Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 388
Filtrar
1.
Genome Biol Evol ; 16(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38957923

RESUMEN

We present the first long-read de novo assembly and annotation of the luna moth (Actias luna) and provide the full characterization of heavy chain fibroin (h-fibroin), a long and highly repetitive gene (>20 kb) essential in silk fiber production. There are >160,000 described species of moths and butterflies (Lepidoptera), but only within the last 5 years have we begun to recover high-quality annotated whole genomes across the order that capture h-fibroin. Using PacBio HiFi reads, we produce the first high-quality long-read reference genome for this species. The assembled genome has a length of 532 Mb, a contig N50 of 16.8 Mb, an L50 of 14 contigs, and 99.4% completeness (BUSCO). Our annotation using Bombyx mori protein and A. luna RNAseq evidence captured a total of 20,866 genes at 98.9% completeness with 10,267 functionally annotated proteins and a full-length h-fibroin annotation of 2,679 amino acid residues.


Asunto(s)
Fibroínas , Genoma de los Insectos , Anotación de Secuencia Molecular , Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Fibroínas/genética , Seda/genética , Proteínas de Insectos/genética , Bombyx/genética , Secuencias Repetitivas de Ácidos Nucleicos
2.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000286

RESUMEN

The FibH gene, crucial for silk spinning in insects, encodes a protein that significantly influences silk fiber mechanics. Due to its large size and repetitive sequences, limited known sequences of insect FibH impede comprehensive understanding. Here, we analyzed 114 complete FibH gene sequences from Lepidoptera (71 moths, 24 butterflies) and 13 Trichoptera, revealing single-copy FibH in most species, with 2-3 copies in Hesperinae and Heteropterinae (subfamily of skippers). All FibH genes are structured with two exons and one intron (39-45 bp), with the second exon being notably longer. Moths exhibit higher GC content in FibH compared to butterflies and Trichoptera. The FibH composition varies among species, with moths and butterflies favoring Ala, Gly, Ser, Pro, Gln, and Asn, while Trichoptera FibH is enriched in Gly, Ser, and Arg, and has less Ala. Unique to Trichoptera FibH are Tyr, Val, Arg, and Trp, whereas Lepidoptera FibH is marked by polyAla (polyalanine), polySer (polyserine), and the hexapeptide GAGSGA. A phylogenetic analysis suggests that Lepidoptera FibH evolved from Trichoptera, with skipper FibH evolving from Papilionoidea. This study substantially expands the FibH repertoire, providing a foundation for the development of artificial silk.


Asunto(s)
Evolución Molecular , Fibroínas , Filogenia , Fibroínas/genética , Fibroínas/química , Animales , Proteínas de Insectos/genética , Secuencia de Aminoácidos , Insectos/genética , Insectos/clasificación
3.
Biomacromolecules ; 25(7): 3990-4000, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38916967

RESUMEN

Phosphate plays a vital role in spider silk spinning and has been utilized in numerous artificial silk spinning attempts to replicate the remarkable mechanical properties of natural silk fiber. Its application in artificial processes has, however, yielded varying outcomes. It is thus necessary to investigate the origins and mechanisms behind these differences. By using recombinant silk protein SC-ADF3 derived from the garden spider Araneus diadematus, here, we describe its conformational changes under various conditions, elucidating the effect of phosphate on SC-ADF3 silk protein properties and interactions. Our results demonstrate that elevated phosphate levels induce the irreversible conformational conversion of SC-ADF3 from random coils to ß-sheet structures, leading to decreased protein solubility over time. Furthermore, exposure of SC-ADF3 to phosphate stiffens already formed structures and reduces the ability to form new interactions. Our findings offer insights into the underlying mechanism through which phosphate-induced ß-sheet structures in ADF3-related silk proteins impede fiber formation in the subsequent phases. From a broader perspective, our studies emphasize the significance of silk protein conformation for functional material formation, highlighting that the formation of ß-sheet structures at the initial stages of protein assembly will affect the outcome of material forming processes.


