Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.105
Filtrar
1.
Eur Respir Rev ; 33(172)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39009409

RESUMEN

Lysophosphatidic acid (LPA)-mediated activation of LPA receptor 1 (LPAR1) contributes to the pathophysiology of fibrotic diseases such as idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc). These diseases are associated with high morbidity and mortality despite current treatment options. The LPA-producing enzyme autotaxin (ATX) and LPAR1 activation contribute to inflammation and mechanisms underlying fibrosis in preclinical fibrotic models. Additionally, elevated levels of LPA have been detected in bronchoalveolar lavage fluid from patients with IPF and in serum from patients with SSc. Thus, ATX and LPAR1 have gained considerable interest as pharmaceutical targets to combat fibrotic disease and inhibitors of these targets have been investigated in clinical trials for IPF and SSc. The goals of this review are to summarise the current literature on ATX and LPAR1 signalling in pulmonary fibrosis and to help differentiate the novel inhibitors in development. The mechanisms of action of ATX and LPAR1 inhibitors are described and preclinical studies and clinical trials of these agents are outlined. Because of their contribution to numerous physiologic events underlying fibrotic disease, ATX and LPAR1 inhibition presents a promising therapeutic strategy for IPF, SSc and other fibrotic diseases that may fulfil unmet needs of the current standard of care.


Asunto(s)
Fibrosis Pulmonar Idiopática , Hidrolasas Diéster Fosfóricas , Receptores del Ácido Lisofosfatídico , Transducción de Señal , Humanos , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Receptores del Ácido Lisofosfatídico/metabolismo , Animales , Transducción de Señal/efectos de los fármacos , Hidrolasas Diéster Fosfóricas/metabolismo , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Terapia Molecular Dirigida , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Pulmón/metabolismo , Antifibróticos/uso terapéutico , Lisofosfolípidos/metabolismo , Resultado del Tratamiento , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/fisiopatología , Inhibidores de Fosfodiesterasa/uso terapéutico
2.
J Am Heart Assoc ; 13(14): e034363, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38979786

RESUMEN

BACKGROUND: Aging-associated left ventricular dysfunction promotes cardiopulmonary fibrogenic remodeling, Group 2 pulmonary hypertension (PH), and right ventricular failure. At the time of diagnosis, cardiac function has declined, and cardiopulmonary fibrosis has often developed. Here, we sought to develop a molecular positron emission tomography (PET)-magnetic resonance imaging (MRI) protocol to detect both cardiopulmonary fibrosis and fibrotic disease activity in a left ventricular dysfunction model. METHODS AND RESULTS: Left ventricular dysfunction was induced by transverse aortic constriction (TAC) in 6-month-old senescence-accelerated prone mice, a subset of mice that received sham surgery. Three weeks after surgery, mice underwent simultaneous PET-MRI at 4.7 T. Collagen-targeted PET and fibrogenesis magnetic resonance (MR) probes were intravenously administered. PET signal was computed as myocardium- or lung-to-muscle ratio. Percent signal intensity increase and Δ lung-to-muscle ratio were computed from the pre-/postinjection magnetic resonance images. Elevated allysine in the heart (P=0.02) and lungs (P=0.17) of TAC mice corresponded to an increase in myocardial magnetic resonance imaging percent signal intensity increase (P<0.0001) and Δlung-to-muscle ratio (P<0.0001). Hydroxyproline in the heart (P<0.0001) and lungs (P<0.01) were elevated in TAC mice, which corresponded to an increase in heart (myocardium-to-muscle ratio, P=0.02) and lung (lung-to-muscle ratio, P<0.001) PET measurements. Pressure-volume loop and echocardiography demonstrated adverse left ventricular remodeling, function, and increased right ventricular systolic pressure in TAC mice. CONCLUSIONS: Administration of collagen-targeted PET and allysine-targeted MR probes led to elevated PET-magnetic resonance imaging signals in the myocardium and lungs of TAC mice. The study demonstrates the potential to detect fibrosis and fibrogenesis in cardiopulmonary disease through a dual molecular PET-magnetic resonance imaging protocol.


