(s)
Arabidopsis , Cucurbitaceae , beta Caroteno/metabolismo , Cucurbitaceae/metabolismo , Fibrilinas/metabolismo , Proteómica , Carotenoides/metabolismo , Plastidios/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Frutas/genética
5.
Nat Struct Mol Biol ; 30(5): 608-618, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37081316

RESUMEN

Genetic mutations in fibrillin microfibrils cause serious inherited diseases, such as Marfan syndrome and Weill-Marchesani syndrome (WMS). These diseases typically show major dysregulation of tissue development and growth, particularly in skeletal long bones, but links between the mutations and the diseases are unknown. Here we describe a detailed structural analysis of native fibrillin microfibrils from mammalian tissue by cryogenic electron microscopy. The major bead region showed pseudo eightfold symmetry where the amino and carboxy termini reside. On the basis of this structure, we show that a WMS deletion mutation leads to the induction of a structural rearrangement that blocks interaction with latent TGFß-binding protein-1 at a remote site. Separate deletion of this binding site resulted in the assembly of shorter fibrillin microfibrils with structural alterations. The integrin αvß3-binding site was also mapped onto the microfibril structure. These results establish that in complex extracellular assemblies, such as fibrillin microfibrils, mutations may have long-range structural consequences leading to the disruption of growth factor signaling and the development of disease.


Asunto(s)
Matriz Extracelular , Microfibrillas , Animales , Microfibrillas/metabolismo , Microfibrillas/patología , Fibrilinas/genética , Fibrilinas/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Mutación , Sitios de Unión , Mamíferos/metabolismo
6.
Int J Biol Macromol ; 234: 123757, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36805507

RESUMEN

Fibrillin family members play multiple roles in growth, development, and protection against abiotic stress. In this study, we identified 12 potential CaFBNs that are ranging from 25 kDa-42.92 kDa and are mostly basic. These proteins were hydrophilic in nature and generally resided in the chloroplast. The CaFBN genes were located on different chromosomes like 1, 4, 5, and 7. All FBNs shared conserved motifs and possessed a higher number of stress-responsive elements. For evolutionary analysis, a phylogenetic tree of CaFBNs with other plants' FBNs was constructed and clustered into 11 FBN subgroups. For expression analysis, 21 day old chickpea seedling was exposed to dehydration stress by withholding water. We also performed various physiological and biochemical analyses to check that plant changes at the physiological and cellular levels while undergoing stress conditions. The transcript expression of CaFBNs was higher in aerial parts, especially in stems and leaves. Dehydration-specific transcriptome and qPCR analysis showed that FBN-1, FBN-2, and FBN-6 were highly expressed. In addition, our study provides a comprehensive overview of the FBN protein family and their importance during the dehydration stress condition in Cicer arietinum.


Asunto(s)
Cicer , Cicer/genética , Cicer/metabolismo , Filogenia , Sequías , Fibrilinas/genética , Fibrilinas/metabolismo , Deshidratación/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
7.
J Histochem Cytochem ; 70(11-12): 751-757, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36541696

RESUMEN

Aging leads to substantial structural changes in the skin. Elastic fibers maintain skin structure, but their degeneration and loss of function with age result in wrinkle formation and loss of skin elasticity. Oxytalan fiber, a type of elastic fiber, extends close to the dermal-epidermal junction (DEJ) from the back of the dermis. Oxytalan fibers are abundant in the papillary layer and contribute to skin elasticity and texture. However, to accurately understand the mechanisms of skin elasticity, the interaction between elastic fibers and DEJ should be elucidated. Here, we investigated elastic fibers and DEJ and their structural alterations with aging. Several basement membrane proteins [collagen (COL) IV, COLVII, and laminin 332], fibrous tropoelastin, and fibrillin-1 in excised human skin tissue were observed using three-dimensional imaging. Age-related alterations in COLVII, elastic fibers, and fibrillin-1 were evaluated. We found that COLVII forms long hanging structures and is co-localized with fibrous tropoelastin in young skin but not aged skin. Fibrillin-1-rich regions were observed at the tips of elastin fibers in young skin tissue, but rarely in aged skin. This co-localization of elastic fiber and COLVII may maintain skin structure, thereby preventing wrinkling and sagging. COLVII is a potential therapeutic target for skin wrinkling.