Asunto(s)
Fibroínas , Fosfatos , Seda , Arañas , Animales , Arañas/química , Fosfatos/química , Seda/química , Fibroínas/química , Fibroínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ingeniería de Proteínas/métodos , Conformación Proteica en Lámina beta , Estructura Secundaria de Proteína
4.
Int J Biol Macromol ; 274(Pt 2): 133400, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925172

RESUMEN

Silk is a natural protein fiber that is predominantly comprised of fibroin and sericin. In addition, it contains seroins, protease inhibitors, enzymes, and other proteins. We found an ecdysone oxidase BmGMC2, notably, which is specifically and highly expressed only in the silk glands of silkworms (Bombyx mori L.). It is also one of the main components of non-cocoon silk, however, its precise function remains unclear. In this study, we examined the spatiotemporal expression pattern of this protein and obtained a homozygous mutant strain (K-GMC2) using the CRISPR-Cas9 system. Compared to the wild-type strain (WT), the silk production and main silk proteins significantly decreased in the larval stage, and the adhesive strength of native silk proteins decreased in the final instar. Proteomic data indicated the abundance of ribosomal proteins decreased significantly in K-GMC2, differentially expressed proteins (DEPs) were enriched in pathways related to neurodegenerative diseases and genetic information processing, indicating that knockout may lead to a certain degree of cell stress, affecting the synthesis of silk proteins. This study investigated the expression pattern and gene function of ecdysone oxidase BmGMC2 in silk and silk glands, laying the groundwork for understanding the role of enzymes in the production of silk fibers.


Asunto(s)
Bombyx , Proteínas de Insectos , Mutación , Seda , Bombyx/genética , Bombyx/metabolismo , Animales , Seda/genética , Seda/biosíntesis , Seda/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/genética , Larva/metabolismo , Fibroínas/genética , Fibroínas/metabolismo , Proteómica/métodos , Biosíntesis de Proteínas , Sistemas CRISPR-Cas , 3-Hidroxiesteroide Deshidrogenasas
5.
Int J Biol Macromol ; 274(Pt 1): 133028, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857725

RESUMEN

Silkworm fibroins are natural proteinaceous macromolecules and provide core mechanical properties to silk fibers. The synthesis process of fibroins is posterior silk gland (PSG)-exclusive and appears active at the feeding stage and inactive at the molting stage. However, the molecular mechanisms controlling it remain elusive. Here, the silk gland's physiological and nuclear proteomic features were used to characterize changes in its structure and development from molting to feeding stages. The temporal expression profile and immunofluorescence analyses revealed a synchronous transcriptional on-off mode of fibroin genes. Next, the comparative nuclear proteome of the PSG during the last molting-feeding transition identified 798 differentially abundant proteins (DAPs), including 42 transcription factors and 15 epigenetic factors. Protein-protein interaction network analysis showed a "CTCF-FOX-HOX-SOX" association with activated expressions at the molting stage, suggesting a relatively complex and multifactorial regulation of the PSG at the molting stage. In addition, FAIRE-seq verification indicated "closed" and "open" conformations of fibroin gene promoters at the molting and feeding stages, respectively. Such proteome combined with chromatin accessibility analysis revealed the detailed signature of protein factors involved in the temporal regulation of fibroin synthesis and provided insights into silk gland development as well as silk production in silkworms.


Asunto(s)
Bombyx , Fibroínas , Animales , Bombyx/genética , Bombyx/crecimiento & desarrollo , Bombyx/metabolismo , Núcleo Celular/metabolismo , Fibroínas/genética , Fibroínas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Muda/fisiología , Mapas de Interacción de Proteínas , Proteoma/metabolismo , Proteómica/métodos , Seda/metabolismo , Seda/biosíntesis
6.
BMC Genomics ; 25(1): 472, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745159

RESUMEN

Caddisfly larvae produce silk containing heavy and light fibroins, similar to the silk of Lepidoptera, for the construction of underwater structures. We analyzed the silk of Limnephilus lunatus belonging to the case-forming suborder Integripalpia. We analyzed the transcriptome, mapped the transcripts to a reference genome and identified over 80 proteins using proteomic methods, and checked the specificity of their expression. For comparison, we also analyzed the transcriptome and silk proteome of Limnephilus flavicornis. Our results show that fibroins and adhesives are produced together in the middle and posterior parts of the silk glands, while the anterior part produces enzymes and an unknown protein AT24. The number of silk proteins of L. lunatus far exceeds that of the web-spinning Plectrocnemia conspersa, a previously described species from the suborder Annulipalpia. Our results support the idea of increasing the structural complexity of silk in rigid case builders compared to trap web builders.