Asunto(s)
Modelos Animales de Enfermedad , Fibrosis , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Disfunción Ventricular Izquierda , Animales , Tomografía de Emisión de Positrones/métodos , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/metabolismo , Imagen por Resonancia Magnética/métodos , Ratones , Miocardio/patología , Miocardio/metabolismo , Fibrosis Pulmonar/diagnóstico por imagen , Fibrosis Pulmonar/fisiopatología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/etiología , Función Ventricular Izquierda , Masculino , Pulmón/diagnóstico por imagen , Pulmón/patología , Pulmón/fisiopatología , Pulmón/metabolismo , Imagen Multimodal/métodos , Colágeno/metabolismo , Remodelación Ventricular , Lisina/análogos & derivados
3.
Sci Rep ; 14(1): 13158, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849437

RESUMEN

Patients with acute exacerbation of lung fibrosis with usual interstitial pneumonia (EUIP) pattern are at increased risk for ventilator-induced lung injury (VILI) and mortality when exposed to mechanical ventilation (MV). Yet, lack of a mechanical model describing UIP-lung deformation during MV represents a research gap. Aim of this study was to develop a constitutive mathematical model for UIP-lung deformation during lung protective MV based on the stress-strain behavior and the specific elastance of patients with EUIP as compared to that of acute respiratory distress syndrome (ARDS) and healthy lung. Partitioned lung and chest wall mechanics were assessed for patients with EUIP and primary ARDS (1:1 matched based on body mass index and PaO2/FiO2 ratio) during a PEEP trial performed within 24 h from intubation. Patient's stress-strain curve and the lung specific elastance were computed and compared with those of healthy lungs, derived from literature. Respiratory mechanics were used to fit a novel mathematical model of the lung describing mechanical-inflation-induced lung parenchyma deformation, differentiating the contributions of elastin and collagen, the main components of lung extracellular matrix. Five patients with EUIP and 5 matched with primary ARDS were included and analyzed. Global strain was not different at low PEEP between the groups. Overall specific elastance was significantly higher in EUIP as compared to ARDS (28.9 [22.8-33.2] cmH2O versus 11.4 [10.3-14.6] cmH2O, respectively). Compared to ARDS and healthy lung, the stress/strain curve of EUIP showed a steeper increase, crossing the VILI threshold stress risk for strain values greater than 0.55. The contribution of elastin was prevalent at lower strains, while the contribution of collagen was prevalent at large strains. The stress/strain curve for collagen showed an upward shift passing from ARDS and healthy lungs to EUIP lungs. During MV, patients with EUIP showed different respiratory mechanics, stress-strain curve and specific elastance as compared to ARDS patients and healthy subjects and may experience VILI even when protective MV is applied. According to our mathematical model of lung deformation during mechanical inflation, the elastic response of UIP-lung is peculiar and different from ARDS. Our data suggest that patients with EUIP experience VILI with ventilatory setting that are lung-protective for patients with ARDS.


Asunto(s)
Pulmón , Respiración Artificial , Síndrome de Dificultad Respiratoria , Humanos , Masculino , Femenino , Persona de Mediana Edad , Respiración Artificial/efectos adversos , Síndrome de Dificultad Respiratoria/fisiopatología , Anciano , Pulmón/fisiopatología , Pulmón/patología , Elasticidad , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología , Fibrosis Pulmonar/fisiopatología , Fibrosis Pulmonar/metabolismo , Mecánica Respiratoria/fisiología , Estrés Mecánico , Enfermedades Pulmonares Intersticiales/fisiopatología , Modelos Teóricos
4.
Sci Rep ; 14(1): 13774, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877042

RESUMEN

Assessment of lung function is an important clinical tool for the diagnosis and monitoring of chronic lung diseases, including idiopathic pulmonary fibrosis (IPF). In mice, lung function maneuvers use algorithm-based ventilation strategies including forced oscillation technique (FOT), negative pressure-driven forced expiratory (NPFE) and pressure-volume (PV) maneuvers via the FlexiVent system. This lung function test (LFT) is usually performed as end-point measurement only, requiring several mice for each time point to be analyzed. Repetitive lung function maneuvers would allow monitoring of a disease process within the same individual while reducing the numbers of laboratory animals. However, its feasibility in mice and impact on developing lung fibrosis has not been studied so far. Using orotracheal cannulation without surgical exposure of the trachea, we examined the tolerability to repetitive lung function maneuvers (up to four times) in one and the same mouse, both under healthy conditions and in a model of AdTGF-ß1 induced lung fibrosis. In essence, we found that repetitive invasive lung function maneuvers were well tolerated and did not accentuate experimental lung fibrosis in mice. This study contributes to the 3R principle aiming to reduce the numbers of experimental animals used in biomedical research.