Asunto(s)
Tejido Elástico , Tropoelastina , Humanos , Anciano , Tejido Elástico/metabolismo , Fibrilina-1/metabolismo , Tropoelastina/metabolismo , Piel/metabolismo , Membrana Basal , Colágeno Tipo IV/metabolismo , Fibrilinas/metabolismo
8.
Biosci Biotechnol Biochem ; 86(9): 1240-1246, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35776962

RESUMEN

Intercellular lipids comprise mainly ceramides, known to enhance the barrier function of the stratum corneum. However, the activities of ceramides inside the skin have not yet been fully elucidated. Here we examined how the human ceramide mixture (HC123) functions in the dermis. We treated human skin fibroblasts with HC123-expressed fibroblast growth factor (FGF), transforming growth factor-ß (TGF-ß), collagen I, and fibrillin. We found that HC123 promoted the formation of collagen fibers and microfibrils (fibrillin) which affect the elasticity of the skin. We also confirmed that the gene expression of collagen and fibrillin is promoted via TGF-ß and FGF2, respectively. We then investigated the permeability of HC123 for external use, in pursuit of evidence that HC123 may exert an anti-aging effect by penetrating into the dermis, activating fibroblasts, and promoting the production of collagen fibers and elastin-related microfibrils.


Asunto(s)
Ceramidas , Colágeno , Células Cultivadas , Ceramidas/metabolismo , Ceramidas/farmacología , Colágeno/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Fibrilina-2/metabolismo , Fibrilinas/metabolismo , Fibroblastos , Humanos , Factor de Crecimiento Transformador beta/metabolismo
9.
J Exp Bot ; 73(9): 2751-2764, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35560204

RESUMEN

Fibrillins (FBNs) are a family of genes in cyanobacteria, algae, and plants. The proteins they encode possess a lipid-binding motif, exist in various types of plastids, and are associated with lipid bodies called plastoglobules, implicating them in lipid metabolism. FBNs present in the thylakoid and stroma are involved in the storage, transport, and synthesis of lipid molecules for photoprotective functions against high-light stress. In this review, the diversity of subplastid locations in the evolution of FBNs, regulation of FBNs expression by various stresses, and the role of FBNs in plastid lipid metabolism are comprehensively summarized and directions for future research are discussed.


Asunto(s)
Plastidios , Tilacoides , Fibrilinas/metabolismo , Lípidos/análisis , Plantas/genética , Plastidios/metabolismo , Tilacoides/metabolismo
10.
Elife ; 112022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35503090

RESUMEN

The embryonic extracellular matrix (ECM) undergoes transition to mature ECM as development progresses, yet few mechanisms ensuring ECM proteostasis during this period are known. Fibrillin microfibrils are macromolecular ECM complexes serving structural and regulatory roles. In mice, Fbn1 and Fbn2, encoding the major microfibrillar components, are strongly expressed during embryogenesis, but fibrillin-1 is the major component observed in adult tissue microfibrils. Here, analysis of Adamts6 and Adamts10 mutant mouse embryos, lacking these homologous secreted metalloproteases individually and in combination, along with in vitro analysis of microfibrils, measurement of ADAMTS6-fibrillin affinities and N-terminomics discovery of ADAMTS6-cleaved sites, identifies a proteostatic mechanism contributing to postnatal fibrillin-2 reduction and fibrillin-1 dominance. The lack of ADAMTS6, alone and in combination with ADAMTS10 led to excess fibrillin-2 in perichondrium, with impaired skeletal development defined by a drastic reduction of aggrecan and cartilage link protein, impaired BMP signaling in cartilage, and increased GDF5 sequestration in fibrillin-2-rich tissue. Although ADAMTS6 cleaves fibrillin-1 and fibrillin-2 as well as fibronectin, which provides the initial scaffold for microfibril assembly, primacy of the protease-substrate relationship between ADAMTS6 and fibrillin-2 was unequivocally established by reversal of the defects in Adamts6-/- embryos by genetic reduction of Fbn2, but not Fbn1.