Asunto(s)
Seda , Animales , Seda/metabolismo , Seda/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Transcriptoma , Insectos/metabolismo , Insectos/genética , Fibroínas/genética , Fibroínas/metabolismo , Fibroínas/química , Proteómica/métodos , Proteoma , Perfilación de la Expresión Génica
7.
Int J Biol Macromol ; 269(Pt 2): 131954, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697424

RESUMEN

Silk fibroin (SF) from the cocoon of silkworm has exceptional mechanical properties and biocompatibility and is used as a biomaterial in a variety of fields. Sustainable, affordable, and scalable manufacturing of SF would enable its large-scale use. We report for the first time the high-level secretory production of recombinant SF peptides in engineered Pichia pastoris cell factories and the processing thereof to nanomaterials. Two SF peptides (BmSPR3 and BmSPR4) were synthesized and secreted by P. pastoris using signal peptides and appropriate spacing between hydrophilic sequences. By strain engineering to reduce protein degradation, increase glycyl-tRNA supply, and improve protein secretion, we created the optimized P. pastoris chassis PPGSP-8 to produce BmSPR3 and BmSPR4. The SF fed-batch fermentation titers of the resulting two P. pastoris cell factories were 11.39 and 9.48 g/L, respectively. Protein self-assembly was inhibited by adding Tween 80 to the medium. Recombinant SF peptides were processed to nanoparticles (NPs) and nanofibrils. The physicochemical properties of nanoparticles R3NPs and R4NPs from the recombinant SFs synthesized in P. pastoris cell factories were similar or superior to those of RSFNPs (Regenerated Silk Fibroin NanoParticles) originating from commercially available SF. Our work will facilitate the production by microbial fermentation of functional SF for use as a biomaterial.


Asunto(s)
Fibroínas , Proteínas Recombinantes , Fibroínas/química , Fibroínas/biosíntesis , Fibroínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Nanoestructuras/química , Fermentación , Saccharomycetales/metabolismo , Saccharomycetales/genética , Seda/química , Seda/biosíntesis , Animales , Bombyx/metabolismo , Bombyx/genética
8.
ACS Biomater Sci Eng ; 10(5): 2925-2934, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38587986

RESUMEN

Spider dragline (major ampullate) silk is one of the toughest known fibers in nature and exhibits an excellent combination of high tensile strength and elasticity. Increasing evidence has indicated that preassembly plays a crucial role in facilitating the proper assembly of silk fibers by bridging the mesoscale gap between spidroin molecules and the final strong fibers. However, it remains challenging to control the preassembly of spidroins and investigate its influence on fiber structural and mechanical properties. In this study, we explored to bridge this gap by modulating the polyalanine (polyA) motifs in repetitive region of spidroins to tune their preassemblies in aqueous dope solutions. Three biomimetic silk proteins with varying numbers of alanine residues in polyA motif and comparable molecular weights were designed and biosynthesized, termed as N16C-5A, N15C-8A, and N13C-12A, respectively. It was found that all three proteins could form nanofibril assemblies in the concentrated aqueous dopes, but the size and structural stability of the fibrils were distinct from each other. The silk protein N15C-8A with 8 alanine residues in polyA motif allowed for the formation of stable nanofibril assemblies with a length of approximately 200 nm, which were not prone to disassemble or aggregate as that of N16C-5A and N13C-12A. More interestingly, the stable fibril assembly of N15C-8A enabled spinning of simultaneously strong (623.3 MPa) and tough (107.1 MJ m-3) synthetic fibers with fine molecular orientation and close interface packing of fibril bundles. This work highlights that modulation of polyA motifs is a feasible way to tune the morphology and stability of the spidroin preassemblies in dope solutions, thus controlling the structural and mechanical properties of the resulting fibers.