Asunto(s)
Modelos Animales de Enfermedad , Pruebas de Función Respiratoria , Animales , Ratones , Pulmón/fisiopatología , Pulmón/patología , Fibrosis Pulmonar/fisiopatología , Fibrosis Pulmonar/patología , Ratones Endogámicos C57BL , Masculino , Factor de Crecimiento Transformador beta1/metabolismo , Fibrosis Pulmonar Idiopática/fisiopatología , Fibrosis Pulmonar Idiopática/patología
5.
Adv Gerontol ; 37(1-2): 144-148, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-38944785

RESUMEN

Research on the condition of the lungs in senile people is an urgent task. This is due to the fact that degenerative or age-associated changes in the respiratory system play an important role in the formation of senile asthenia syndrome and a decrease in the age-related viability of the body as a whole. CT-scans of patients aged 80-90 years were analyzed (n=31). Age-associated changes were evaluated: the presence of linear fibrosis, increased pulmonary pattern by the type of reticular (reticular) changes, the presence of gross fibrous reticular changes with cystic cavities and air bullae (by the type of «cellular lung¼), as well as the presence of pulmonary emphysema. Most naturally, senile people show changes characteristic of linear pulmonary fibrosis and emphysema. The progression of the process leads to diffuse reticular changes in the interalveolar and intersegmental septa and, in adverse cases, to the formation of gross changes in the type of «cellular lung¼. Fibro-emphysematous changes are significantly more common in men. A microbiological study of the microbiota of the lower respiratory tract in elderly people was also carried out (n=16). When studying the microbiocenosis of the lower respiratory tract in elderly people, the following data were obtained: resident microflora was found in 71% and clinically significant microorganisms were found in 29%.


Asunto(s)
Microbiota , Enfisema Pulmonar , Humanos , Anciano de 80 o más Años , Masculino , Femenino , Enfisema Pulmonar/microbiología , Enfisema Pulmonar/fisiopatología , Enfisema Pulmonar/diagnóstico , Microbiota/fisiología , Pulmón/microbiología , Tomografía Computarizada por Rayos X/métodos , Fibrosis Pulmonar/fisiopatología , Fibrosis Pulmonar/microbiología , Fibrosis Pulmonar/diagnóstico , Fibrosis Pulmonar/etiología , Envejecimiento/fisiología
6.
Lung ; 202(3): 257-267, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38713420

RESUMEN

PURPOSE: World Trade Center (WTC) exposure is associated with obstructive airway diseases and sarcoidosis. There is limited research regarding the incidence and progression of non-sarcoidosis interstitial lung diseases (ILD) after WTC-exposure. ILD encompasses parenchymal diseases which may lead to progressive pulmonary fibrosis (PPF). We used the Fire Department of the City of New York's (FDNY's) WTC Health Program cohort to estimate ILD incidence and progression. METHODS: This longitudinal study included 14,525 responders without ILD prior to 9/11/2001. ILD incidence and prevalence were estimated and standardized to the US 2014 population. Poisson regression modeled risk factors, including WTC-exposure and forced vital capacity (FVC), associated with ILD. Follow-up time ended at the earliest of incident diagnosis, end of study period/case ascertainment, transplant or death. RESULTS: ILD developed in 80/14,525 FDNY WTC responders. Age, smoking, and gastroesophageal reflux disease (GERD) prior to diagnosis were associated with incident ILD, though FVC was not. PPF developed in 40/80 ILD cases. Among the 80 cases, the average follow-up time after ILD diagnosis was 8.5 years with the majority of deaths occurring among those with PPF (PPF: n = 13; ILD without PPF: n = 6). CONCLUSIONS: The prevalence of post-9/11 ILD was more than two-fold greater than the general population. An exposure-response gradient could not be demonstrated. Half the ILD cases developed PPF, higher than previously reported. Age, smoking, and GERD were risk factors for ILD and PPF, while lung function was not. This may indicate that lung function measured after respirable exposures would not identify those at risk for ILD or PPF.


Asunto(s)
Progresión de la Enfermedad , Enfermedades Pulmonares Intersticiales , Fibrosis Pulmonar , Ataques Terroristas del 11 de Septiembre , Humanos , Estudios Longitudinales , Masculino , Enfermedades Pulmonares Intersticiales/epidemiología , Enfermedades Pulmonares Intersticiales/fisiopatología , Persona de Mediana Edad , Femenino , Incidencia , Capacidad Vital , Adulto , Prevalencia , Factores de Riesgo , Fibrosis Pulmonar/epidemiología , Fibrosis Pulmonar/fisiopatología , Ciudad de Nueva York/epidemiología , Reflujo Gastroesofágico/epidemiología , Exposición Profesional/efectos adversos , Fumar/efectos adversos , Fumar/epidemiología , Anciano , Factores de Tiempo , Socorristas/estadística & datos numéricos
7.
Lung ; 202(3): 269-273, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38753183