Asunto(s)
Proteínas ADAMTS , Microfibrillas , Proteínas ADAMTS/química , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Animales , Fibrilina-1/genética , Fibrilina-2/metabolismo , Fibrilinas/metabolismo , Ratones , Microfibrillas/metabolismo , Proteolisis
11.
Matrix Biol ; 110: 60-75, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35452817

RESUMEN

LTBP1 is a large extracellular matrix protein and an associated ligand of fibrillin-microfibrils. Knowledge of LTBP1 functions is largely limited to its role in targeting and sequestering TGFß growth factors within the extracellular matrix, thereby regulating their bioavailability. However, the recent description of a wide spectrum of phenotypes in multiple tissues in patients harboring LTBP1 pathogenic variants suggests a multifaceted role of the protein in the homeostasis of connective tissues. To better understand the human pathology caused by LTBP1 deficiency it is important to investigate its functional role in extracellular matrix formation. In this study, we show that LTBP1 coordinates the incorporation of fibrillin-1 and -2 into the extracellular matrix in vitro. We also demonstrate that this function is differentially exerted by the two isoforms, the short and long forms of LTBP1. Thereby our findings uncover a novel TGFß-independent LTBP1 function potentially contributing to the development of connective tissue disorders.


Asunto(s)
Matriz Extracelular , Proteínas de Unión a TGF-beta Latente , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Fibrilina-2/genética , Fibrilina-2/metabolismo , Fibrilinas/metabolismo , Humanos , Proteínas de Unión a TGF-beta Latente/genética , Proteínas de Unión a TGF-beta Latente/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
12.
Tissue Eng Part C Methods ; 28(4): 148-157, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35357965

RESUMEN

Collagens, elastin, fibrillin, decorin, and laminin are key constituents of the extracellular matrix and basement membrane of mammalian organs. Thus, changes in their quantities may influence the mechanochemical regulation of resident cells. Since maintenance of a native stromal composition is a requirement for three-dimensional (3D) matrix-based recellularization techniques in tissue engineering, we studied the influence of the decellularization detergents on these proteins in porcine kidney, liver, pancreas, and skin. Using a quick thawing/quick microwave-assisted decellularization protocol and two different detergents, sodium dodecyl sulfate (SDS) vs Triton X-100 (TX100), at identical concentration, variations in matrix conservation of stromal proteins were detected by liquid chromatography-mass spectrometry coupled to light and scanning electron microscopies, in dependence on each detergent. In all organs tested except pancreas, collagens were retained to a statistically significant level using the TX100-based protocol. In contrast fibrillin, elastin (except in kidney), and decorin (only in liver) were better preserved with the SDS-dependent protocol. Irrespective of the detergent used, laminin always remained at an irrelevant level. Our results prompt attention to the type of detergent in organ decellularization, suggesting that its choice may influence morphoregulatory inputs peculiar to the type of 3D bioartificial mammalian organ to be reconstructed. Impact statement Simple change of the protocol's main detergent leads to a very substantial difference in the panel of the stromal proteins detected by qualitative and semiquantitative mass spectrometry in acellular porcine matrices. This remarkable methodological variable promises to yield proteomic reference panels in a number of different species-specific acellular matrices allowing for selective retainment of peculiar mechanochemical inputs, to differently address the development of the seeded cells in relation to the type of organ to be bioartificially reconstructed.


Asunto(s)
Detergentes , Andamios del Tejido , Animales , Colágeno/metabolismo , Decorina/metabolismo , Detergentes/química , Detergentes/metabolismo , Detergentes/farmacología , Elastina/metabolismo , Matriz Extracelular/metabolismo , Fibrilinas/metabolismo , Laminina/metabolismo , Mamíferos , Espectrometría de Masas , Octoxinol/metabolismo , Proteómica , Porcinos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
13.
Matrix Biol ; 107: 24-39, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35122964

RESUMEN

TGFß superfamily members are potent growth factors in the extracellular matrix with essential roles in all aspects of cellular behaviour. Latent TGFß binding proteins (LTBPs) are co-expressed with TGFß, essential for correct folding and secretion of the growth factor, to form large latent complexes. These large latent complexes bind extracellular proteins such as fibrillin for sequestration of TGFß in the matrix, essential for normal tissue function, and dysregulated TGFß signalling is a hallmark of many fibrillinopathies. Transglutaminase-2 (TG2) cross-linking of LTBPs is known to play a role in TGFß activation but the underlying molecular mechanisms are not resolved. Here we show that fibrillin is a matrix substrate for TG2 and that TG2 cross-linked complexes can be formed between fibrillin and LTBP-1 and -3, and their latent TGFß complexes. The structure of the fibrillin-LTBP1 complex shows that the two elongated proteins interact in a perpendicular arrangement which would allow them to form distal interactions between the matrix and the cell surface. Formation of the cross-link with fibrillin does not change the interaction between latent TGFß and integrin αVß6 but does increase TGFß activation in cell-based assays. The activating effect may be due to direction of the latent complexes to the cell surface by fibrillin, as competition with heparan sulphate can ameliorate the activating effect. Together, these data support that TGFß activation can be enhanced by covalent tethering of LTBPs to the matrix via fibrillin.