Asunto(s)
Fibroínas , Péptidos , Animales , Secuencias de Aminoácidos , Fibroínas/química , Fibroínas/genética , Nanofibras/química , Péptidos/química , Seda/química , Arañas/química , Resistencia a la Tracción
9.
Adv Sci (Weinh) ; 11(22): e2400128, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520721

RESUMEN

The unique 3D structure of spider silk protein (spidroin) determines the excellent mechanical properties of spidroin fiber, but the difficulty of heterologous expression and poor spinning performance of recombinant spider silk protein limit its application. A high-yield low-molecular-weight biomimetic spidroin (Amy-6rep) is obtained by sequence modification, and its excellent spinning performance is verified by electrospinning it for use as a nanogenerator. Amy-6rep increases the highly fibrogenic microcrystalline region in the core repeat region of natural spidroin with limited sequence length and replaces the polyalanine sequence with an amyloid polypeptide through structural similarity. Due to sequence modification, the expression of Amy-6rep increased by ≈200%, and the self-assembly performance of Amy-6rep significantly increased. After electrospinning with Amy-6rep, the nanofibers exhibit good tribopower generation capacity. In this paper, a biomimetic spidroin sequence design with high yield and good spinning performance is reported, and a strategy for electrospinning to produce an artificial nanogenerator is explored.


Asunto(s)
Fibroínas , Fibroínas/química , Fibroínas/genética , Fibroínas/metabolismo , Animales , Nanofibras/química , Arañas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Seda/química , Seda/genética
10.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 687-704, 2024 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-38545971

RESUMEN

Spider silk is a natural fiber known as "biosteel" with the strongest composite performance, such as high tensile strength and toughness. It is also equipped with excellent biocompatibility and shape memory ability, thus shows great potential in many fields such as biomedicine and tissue engineering. Spider silk is composed of macromolecular spidroin with rich structural diversity. The characteristics of the primary structure of natural spidroin, such as the high repeatability of amino acids in the core repetitive region, the high content of specific amino acids, the large molecular weight, and the high GC content of the spidroin gene, have brought great difficulties in heterologous expression. This review discusses focuses on the relationship between the featured motifs of the microcrystalline region in the repetitive unit of spidroin and its structure, as well as the spinning performance and the heterologous expression. The optimization design for the sequence of spidroin combined with heterologous expression strategy has greatly promoted the development of the biosynthesis of spider silk proteins. This review may facilitate the rational design and efficient synthesis of recombinant spidroin.


Asunto(s)
Fibroínas , Arañas , Animales , Seda/genética , Seda/química , Fibroínas/genética , Fibroínas/química , Proteínas de Artrópodos , Materiales Biocompatibles , Aminoácidos , Arañas/genética
11.
Biomacromolecules ; 25(3): 1759-1774, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38343096

RESUMEN

Despite the considerable interest in the recombinant production of synthetic spider silk fibers that possess mechanical properties similar to those of native spider silks, such as the cost-effectiveness, tunability, and scalability realization, is still lacking. To address this long-standing challenge, we have constructed an artificial spider silk gene using Golden Gate assembly for the recombinant bacterial production of dragline-mimicking silk, incorporating all the essential components: the N-terminal domain, a 33-residue-long major-ampullate-spidroin-inspired segment repeated 16 times, and the C-terminal domain (N16C). This designed silk-like protein was successfully expressed in Escherichia coli, purified, and cast into films from formic acid. We produced uniformly 13C-15N-labeled N16C films and employed solid-state magic-angle spinning nuclear magnetic resonance (NMR) for characterization. Thus, we could demonstrate that our bioengineered silk-like protein self-assembles into a film where, when hydrated, the solvent-exposed layer of the rigid, ß-nanocrystalline polyalanine core undergoes a transition to an α-helical structure, gaining mobility to the extent that it fully dissolves in water and transforms into a highly dynamic random coil. This hydration-induced behavior induces chain dynamics in the glycine-rich amorphous soft segments on the microsecond time scale, contributing to the elasticity of the solid material. Our findings not only reveal the presence of structurally and dynamically distinct segments within the film's superstructure but also highlight the complexity of the self-organization responsible for the exceptional mechanical properties observed in proteins that mimic dragline silk.