RESUMEN

INTRODUCTION: Pulmonary fibrosis is a characteristic of various interstitial lung diseases (ILDs) with differing etiologies. Clinical trials in progressive pulmonary fibrosis (PPF) enroll patients based on previously described clinical criteria for past progression, which include a clinical practice guideline for PPF classification and inclusion criteria from the INBUILD trial. In this study, we compared the ability of past FVC (forced vital capacity) progression and baseline biomarker levels to predict future progression in a cohort of patients from the PFF Patient Registry. METHODS: Biomarkers previously associated with pathobiology and/or progression in pulmonary fibrosis were selected to reflect cellular senescence (telomere length), pulmonary epithelium (SP-D, RAGE), myeloid activation (CXCL13, YKL40, CCL18, OPN) and fibroblast activation (POSTN, COMP, PROC3). RESULTS: PFF or INBUILD-like clinical criteria was used to separate patients into past progressor and non-past progressor groups, and neither clinical criterion appeared to enrich for patients with greater future lung function decline. All baseline biomarkers measured were differentially expressed in patient groups compared to healthy controls. Baseline levels of SP-D and POSTN showed the highest correlations with FVC slope over one year, though correlations were low. CONCLUSIONS: Our findings provide further evidence that prior decline in lung function may not predict future disease progression for ILD patients, and elevate the need for molecular definitions of a progressive phenotype. Across ILD subtypes, certain shared pathobiologies may be present based on the molecular profile of certain biomarker groups observed. In particular, SP-D may be a common marker of pulmonary injury and future lung function decline across ILDs.


Asunto(s)
Biomarcadores , Progresión de la Enfermedad , Enfermedades Pulmonares Intersticiales , Sistema de Registros , Humanos , Masculino , Femenino , Persona de Mediana Edad , Capacidad Vital , Anciano , Enfermedades Pulmonares Intersticiales/fisiopatología , Enfermedades Pulmonares Intersticiales/diagnóstico , Fibrosis Pulmonar/fisiopatología , Fibrosis Pulmonar/diagnóstico , Proteína D Asociada a Surfactante Pulmonar/sangre , Pulmón/fisiopatología , Valor Predictivo de las Pruebas , Proteína 1 Similar a Quitinasa-3/sangre , Quimiocinas CC , Osteopontina , Receptor para Productos Finales de Glicación Avanzada/sangre , Fibrosis Pulmonar Idiopática/fisiopatología , Fibrosis Pulmonar Idiopática/diagnóstico
8.
Respir Med ; 227: 107656, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697229

RESUMEN

RATIONALE: The proportion of patients who develop progressive pulmonary fibrosis (PPF), along with risk factors for progression remain poorly understood. OBJECTIVES: To examine factors associated with an increased risk of developing PPF among patients at a referral center. METHODS: We identified patients with a diagnosis of interstitial lung disease (ILD) seen within the Cleveland Clinic Health System. Utilizing a retrospective observational approach we estimated the risk of developing progression by diagnosis group and identified key clinical predictors using the FVC component of both the original progressive fibrotic interstitial lung disease (PFILD) and the proposed PPF (ATS) criteria. RESULTS: We identified 5934 patients with a diagnosis of ILD. The cumulative incidence of progression over the 24 months was similar when assessed with the PFILD and PPF criteria (33.1 % and 37.9 % respectively). Of those who met the ATS criteria, 9.5 % did not meet the PFILD criteria. Conversely, 4.3 % of patients who met PFILD thresholds did not achieve the 5 % absolute FVC decline criteria. Significant differences in the rate of progression were seen based on underlying diagnosis. Steroid therapy (HR 1.46, CI 1.31-1.62) was associated with an increased risk of progressive fibrosis by both PFILD and PPF criteria. CONCLUSION: Regardless of the definition used, the cumulative incidence of progressive disease is high in patients with ILD in the 24 months following diagnosis. Some differences are seen in the risk of progression when assessed by PFILD and PPF criteria. Further work is needed to identify modifiable risk factors for the development of progressive fibrosis.


Asunto(s)
Progresión de la Enfermedad , Enfermedades Pulmonares Intersticiales , Humanos , Enfermedades Pulmonares Intersticiales/fisiopatología , Enfermedades Pulmonares Intersticiales/epidemiología , Enfermedades Pulmonares Intersticiales/complicaciones , Masculino , Femenino , Estudios Retrospectivos , Capacidad Vital/fisiología , Persona de Mediana Edad , Anciano , Factores de Riesgo , Fibrosis Pulmonar/fisiopatología , Fibrosis Pulmonar/complicaciones , Fibrosis Pulmonar/epidemiología , Incidencia
10.
Ann Am Thorac Soc ; 21(7): 1007-1014, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38315632