Asunto(s)
Proteínas de Microfilamentos , Transglutaminasas , Matriz Extracelular/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Fibrilina-2/metabolismo , Fibrilinas/metabolismo , Proteínas de Unión a TGF-beta Latente/genética , Proteínas de Unión a TGF-beta Latente/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Transglutaminasas/genética , Transglutaminasas/metabolismo
14.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35163482

RESUMEN

Elastin represents the structural component of the extracellular matrix providing elastic recoil to tissues such as skin, blood vessels and lungs. Elastogenic cells secrete soluble tropoelastin monomers into the extracellular space where these monomers associate with other matrix proteins (e.g., microfibrils and glycoproteins) and are crosslinked by lysyl oxidase to form insoluble fibres. Once elastic fibres are formed, they are very stable, highly resistant to degradation and have an almost negligible turnover. However, there are circumstances, mainly related to inflammatory conditions, where increased proteolytic degradation of elastic fibres may lead to consequences of major clinical relevance. In severely affected COVID-19 patients, for instance, the massive recruitment and activation of neutrophils is responsible for the profuse release of elastases and other proteolytic enzymes which cause the irreversible degradation of elastic fibres. Within the lungs, destruction of the elastic network may lead to the permanent impairment of pulmonary function, thus suggesting that elastases can be a promising target to preserve the elastic component in COVID-19 patients. Moreover, intrinsic and extrinsic factors additionally contributing to damaging the elastic component and to increasing the spread and severity of SARS-CoV-2 infection are reviewed.


Asunto(s)
COVID-19/metabolismo , Elastina/fisiología , Matriz Extracelular/fisiología , Animales , Tejido Elástico/metabolismo , Elastina/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Trampas Extracelulares/metabolismo , Fibrilinas/metabolismo , Humanos , Pulmón/patología , Microfibrillas/metabolismo , Proteínas de Microfilamentos/metabolismo , Neutrófilos , Proteína-Lisina 6-Oxidasa/metabolismo , SARS-CoV-2/patogenicidad , Tropoelastina/metabolismo
15.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35216218

RESUMEN

Many extensible tissues such as skin, lungs, and blood vessels require elasticity to function properly. The recoil of elastic energy stored during a stretching phase is provided by elastic fibers, which are mostly composed of elastin and fibrillin-rich microfibrils. In arteries, the lack of elastic fibers leads to a weakening of the vessel wall with an increased risk to develop cardiovascular defects such as stenosis, aneurysms, and dissections. The development of new therapeutic molecules involves preliminary tests in animal models that recapitulate the disease and whose response to drugs should be as close as possible to that of humans. Due to its superior in vivo imaging possibilities and the broad tool kit for forward and reverse genetics, the zebrafish has become an important model organism to study human pathologies. Moreover, it is particularly adapted to large scale studies, making it an attractive model in particular for the first steps of investigations. In this review, we discuss the relevance of the zebrafish model for the study of elastic fiber-related vascular pathologies. We evidence zebrafish as a compelling alternative to conventional mouse models.


Asunto(s)
Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Tejido Elástico/metabolismo , Tejido Elástico/patología , Fibrilinas/metabolismo , Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Elasticidad/fisiología , Humanos , Proteínas de Microfilamentos/metabolismo
16.
J Exp Bot ; 73(3): 903-914, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34651644

RESUMEN

Fibrillins (FBNs) are plastidial proteins found in photosynthetic organisms from cyanobacteria to higher plants. The function of most FBNs remains unknown. Here, we focused on members of the FBN subgroup comprising FBN1a, FBN1b, and FBN2. We show that these three polypeptides interact between each other, potentially forming a network around the plastoglobule surface. Both FBN2 and FBN1s interact with allene oxide synthase, and the elimination of any of these FBNs results in a delay in jasmonate-mediated anthocyanin accumulation in response to a combination of moderate high light and low temperature. Mutations in the genes encoding FBN1s or FBN2 also affect the protection of PSII under the combination of these stresses. Fully developed leaves of these mutants have lower maximum quantum efficiency of PSII (Fv/Fm) and higher oxidative stress than wild-type plants. These effects are additive, and the fbn1a-1b-2 triple mutant shows a stronger decrease in Fv/Fm and a greater increase in oxidative stress than fbn1a-1b or fbn2 mutants. Co-immunoprecipitation analysis indicated that FBN2 also interacts with other proteins involved in different metabolic processes. We propose that these fibrillins facilitate accurate positioning of different proteins involved in distinct metabolic processes, and that their elimination leads to dysfunction of those proteins.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Fibrilina-1/metabolismo , Fibrilinas/metabolismo
17.
FEBS J ; 289(13): 3704-3730, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33896108