Asunto(s)
Fibroínas , Arañas , Animales , Seda/genética , Seda/química , Proteínas Recombinantes/genética , Fibroínas/genética , Fibroínas/química , Espectroscopía de Resonancia Magnética , Solventes
12.
Int J Biol Macromol ; 262(Pt 2): 130074, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342259

RESUMEN

Poor systemic administration capability, a natural tendency to target CAR-positive cells, nonspecific shedding to normal organs, and poor viral persistence in tumor tissues are major hindrances to the therapeutic benefit of adenovirus (Ad) gene vectors in the clinical setting. Antheraea pernyi silk fibroin (ASF) grafted with targeted peptides was used to coat ING4-IL-24 dual-gene coexpressing adenovirus for targeted gene therapy of lung carcinoma. The dual-gene vector with a diameter of 390 nm could target and infect H460 lung tumor cells, internalize into cells, express the ING4 and IL-24 genes at a high level, effectively inhibit the proliferation of lung tumor cells, and induce their apoptosis. The in vivo treatment of H460 human lung carcinoma xenograft tumors showed that the dual-gene coexpressing vector suppressed the proliferation of lung tumor cells by downregulating the expression of Ki67 and Bcl-2, promoted apoptosis by upregulating the expression of C Caspase-3 and Bax, and blocked tumor angiogenesis by downregulating the expression of VEGF and CD31, thus exerting a multichannel tumor inhibition effect. Surface modification of Ad with targeted cationic silk fibroin is an effective way to solve the natural tendencies and in vivo instability of adenovirus vectors, and such vectors have potential for clinical application.


Asunto(s)
Carcinoma , Fibroínas , Neoplasias Pulmonares , Mariposas Nocturnas , Animales , Humanos , Fibroínas/genética , Pulmón , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Seda
13.
Insect Mol Biol ; 33(1): 41-54, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37740676

RESUMEN

Caddisworms (Trichoptera) spin adhesive silks to construct a variety of underwater composite structures. Many studies have focused on the fibroin heavy chain of caddisworm silk and found that it contains heavy phosphorylation to maintain a stable secondary structure. Besides fibroins, recent studies have also identified some new silk proteins within caddisworm silk. To better understand the silk composition and its secretion process, this study reports the silk gland proteome of a retreat-building caddisworm, Stenopsyche angustata Martynov (Trichoptera, Stenopsychidae). Using liquid chromatography tandem mass spectrometry (LC-MS/MS), 2389 proteins were identified in the silk gland of S. angustata, among which 192 were predicted as secreted silk proteins. Twenty-nine proteins were found to be enriched in the front silk gland, whereas 109 proteins were enriched in the caudal silk gland. The fibroin heavy chain and nine uncharacterized silk proteins were identified as phosphorylated proteins. By analysing the sequence of the fibroin heavy chain, we found that it contains 13 Gly/Thr/Pro-rich regions, 12 Val/Ser/Arg-rich regions and a Gly/Arg/Thr-rich region. Three uncharacterized proteins were identified as sericin-like proteins due to their larger molecular weights, signal peptides and repetitive motifs rich in serine. This study provides valuable information for further clarifying the secretion and adhesion of underwater caddisworm silk.


Asunto(s)
Bombyx , Fibroínas , Animales , Seda/química , Fibroínas/genética , Fibroínas/química , Insectos/metabolismo , Larva/metabolismo , Proteoma/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Bombyx/metabolismo , Proteínas de Insectos/metabolismo
14.
Int J Biol Macromol ; 256(Pt 2): 128466, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38035957