RESUMEN

Rationale: A visual analog scale (VAS) is a simple and easily administered tool for measuring the impact of disease; however, little is known about the use of a dyspnea VAS in interstitial lung disease (ILD). Objectives: To validate the use of a dyspnea VAS in a large and heterogeneous cohort of patients with fibrotic ILD, including its minimal clinically important difference (MCID), responsiveness to change, and prognostic significance. Methods: Patients with fibrotic ILD were identified from a large prospective registry. The validity of a 100-mm dyspnea VAS was assessed by testing its correlation in change score with other measures of ILD severity, including the University of California San Diego Shortness of Breath Questionnaire, the King's Brief Interstitial Lung Disease quality of life questionnaire Breathlessness and Activities Domain, the European Quality of Life VAS, forced vital capacity, and diffusing capacity of the lung for carbon monoxide. The responsiveness of the dyspnea VAS was qualitatively confirmed on the basis of there being an observable difference in the change in dyspnea VAS across tertiles of change in anchor variables. The MCID in dyspnea VAS was calculated using both anchor (linear regression) and distribution (one-half standard deviation) approaches, with anchors including the above variables that had a correlation with dyspnea VAS (|r| ≥ 0.30). The association of dyspnea VAS with time to death or transplant was determined. Results: The cohort included 826 patients with fibrotic ILD, including 127 patients with follow-up measurements at 6 months. The mean baseline dyspnea VAS was 53 ± 24 mm. Dyspnea VAS change scores were moderately correlated with the University of California San Diego Shortness of Breath Questionnaire (|r| = 0.55) and the King's Brief Interstitial Lung Disease quality of life questionnaire Breathlessness and Activities Domain (|r| = 0.44) and weakly correlated with the European Quality of Life VAS (|r| = 0.19), forced vital capacity percent predicted (|r| = 0.21), and diffusing capacity of the lung for carbon monoxide percent predicted (|r| = 0.05). The MCID was 2.7 to 4.5 using the more reliable anchor-based methods and 12.0 based on distribution-based methods. Dyspnea VAS was associated with time to death or transplant in unadjusted models and after adjustment for age and sex (hazard ratios, 1.16 and 1.15, respectively; P < 0.05 for both). Conclusions: This study provides support for the use of the dyspnea VAS in patients with fibrotic ILD, with an estimated anchor-based MCID of 5 mm.


Asunto(s)
Disnea , Enfermedades Pulmonares Intersticiales , Calidad de Vida , Escala Visual Analógica , Humanos , Disnea/etiología , Disnea/diagnóstico , Masculino , Femenino , Enfermedades Pulmonares Intersticiales/complicaciones , Enfermedades Pulmonares Intersticiales/fisiopatología , Enfermedades Pulmonares Intersticiales/diagnóstico , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Índice de Severidad de la Enfermedad , Pronóstico , Sistema de Registros , Encuestas y Cuestionarios , Capacidad Vital , Fibrosis Pulmonar/complicaciones , Fibrosis Pulmonar/fisiopatología
11.
Clin Sci (Lond) ; 137(11): 895-912, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37314017

RESUMEN

Circadian regulation causes the activity of biological processes to vary over a 24-h cycle. The pathological effects of this variation are predominantly studied using two different approaches: pre-clinical models or observational clinical studies. Both these approaches have provided useful insights into how underlying circadian mechanisms operate and specifically which are regulated by the molecular oscillator, a key time-keeping mechanism in the body. This review compares and contrasts findings from these two approaches in the context of four common respiratory diseases (asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and respiratory infection). Potential methods used to identify and measure human circadian oscillations are also discussed as these will be useful outcome measures in future interventional human trials that target circadian mechanisms.


Asunto(s)
Relojes Circadianos , Enfermedades Pulmonares , Humanos , Asma/fisiopatología , Relojes Circadianos/fisiología , Enfermedades Pulmonares/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Fibrosis Pulmonar/fisiopatología , Infecciones del Sistema Respiratorio/fisiopatología , Factores de Tiempo , Ensayos Clínicos como Asunto , Proyectos de Investigación
12.
Int Immunopharmacol ; 113(Pt A): 109339, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36330909

RESUMEN

Our previous study showed that triggering receptors expressed on myeloid cell-1 (TREM-1) was upregulated in bleomycin (BLM)-induced pulmonary fibrosis (PF) mouse model. However, the role of TREM-1 in the development of PF and its underlying mechanism remain unclear. Herein, we report that the prophylactical blockade of TREM-1 using a decoy peptide dodecapeptide (LR12) exerted protective effects against BLM-induced PF in mice, with a higher survival rate, attenuated tissue injury, and less extracellular matrix deposition. Interestingly, therapeutic blockade of TREM-1 at the early stage of fibrosis also attenuated BLM-induced PF, suggesting a non-inflammatory effect. More importantly, we observed that TREM-1 blockade with LR12 significantly reduced the expression of the senescence-relative protein, including p16, p21, p53, and γ-H2AX in the lungs of PF mice. Notably, TREM-1 was upregulated in alveolar epithelial cells (AECs) and correlated with the levels of senescence markers in BLM-treated mice. In vitro, activating TREM-1 with an agonistic antibody exacerbated BLM-induced senescence in MLE12 cells, a murine AEC cell line. Furthermore, prophylactic or therapeutic blockade of TREM-1 protected MLE12 cells from senescence induced by BLM or H2O2. In conclusion, our findings elucidate a pro-fibrotic effect of TREM-1 by inducing AECs senescence in PF, providing a potential strategy for fibrotic disease treatment.


Asunto(s)
Células Epiteliales Alveolares , Fibrosis Pulmonar , Receptor Activador Expresado en Células Mieloides 1 , Animales , Ratones , Células Epiteliales Alveolares/patología , Bleomicina/toxicidad , Peróxido de Hidrógeno/metabolismo , Células Mieloides , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/fisiopatología , Receptor Activador Expresado en Células Mieloides 1/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(10): e2116279119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238669

RESUMEN

The warning cytokine interleukin-33 receptor (IL-33R) mediates local inflammatory responses and plays crucial roles in the pathogenesis of immune diseases such as pulmonary fibrosis and rheumatoid arthritis. Whether and how IL-33R is regulated remain enigmatic. Here, we identified ubiquitin-specific protease 38 (USP38) as a negative regulator of IL-33R­mediated signaling. USP38 deficiency promotes interleukin-33 (IL-33)­induced downstream proinflammatory responses in vitro and in vivo. Usp38−/− mice are more susceptible to inflammatory damage and death and developed more serious pulmonary fibrosis after bleomycin treatment. USP38 is constitutively associated with IL-33R and deconjugates its K27-linked polyubiquitination at K511, resulting in its autophagic degradation. We further show that the E3 ubiquitin ligase tumor necrosis factor receptor­associated factor 6 (TRAF6) catalyzes K27-linked polyubiquitination of IL-33R at K511, and that deficiency of TRAF6 inhibits IL-33­mediated signaling. Our findings suggest that K27-linked polyubiquitination and deubiquitination of IL-33R by TRAF6 and USP38 reciprocally regulate IL-33R level and signaling, which represents a critical mechanism in the regulation of IL-33­triggered lung inflammatory response and pulmonary fibrosis.


Asunto(s)
Inflamación/fisiopatología , Interleucina-33/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fibrosis Pulmonar/fisiopatología , Proteasas Ubiquitina-Específicas/metabolismo , Autofagia , Regulación hacia Abajo , Humanos , Inflamación/metabolismo , Interleucina-33/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Transducción de Señal , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación
14.
Toxicol Lett ; 359: 65-72, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35143883

RESUMEN

This study aimed to investigate the correlation between prenatal dexamethasone exposure (PDE) and susceptibility to pulmonary fibrosis in offspring. Healthy female Wistar rats were given dexamethasone (0.2 mg/kg.d) or an equal volume of normal saline subcutaneously from 9 to 20 days after conception. Some of their female offspring underwent ovariectomy (OV) at 22 weeks after birth. All animals were euthanized at 28 weeks after birth. The morphological changes related to pulmonary fibrosis and extracellular matrix-related gene expression were detected, and Two-way ANOVA analyzed the interaction between PDE and OV. The results showed that adult offspring rats in FD group (female rats with PDE treatment) had early pulmonary fibrosis changes, such as pulmonary interstitial thickening, and increased expression of type IV collagen (COL4), α -smooth muscle actin (α-SMA) and fibronectin (FN) in lung tissues compared with those in FC group (female rats with saline treatment). In addition, adult offspring rats in FDO group (female rats with PDE and OV treatment) showed signs of pulmonary fibrosis, including apparent extracellular matrix deposition, increased lung injury scores (P<0.01, P<0.05), and extracellular matrix related gene expression (P<0.01, P<0.05), compared with rats in FDS (female rats with PDE treatment alone) or rats in FCO group (female rats with OV treatment alone). Moreover, PDE and OV had an interactive effect on the development of pulmonary fibrosis in female adult offspring. This study first reported the correlation between PDE and susceptibility to pulmonary fibrosis in female offspring rats, as well as the synergistic effect of PDE and OV in this pathological event, which provided a basis for further understanding of the pathogenesis of fetal originated pulmonary fibrosis.


Asunto(s)
Dexametasona/toxicidad , Susceptibilidad a Enfermedades/inducido químicamente , Desarrollo Fetal/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Desarrollo Fetal/genética , Humanos , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Ratas , Ratas Wistar , Factores Sexuales
15.
Biomed Pharmacother ; 145: 112245, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34772578

RESUMEN

Cathepsin S (CTSS), a lysosomal protease, belongs to a family of cysteine cathepsin proteases that promote degradation of damaged proteins in the endolysosomal pathway. Aberrant CTSS expression and regulation are associated with the pathogenesis of several diseases, including lung diseases. CTSS overexpression causes a variety of pathological processes, including pulmonary fibrosis, with increased CTSS secretion and accelerated extracellular matrix remodeling. Compared to many other cysteine cathepsin family members, CTSS has unique features that it presents limited tissue expression and retains its enzymatic activity at a neutral pH, suggesting its decisive involvement in disease microenvironments. In this review, we investigated the role of CTSS in lung disease, exploring recent studies that have indicated that CTSS mediates fibrosis in unique ways, along with its structure, substrates, and distinct regulation. We also outlined examples of CTSS inhibitors in clinical and preclinical development and proposed CTSS as a potential therapeutic target for pulmonary fibrosis.


Asunto(s)
Catepsinas/antagonistas & inhibidores , Fibrosis Pulmonar/tratamiento farmacológico , Animales , Catepsinas/metabolismo , Desarrollo de Medicamentos , Matriz Extracelular/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Terapia Molecular Dirigida , Fibrosis Pulmonar/fisiopatología
17.
Exp Mol Pathol ; 124: 104737, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34953919

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial disease of the lung tissue that causes symptoms such as coughing and asthma. It is caused by inflammatory factors and oxidative stress. In vivo model of IPF is induced by bleomycin (BLM,) a chemotherapeutic agent. We have investigated the effect of dapsone on bleomycin-induced IPF in adult male Wistar rats due to its anti-inflammatory and anti-oxidative stress effects. The animals were randomly divided into 5 groups (Control, BLM, BLM + dapsone 1, BLM + Dapsone 3, BLM + Dapsone 10). The control group received normal water and food. In the fibrosis group, bleomycin (BLM) (5 mg/kg) was used to induce pulmonary fibrosis by intratracheal administration. Three groups of animals were treated daily with single doses of 1, 3, and 10 mg dapsone by intraperitoneal injection 1 h after receiving BLM for 2 weeks. The activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and oxidative stress markers such as myeloperoxidase (MPO), malondialdehyde (MDA), protein carbonyl (PC) and nitrite were measured to evaluate bleomycin and therapeutic effect of dapsone. The histological assays of lung tissues were done by Hematoxylin-eosin (H & E) and Masson's trichrome staining. BLM reduced the activity of oxidative enzymes and increased the oxidative stress markers, while treatment with dapsone has reversed the results. In addition, the total number of cells as inflammatory cells such as neutrophils and eosinophils were examined. It has been indicated BLM increased these cells, and dapsone decreased them. The results of H & E and Masson's trichrome staining showed that dapsone reduced inflammation and alveolar wall thickness and BLM-induced pulmonary fibrosis. According to the findings of this study, dapsone seems to have therapeutic effects on pulmonary fibrosis through its anti-inflammatory and anti-oxidative stress properties and reduction of the toxic effects of bleomycin.


Asunto(s)
Bleomicina/efectos adversos , Dapsona/farmacología , Fibrosis Pulmonar , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Bleomicina/toxicidad , Catalasa/metabolismo , Dapsona/administración & dosificación , Modelos Animales de Enfermedad , Glutatión Peroxidasa/metabolismo , Histocitoquímica , Pulmón/citología , Pulmón/patología , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/fisiopatología , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo
18.
Arch Biochem Biophys ; 715: 109087, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34801472

RESUMEN

The epithelial-mesenchymal transition (EMT) is an important pathological process in the occurrence of pulmonary fibrosis. Changes in histone methylation modifications of key genes play an important role in this process. As a histone methyltransferase, the regulatory mechanism and role of SET domain bifurcated 1 (SETDB1) in pulmonary fibrosis remain unclear. We found that SETDB1 inhibited EMT and that cells attenuated the expression of SETDB1 to relieve this inhibition during transforming growth factor-ß (TGF-ß)-induced EMT. Silencing SETDB1 expression significantly enhanced the mesenchymal phenotype induced by TGF-ß and the expression and deposition of fibronectin and significantly reduced the expression of E-cadherin. The decrease in E-cadherin expression and the induction of EMT led to increased lipid reactive oxygen species (ROS) and ferrous ions, which induced ferroptosis. Chromatin immunoprecipitation (ChIP) results showed that SETDB1 regulates the expression of Snai1 by catalyzing the histone H3 lysine 9 trimethylation (H3K9me3) of Snai1, the main transcription factor that initiates the process of EMT, and thus, indirectly regulates E-cadherin. Surprisingly, when examining the effect of overexpressed SETDB1 on EMT, we found that overexpressed SETDB1 alleviated EMT and also caused ferroptosis. We suggest that the overexpression of SETDB1 partially reverses the mesenchymal phenotype to an epithelial state, while those cells that fail to reverse are depleted by ferroptosis. In conclusion, the histone methylase SETDB1 regulates Snai1 epigenetically, driving EMT gene reprogramming and ferroptosis in response to TGF-ß. However, there are unexplored links between the epigenetic reprogramming and transcriptional processes that regulate EMT in a TGF-ß-dependent manner.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Ferroptosis/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Fibrosis Pulmonar/fisiopatología , Factores de Transcripción de la Familia Snail/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Células A549 , Animales , Bleomicina , Transición Epitelial-Mesenquimal/efectos de los fármacos , Técnicas de Silenciamiento del Gen , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Regiones Promotoras Genéticas/fisiología , Fibrosis Pulmonar/inducido químicamente , Ratas Sprague-Dawley
19.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34884731

RESUMEN

Pulmonary fibrosis (PF) is a progressive disease that disrupts the mechanical homeostasis of the lung extracellular matrix (ECM). These effects are particularly relevant in the lung context, given the dynamic nature of cyclic stretch that the ECM is continuously subjected to during breathing. This work uses an in vivo model of pulmonary fibrosis to characterize the macro- and micromechanical properties of lung ECM subjected to stretch. To that aim, we have compared the micromechanical properties of fibrotic ECM in baseline and under stretch conditions, using a novel combination of Atomic Force Microscopy (AFM) and a stretchable membrane-based chip. At the macroscale, fibrotic ECM displayed strain-hardening, with a stiffness one order of magnitude higher than its healthy counterpart. Conversely, at the microscale, we found a switch in the stretch-induced mechanical behaviour of the lung ECM from strain-hardening at physiological ECM stiffnesses to strain-softening at fibrotic ECM stiffnesses. Similarly, we observed solidification of healthy ECM versus fluidization of fibrotic ECM in response to stretch. Our results suggest that the mechanical behaviour of fibrotic ECM under stretch involves a potential built-in mechanotransduction mechanism that may slow down the progression of PF by steering resident fibroblasts away from a pro-fibrotic profile.


Asunto(s)
Matriz Extracelular/fisiología , Mecanotransducción Celular , Fibrosis Pulmonar/fisiopatología , Animales , Bleomicina , Modelos Animales de Enfermedad , Elasticidad , Masculino , Microscopía de Fuerza Atómica , Ratas Sprague-Dawley
20.
Front Immunol ; 12: 740260, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745111

RESUMEN

Increased left ventricular fibrosis has been reported in patients hospitalized with coronavirus disease 2019 (COVID-19). It is unclear whether this fibrosis is a consequence of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection or a risk factor for severe disease progression. We observed increased fibrosis in the left ventricular myocardium of deceased COVID-19 patients, compared with matched controls. We also detected increased mRNA levels of soluble interleukin-1 receptor-like 1 (sIL1-RL1) and transforming growth factor ß1 (TGF-ß1) in the left ventricular myocardium of deceased COVID-19 patients. Biochemical analysis of blood sampled from patients admitted to the emergency department (ED) with COVID-19 revealed highly elevated levels of TGF-ß1 mRNA in these patients compared to controls. Left ventricular strain measured by echocardiography as a marker of pre-existing cardiac fibrosis correlated strongly with blood TGF-ß1 mRNA levels and predicted disease severity in COVID-19 patients. In the left ventricular myocardium and lungs of COVID-19 patients, we found increased neuropilin-1 (NRP-1) RNA levels, which correlated strongly with the prevalence of pulmonary SARS-CoV-2 nucleocapsid. Cardiac and pulmonary fibrosis may therefore predispose these patients to increased cellular viral entry in the lung, which may explain the worse clinical outcome observed in our cohort. Our study demonstrates that patients at risk of clinical deterioration can be identified early by echocardiographic strain analysis and quantification of blood TGF-ß1 mRNA performed at the time of first medical contact.


Asunto(s)
COVID-19/fisiopatología , Ventrículos Cardíacos/patología , Miocardio/patología , Fibrosis Pulmonar/fisiopatología , SARS-CoV-2/fisiología , Adulto , Anciano , COVID-19/inmunología , Femenino , Fibrosis , Ventrículos Cardíacos/metabolismo , Humanos , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Masculino , Persona de Mediana Edad , Miocardio/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Fibrosis Pulmonar/inmunología , Riesgo , Índice de Severidad de la Enfermedad , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...