RESUMEN

Elastic fibers are extracellular components of higher vertebrates and confer elasticity and resilience to numerous tissues and organs such as large blood vessels, lungs, and skin. Their formation and maturation take place in a complex multistage process called elastogenesis. It requires interactions between very different proteins but also other molecules and leads to the deposition and crosslinking of elastin's precursor on a scaffold of fibrillin-rich microfibrils. Mature fibers are exceptionally resistant to most influences and, under healthy conditions, retain their biomechanical function over the life of the organism. However, due to their longevity, they accumulate damages during aging. These are caused by proteolytic degradation, formation of advanced glycation end products, calcification, oxidative damage, aspartic acid racemization, lipid accumulation, carbamylation, and mechanical fatigue. The resulting changes can lead to diminution or complete loss of elastic fiber function and ultimately affect morbidity and mortality. Particularly, the production of elastokines has been clearly shown to influence several life-threatening diseases. Moreover, the structure, distribution, and abundance of elastic fibers are directly or indirectly influenced by a variety of inherited pathological conditions, which mainly affect organs and tissues such as skin, lungs, or the cardiovascular system. A distinction can be made between microfibril-related inherited diseases that are the result of mutations in diverse microfibril genes and indirectly affect elastogenesis, and elastinopathies that are linked to changes in the elastin gene. This review gives an overview on the formation, structure, and function of elastic fibers and their fate over the human lifespan in health and disease.


Asunto(s)
Tejido Elástico , Elastina , Envejecimiento/genética , Animales , Elastina/genética , Elastina/metabolismo , Fibrilina-1/metabolismo , Fibrilinas/metabolismo , Humanos
18.
Protein Pept Lett ; 29(2): 176-183, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34875983

RESUMEN

BACKGROUND: Diverse extracellular matrix (ECM) proteins physically interact with stem cells and regulate stem cell function. However, the large molecular weight of the natural ECM renders large-scale fabrication of a similar functional structure challenging. OBJECTIVE: The objective of this study was to construct a low molecular weight and multifunctional chimeric form of recombinant ECM to stimulate mesenchymal stem cell (MSC) for tissue repair. We engineered Fibrillin-1PF14 fused to an elastin-like polypeptide to develop a new biomimetic ECM for stem cell differentiation and investigated whether this recombinant chimeric Fibrillin-Elastin fragment (rcFE) was effective on human nasal inferior turbinate-derived mesenchymal stem cells (hTMSCs). METHODS: hTMSCs were grown in the medium supplemented with rcFE, then the effect of the protein was confirmed through cell adhesion assay, proliferation assay, and real-time PCR. RESULTS: rcFE enhanced the adhesion activity of hTMSCs by 2.7-fold at the optimal concentration, and the proliferation activity was 2.6-fold higher than that of the control group (non-treatment rcFE). In addition, when smooth muscle cell differentiation markers were identified by real-time PCR, Calponin increased about 6-fold, α-actin about 9-fold, and MYH11 about 10-fold compared to the control group. CONCLUSION: Chimeric rcFE enhanced cellular functions such as cell adhesion, proliferation, and smooth muscle differentiation of hTMSCs, suggesting that the rcFE can facilitate the induction of tissue regeneration.