RESUMEN

Spider silks with excellent mechanical properties attract more attention from scientists worldwide, and the dragline silk that serves as the framework of the spider's web is considered one of the strongest fibers. However, it is unfeasible for large-scale production of spider silk due to its highly territorial, cannibalistic, predatory, and solitary behavior. Herein, to alleviate some of these problems and explore aneasy way to produce spider fibers, we constructed recombinant baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) simultaneously expressing Trichonephila clavipes native ampullate spidroin 2 (MaSp-G) and spidroin 1 (MaSp-C) driven by the promoters of silkworm fibroin genes, to infect the nonpermissive Bombyx mori larvae at the fifth instar. MaSp-G and MaSp-C were co-expressed in the posterior silk glands (PSGs) of infected silkworms and successfully secreted into the lumen of the silk gland for fibroin globule assembly. The integration of MaSp-G and MaSp-C into silkworm silk fibers significantly improved the mechanical properties of these chimeric silk fibers, especially the strength and extensibility, which may be caused by the increment of ß-sheet in the chimeric silkworm/spider silk fiber. These results demonstrated that silkworms could be developed as the nonpermissive heterologous host for the mass production of chimeric silkworm/spider silk fibers via the recombinant baculovirus AcMNPV.


Asunto(s)
Bombyx , Fibroínas , Nucleopoliedrovirus , Arañas , Animales , Seda/genética , Bombyx/genética , Fibroínas/genética , Animales Modificados Genéticamente , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa
15.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37628827

RESUMEN

The efficient production of silkworm silk is crucial to the silk industry. Silk protein synthesis is regulated by the juvenile hormone (JH) and 20-Hydroxyecdysone (20E). Therefore, the genetic regulation of silk production is a priority. JH binding protein (JHBP) transports JH from the hemolymph to target organs and cells and protects it. In a previous study, we identified 41 genes containing a JHBP domain in the Bombyx mori genome. Only one JHBP gene, BmJHBPd2, is highly expressed in the posterior silk gland (PSG), and its function remains unknown. In the present study, we investigated the expression levels of BmJHBPd2 and the major silk protein genes in the high-silk-producing practical strain 872 (S872) and the low-silk-producing local strain Dazao. We found that BmJHBPd2 was more highly expressed in S872 than in the Dazao strain, which is consistent with the expression pattern of fibroin genes. A subcellular localization assay indicated that BmJHBPd2 is located in the cytoplasm. In vitro hormone induction experiments showed that BmJHBPd2 was upregulated by juvenile hormone analogue (JHA) treatment. BmKr-h1 upregulation was significantly inhibited by the overexpression of BmJHBPd2 (BmJHBPd2OE) at the cell level when induced by JHA. However, overexpression of BmJHBPd2 in the PSG by transgenic methods led to the inhibition of silk fibroin gene expression, resulting in a reduction in silk yield. Further investigation showed that in the transgenic BmJHBPd2OE silkworm, the key transcription factor of the JH signaling pathway, Krüppel homolog 1 (Kr-h1), was inhibited, and 20E signaling pathway genes, such as broad complex (Brc), E74A, and ultraspiracle protein (USP), were upregulated. Our results indicate that BmJHBPd2 plays an important role in the JH signaling pathway and is important for silk protein synthesis. Furthermore, our findings help to elucidate the mechanisms by which JH regulates silk protein synthesis.


Asunto(s)
Bombyx , Fibroínas , Animales , Bombyx/genética , Seda/genética , Transducción de Señal , Fibroínas/genética , Transporte Biológico , Animales Modificados Genéticamente
16.
Biotechnol Bioeng ; 120(10): 2827-2839, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37243890

RESUMEN

Transgenic modification of Bombyx mori silkworms is a benign approach for the production of silk fibers with extraordinary properties and also to generate therapeutic proteins and other biomolecules for various applications. Silk fibers with fluorescence lasting more than a year, natural protein fibers with strength and toughness exceeding that of spider silk, proteins and therapeutic biomolecules with exceptional properties have been developed using transgenic technology. The transgenic modifications have been done primarily by modifying the silk sericin and fibroin genes and also the silk producing glands. Although the genetic modifications were typically performed using the sericin 1 and other genes, newer techniques such as CRISPR/Cas9 have enabled successful modifications of both the fibroin H-chain and L-chain. Such modifications have led to the production of therapeutic proteins and other biomolecules in reasonable quantities at affordable costs for tissue engineering and other medical applications. Transgenically modified silkworms also have distinct and long-lasting fluorescence useful for bioimaging applications. This review presents an overview of the transgenic techniques for modifications of B. mori silkworms and the properties obtained due to such modifications with particular focus on production of growth factors, fluorescent proteins, and high performance protein fibers.


Asunto(s)
Bombyx , Fibroínas , Animales , Bombyx/genética , Bombyx/metabolismo , Fibroínas/genética , Animales Modificados Genéticamente/genética , Seda/genética , Seda/metabolismo , Fluorescencia
17.
J Insect Physiol ; 147: 104523, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37187341

RESUMEN

The silk produced by Lepidoptera caterpillars is a mixture of proteins secreted by the transformed labial glands, the silk glands (SG). The silk fiber consists of insoluble filamentous proteins that form a silk core and are produced in the posterior part of the SG and soluble coat proteins consisting of sericins and various other polypeptides secreted in the middle part of the SG. We constructed a silk gland specific transcriptome of Andraca theae and created a protein database required for peptide mass fingerprinting. We identified major silk components by proteomic analysis of cocoon silk and by searching for homologies with known silk protein sequences from other species. We identified 30 proteins including a heavy chain fibroin, a light chain fibroin and fibrohexamerin (P25) that form the silk core, as well as members of several structural families that form the silk coating. To uncover the evolutionary relationships among silk proteins, we included orthologs of silk genes from several recent genome projects and performed phylogenetic analyses. Our results confirm the recent molecular classification that the family Endromidae appears to be slightly more distant from the family Bombycidae. Our study provides important information on the evolution of silk proteins in the Bombycoidea, which is needed for proper annotation of the proteins and future functional studies.


Asunto(s)
Bombyx , Fibroínas , Manduca , Mariposas Nocturnas , Animales , Seda/química , Mariposas Nocturnas/metabolismo , Fibroínas/genética , Fibroínas/química , Fibroínas/metabolismo , Filogenia , Proteómica , Manduca/metabolismo , Bombyx/metabolismo , Proteínas de Insectos/metabolismo
18.
Metab Eng ; 77: 231-241, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37024071

RESUMEN

To investigate the metabolic elasticity and production bottlenecks for recombinant silk proteins in Escherichia coli, we performed a comprehensive characterization of one elastin-like peptide strain (ELP) and two silk protein strains (A5 4mer, A5 16mer). Our approach included 13C metabolic flux analysis, genome-scale modeling, transcription analysis, and 13C-assisted media optimization experiments. Three engineered strains maintained their central flux network during growth, while measurable metabolic flux redistributions (such as the Entner-Doudoroff pathway) were detected. Under metabolic burdens, the reduced TCA fluxes forced the engineered strain to rely more on substrate-level phosphorylation for ATP production, which increased acetate overflow. Acetate (as low as 10 mM) in the media was highly toxic to silk-producing strains, which reduced 4mer production by 43% and 16mer by 84%, respectively. Due to the high toxicity of large-size silk proteins, 16mer's productivity was limited, particularly in the minimal medium. Therefore, metabolic burden, overflow acetate, and toxicity of silk proteins may form a vicious positive feedback loop that fractures the metabolic network. Three solutions could be applied: 1) addition of building block supplements (i.e., eight key amino acids: His, Ile, Phe, Pro, Tyr, Lys, Met, Glu) to reduce metabolic burden; 2) disengagement of growth and production; and 3) use of non-glucose based substrate to reduce acetate overflow. Other reported strategies were also discussed in light of decoupling this positive feedback loop.


Asunto(s)
Escherichia coli , Fibroínas , Escherichia coli/metabolismo , Fibroínas/genética , Fibroínas/metabolismo , Retroalimentación , Redes y Vías Metabólicas , Proteínas Recombinantes/metabolismo , Acetatos/metabolismo
19.
BMC Genomics ; 24(1): 117, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927511

RESUMEN

BACKGROUND: Generating the most contiguous, accurate genome assemblies given available sequencing technologies is a long-standing challenge in genome science. With the rise of long-read sequencing, assembly challenges have shifted from merely increasing contiguity to correctly assembling complex, repetitive regions of interest, ideally in a phased manner. At present, researchers largely choose between two types of long read data: longer, but less accurate sequences, or highly accurate, but shorter reads (i.e., >Q20 or 99% accurate). To better understand how these types of long-read data as well as scale of data (i.e., mean length and sequencing depth) influence genome assembly outcomes, we compared genome assemblies for a caddisfly, Hesperophylax magnus, generated with longer, but less accurate, Oxford Nanopore (ONT) R9.4.1 and highly accurate PacBio HiFi (HiFi) data. Next, we expanded this comparison to consider the influence of highly accurate long-read sequence data on genome assemblies across 6750 plant and animal genomes. For this broader comparison, we used HiFi data as a surrogate for highly accurate long-reads broadly as we could identify when they were used from GenBank metadata. RESULTS: HiFi reads outperformed ONT reads in all assembly metrics tested for the caddisfly data set and allowed for accurate assembly of the repetitive ~ 20 Kb H-fibroin gene. Across plants and animals, genome assemblies that incorporated HiFi reads were also more contiguous. For plants, the average HiFi assembly was 501% more contiguous (mean contig N50 = 20.5 Mb) than those generated with any other long-read data (mean contig N50 = 4.1 Mb). For animals, HiFi assemblies were 226% more contiguous (mean contig N50 = 20.9 Mb) versus other long-read assemblies (mean contig N50 = 9.3 Mb). In plants, we also found limited evidence that HiFi may offer a unique solution for overcoming genomic complexity that scales with assembly size. CONCLUSIONS: Highly accurate long-reads generated with HiFi or analogous technologies represent a key tool for maximizing genome assembly quality for a wide swath of plants and animals. This finding is particularly important when resources only allow for one type of sequencing data to be generated. Ultimately, to realize the promise of biodiversity genomics, we call for greater uptake of highly accurate long-reads in future studies.


Asunto(s)
Biodiversidad , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Genómica/métodos , Genómica/normas , Genómica/tendencias , Insectos/clasificación , Insectos/genética , Fibroínas/genética , Mapeo Contig , Genoma de los Insectos/genética , Animales , Bases de Datos de Ácidos Nucleicos , Reproducibilidad de los Resultados , Metaanálisis como Asunto , Conjuntos de Datos como Asunto , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/normas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Secuenciación de Nucleótidos de Alto Rendimiento/tendencias , Plantas/genética , Genoma de Planta/genética
20.
Signal Transduct Target Ther ; 8(1): 62, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36775818

RESUMEN

Unhealable diabetic wounds need to be addressed with the help of newer, more efficacious strategies. Exosomes combined with biomaterials for sustained delivery of therapeutic agents are expected to bring new hope for chronic wound treatment. Here, the engineered exosomes modified for efficiently loading miR146a and attaching to silk fibroin patch (SFP) were demonstrated to promote diabetic wound healing. Silk fibroin binding peptide (SFBP) was screened through phage display, and SFBP-Gluc-MS2 (SGM) and pac-miR146a-pac fusion protein were constructed. The designed exosomes (SGM-Exos, miR146a-Exos, and SGM-miR146a-Exos) were isolated from the engineered placental mesenchymal stem cells (PMSCs) transduced with SGM or/and pac-miR146a-pac protein. Gluc signals indicated SGM-Exo@SFP markedly increased the binding rate and the stability of SGM-Exo. Moreover, the loading efficiency of miR146a in SGM-miR146a-Exos was ten-fold higher than that in miR146a-Exos. Superior to untreated, SGM-miR146a-Exo-only treated, and SFP-only treated groups, SGM-miR146a-Exo@SFP drived wound healing associated with less inflammation, collagen deposition, and neovascularization. The transcriptomics analysis suggested anti-inflammatory and regenerative effects with SGM-miR146a-Exo@SFP treatment. Here, we show efficient exosome@biomaterial-based miRNA delivery systems for regenerative medicine and tissue engineering.


Asunto(s)
Diabetes Mellitus , Exosomas , Fibroínas , Humanos , Exosomas/genética , Exosomas/metabolismo , Fibroínas/genética , Fibroínas/farmacología , Fibroínas/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Cicatrización de Heridas/genética , Células Madre Mesenquimatosas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...