Asunto(s)
Elastina , Fibrilinas , Células Madre Mesenquimatosas , Proteínas Recombinantes de Fusión , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Elastina/genética , Elastina/metabolismo , Matriz Extracelular/metabolismo , Fibrilinas/genética , Fibrilinas/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
19.
Invest Ophthalmol Vis Sci ; 62(10): 26, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34424262

RESUMEN

Purpose: Previously, we identified a G661R mutation of ADAMTS10 (a disintegrin-like and metalloprotease with thrombospondin type 1 motif 10) as being disease causative in a colony of Beagles with inherited primary open-angle glaucoma (POAG). Mutations in ADAMTS10 are known to cause Weill-Marchesani syndrome (WMS), which is also caused by mutations in the fibrillin-1 gene (FBN1), suggesting functional linkage between ADAMTS10 and fibrillin-1, the principal component of microfibrils. Here, we established a mouse line with the G661R mutation of Adamts10 (Adamts10G661R/G661R) to determine if they develop features of WMS and alterations of ocular fibrillin microfibrils. Methods: Intraocular pressure (IOP) was measured using a TonoLab rebound tonometer. Central cornea thickness (CCT), anterior chamber depth (ACD) and axial length (AL) of the eye were examined by spectral-domain optical coherence tomography. Sagittal eye sections from mice at postnatal day 10 (P10) and at 3 and 24 months of age were stained with antibodies against fibrillin-1, fibrillin-2, and ADAMTS10. Results: IOP was not elevated in Adamts10G661R/G661R mice. Adamts10G661R/G661R mice had smaller bodies, thicker CCT, and shallower ACD compared to wild-type mice but normal AL. Adamts10G661R/G661R mice displayed persistent fibrillin-2 and enhanced fibrillin-1 immunofluorescence in the lens zonules and in the hyaloid vasculature and its remnants in the vitreous. Conclusions: Adamts10G661R/G661R mice recapitulate the short stature and ocular phenotypes of WMS. The altered fibrillin-1 and fibrillin-2 immunoactivity in Adamts10G661R/G661R mice suggests that the G661R mutation of Adamts10 perturbs regulation of the fibrillin isotype composition of microfibrils in the mouse eye.


Asunto(s)
Proteínas ADAMTS/genética , Cámara Anterior/metabolismo , ADN/genética , Fibrilinas/metabolismo , Glaucoma de Ángulo Abierto/genética , Microfibrillas/metabolismo , Mutación , Proteínas ADAMTS/metabolismo , Animales , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Femenino , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma de Ángulo Abierto/fisiopatología , Masculino , Ratones , Transducción de Señal
20.
Mol Biol Rep ; 48(5): 4865-4878, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34129188

RESUMEN

Elastic fibers are essential components of the arterial extracellular matrix. They consist of the protein elastin and an array of microfibrils that support the protein and connect it to the surrounding matrix. The elastin gene encodes tropoelastin, a protein that requires extensive cross-linking to become elastin. Tropoelastin is expressed throughout human life, but its expression levels decrease with age, suggesting that the potential to synthesize elastin persists during lifetime although declines with aging. The initial abnormality documented in human atherosclerosis is fragmentation and loss of the elastic network in the medial layer of the arterial wall, suggesting an imbalance between elastic fiber injury and restoration. Damaged elastic structures are not adequately repaired by synthesis of new elastic elements. Progressive collagen accumulation follows medial elastic fiber disruption and fibrous plaques are formed, but advanced atherosclerosis lesions do not develop in the absence of prior elastic injury. Aging is associated with arterial extracellular matrix anomalies that evoke those present in early atherosclerosis. The reduction of elastic fibers with subsequent collagen accumulation leads to arterial stiffening and intima-media thickening, which are independent predictors of incident hypertension in prospective community-based studies. Arterial stiffening precedes the development of hypertension. The fundamental role of the vascular elastic network to arterial structure and function is emphasized by congenital disorders caused by mutations that disrupt normal elastic fiber production. Molecular changes in the genes coding tropoelastin, lysyl oxidase (tropoelastin cross-linking), and elastin-associated microfibrils, including fibrillin-1, fibulin-4, and fibulin-5 produce severe vascular injury due to absence of functional elastin.


Asunto(s)
Tejido Elástico/patología , Enfermedades Vasculares , Envejecimiento/fisiología , Animales , Aterosclerosis/patología , Colágeno/metabolismo , Anomalías Congénitas , Tejido Elástico/citología , Tejido Elástico/metabolismo , Elastina/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Fibrilinas/genética , Fibrilinas/metabolismo , Fibroblastos/metabolismo , Humanos , Proteínas de Microfilamentos/metabolismo , Mutación , Proteína-Lisina 6-Oxidasa/genética , Proteína-Lisina 6-Oxidasa/metabolismo , Tropoelastina/genética , Tropoelastina/metabolismo , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/patología , Rigidez Vascular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA