Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.110
Filtrar
1.
Sci Rep ; 14(1): 10289, 2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704437

RESUMEN

Myocarditis is considered a fatal form of foot-and-mouth disease (FMD) in suckling calves. In the present study, a total of 17 calves under 4 months of age and suspected clinically for FMD were examined for clinical lesions, respiratory rate, heart rate, and heart rhythm. Lesion samples, saliva, nasal swabs, and whole blood were collected from suspected calves and subjected to Sandwich ELISA and reverse transcription multiplex polymerase chain reaction (RT-mPCR) for detection and serotyping of FMD virus (FMDV). The samples were found to be positive for FMDV serotype "O". Myocarditis was suspected in 6 calves based on tachypnoea, tachycardia, and gallop rhythm. Serum aspartate aminotransferase (AST), creatinine kinase myocardial band (CK-MB) and lactate dehydrogenase (LDH), and cardiac troponins (cTnI) were measured. Mean serum AST, cTn-I and LDH were significantly higher (P < 0.001) in < 2 months old FMD-infected calves showing clinical signs suggestive of myocarditis (264.833 ± 4.16; 11.650 ± 0.34 and 1213.33 ± 29.06) than those without myocarditis (< 2 months old: 110.00 ± 0.00, 0.06 ± 0.00, 1050.00 ± 0.00; > 2 months < 4 months: 83.00 ± 3.00, 0.05 ± 0.02, 1159.00 ± 27.63) and healthy control groups (< 2 months old: 67.50 ± 3.10, 0.047 ± 0.01, 1120.00 ± 31.62; > 2 months < 4 months: 72.83 ± 2.09, 0.47 ± 0.00, 1160.00 ± 18.44). However, mean serum CK-MB did not differ significantly amongst the groups. Four calves under 2 months old died and a necropsy revealed the presence of a pathognomic gross lesion of the myocardial form of FMD known as "tigroid heart". Histopathology confirmed myocarditis. This study also reports the relevance of clinical and histopathological findings and biochemical markers in diagnosing FMD-related myocarditis in suckling calves.


Asunto(s)
Fiebre Aftosa , Miocarditis , Animales , Bovinos , Miocarditis/veterinaria , Miocarditis/virología , Miocarditis/patología , Fiebre Aftosa/virología , Fiebre Aftosa/patología , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/sangre , Enfermedades de los Bovinos/patología , Virus de la Fiebre Aftosa/patogenicidad , Virus de la Fiebre Aftosa/aislamiento & purificación , Animales Lactantes , Factores de Edad , Aspartato Aminotransferasas/sangre , Masculino , L-Lactato Deshidrogenasa/sangre
3.
Emerg Microbes Infect ; 13(1): 2348526, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38683015

RESUMEN

The foot-and-mouth disease virus (FMDV) Leader proteinase Lpro inhibits host mRNA translation and blocks the interferon response which promotes viral survival. Lpro is not required for viral replication in vitro but serotype A FMDV lacking Lpro has been shown to be attenuated in cattle and pigs. However, it is not known, whether leaderless viruses can cause persistent infection in vivo after simulated natural infection and whether the attenuated phenotype is the same in other serotypes. We have generated an FMDV O/FRA/1/2001 variant lacking most of the Lpro coding region (ΔLb). Cattle were inoculated intranasopharyngeally and observed for 35 days to determine if O FRA/1/2001 ΔLb is attenuated during the acute phase of infection and whether it can maintain a persistent infection in the upper respiratory tract. We found that although this leaderless virus can replicate in vitro in different cell lines, it is unable to establish an acute infection with vesicular lesions and viral shedding nor is it able to persistently infect bovine pharyngeal tissues.


Asunto(s)
Enfermedades de los Bovinos , Virus de la Fiebre Aftosa , Fiebre Aftosa , Infección Persistente , Serogrupo , Replicación Viral , Animales , Bovinos , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/fisiología , Virus de la Fiebre Aftosa/clasificación , Virus de la Fiebre Aftosa/patogenicidad , Virus de la Fiebre Aftosa/aislamiento & purificación , Fiebre Aftosa/virología , Enfermedades de los Bovinos/virología , Infección Persistente/virología , Línea Celular , Endopeptidasas/genética , Endopeptidasas/metabolismo , Esparcimiento de Virus
4.
Virology ; 595: 110070, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38657363

RESUMEN

Foot-and-mouth disease is a highly contagious and infectious disease affecting cloven-hoofed animals. Disease control is complicated by its highly contagious nature and antigenic diversity. Host microRNAs (miRNAs) are post-transcriptional regulators that either promote or repress viral replications in virus infection. In the present study, we found that ssc-miR-7139-3p (Sus scrofa miR-7139-3p) was significantly up-regulated in host cells during foot-and-mouth disease virus (FMDV) infection. Overexpression of miR-7139-3p attenuated FMDV replication, whereas inhibition promoted FMDV replication. In addition, the survival rate of FMDV infected suckling mice was increased through injection of miR-7139-3p agomiR. Further studies revealed that miR-7139-3p targets Bcl-2 to initiate the apoptotic pathway and caspase-3 cleaved 3Cpro behind the 174th aspartic acid (D174), which eventually promotes the degradation of 3Cpro. Overall, our findings demonstrate that miR-7139-3p suppresses FMDV replication by promoting degradation of 3Cpro through targeting the apoptosis-negative regulatory gene Bcl-2.


Asunto(s)
Apoptosis , Virus de la Fiebre Aftosa , Fiebre Aftosa , MicroARNs , Proteínas Proto-Oncogénicas c-bcl-2 , Replicación Viral , Animales , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Fiebre Aftosa/virología , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Porcinos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteasas Virales 3C/metabolismo , Línea Celular , Sus scrofa , Interacciones Huésped-Patógeno , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Proteolisis , Caspasa 3/metabolismo , Caspasa 3/genética
5.
Viruses ; 16(4)2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38675855

RESUMEN

The foot-and-mouth disease virus is a highly contagious and economically devastating virus of cloven-hooved animals, including cattle, buffalo, sheep, and goats, causing reduced animal productivity and posing international trade restrictions. For decades, chemically inactivated vaccines have been serving as the most effective strategy for the management of foot-and-mouth disease. Inactivated vaccines are commercially produced in cell culture systems, which require successful propagation and adaptation of field isolates, demanding a high cost and laborious time. Cell culture adaptation is chiefly indebted to amino acid substitutions in surface-exposed capsid proteins, altering the necessity of RGD-dependent receptors to heparan sulfate macromolecules for virus binding. Several amino acid substations in VP1, VP2, and VP3 capsid proteins of FMDV, both at structural and functional levels, have been characterized previously. This literature review combines frequently reported amino acid substitutions in virus capsid proteins, their critical roles in virus adaptation, and functional characterization of the substitutions. Furthermore, this data can facilitate molecular virologists to develop new vaccine strains against the foot-and-mouth disease virus, revolutionizing vaccinology via reverse genetic engineering and synthetic biology.


Asunto(s)
Sustitución de Aminoácidos , Proteínas de la Cápside , Virus de la Fiebre Aftosa , Fiebre Aftosa , Tropismo Viral , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/metabolismo , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/química , Fiebre Aftosa/virología , Receptores Virales/metabolismo , Receptores Virales/genética , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo , Técnicas de Cultivo de Célula
6.
Viruses ; 16(4)2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675963

RESUMEN

Southern Africa Territories 2 (SAT2) foot-and-mouth disease (FMD) has crossed long-standing regional boundaries in recent years and entered the Middle East. However, the existing vaccines offer poor cross-protection against the circulating strains in the field. Therefore, there is an urgent need for an alternative design approach for vaccines in anticipation of a pandemic of SAT2 Foot-and-mouth disease virus (FMDV). The porcine parvovirus (PPV) VP2 protein can embed exogenous epitopes into the four loops on its surface, assemble into virus-like particles (VLPs), and induce antibodies and cytokines to PPV and the exogenous epitope. In this study, chimeric porcine parvovirus VP2 VLPs (chimeric PPV-SAT2-VLPs) expressing the T-and/or B-cell epitopes of the structural protein VP1 of FMDV SAT2 were produced using the recombinant pFastBac™ Dual vector of baculoviruses in Sf9 and HF cells We used the Bac-to-Bac system to construct the recombinant baculoviruses. The VP2-VLP--SAT2 chimeras displayed chimeric T-cell epitope (amino acids 21-40 of VP1) and/or the B-cell epitope (amino acids 135-174) of SAT FMDV VP1 by substitution of the corresponding regions at the N terminus (amino acids 2-23) and/or loop 2 and/or loop 4 of the PPV VP2 protein, respectively. In mice, the chimeric PPV-SAT2-VLPs induced specific antibodies against PPV and the VP1 protein of SAT2 FMDV. The VP2-VLP-SAT2 chimeras induced specific antibodies to PPV and the VP1 protein specific epitopes of FMDV SAT2. In this study, as a proof-of-concept, successfully generated chimeric PPV-VP2 VLPs expressing epitopes of the structural protein VP1 of FMDV SAT2 that has a potential to prevent FMDV SAT2 and PPV infection in pigs.


Asunto(s)
Anticuerpos Antivirales , Antígenos Virales , Proteínas de la Cápside , Virus de la Fiebre Aftosa , Fiebre Aftosa , Parvovirus Porcino , Vacunas de Partículas Similares a Virus , Vacunas Virales , Animales , Virus de la Fiebre Aftosa/inmunología , Virus de la Fiebre Aftosa/genética , Ratones , Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Fiebre Aftosa/virología , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Parvovirus Porcino/inmunología , Parvovirus Porcino/genética , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Vacunas Virales/inmunología , Vacunas Virales/genética , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/genética , Porcinos , Inmunidad Humoral , Inmunidad Celular , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/genética , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/genética , Serogrupo , Ratones Endogámicos BALB C , Femenino , Epítopos/inmunología , Epítopos/genética , Células Sf9 , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre
7.
Viruses ; 15(2)2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36851604

RESUMEN

Foot-and-mouth disease (FMD) is an acute contagious disease of cloven-hoofed animals such as cattle, pigs, and sheep. Current emergency FMD vaccines are of limited use for early protection because their protective effect starts 7 days after vaccination. Therefore, antiviral drugs or additives are used to rapidly stop the spread of the virus during FMD outbreaks. Manganese (Mn2+) was recently found to be an important substance necessary for the host to protect against DNA viruses. However, its antiviral effect against RNA viruses remains unknown. In this study, we found that Mn2+ has antiviral effects on the FMD virus (FMDV) both in PK15 cells and mice. The inhibitory effect of Mn2+ on FMDV involves NF-κB activation and up-regulation of interferon-stimulated genes. Animal experiments showed that Mn2+ can be highly effective in protecting C57BL/6N mice from being infected with FMDV. Overall, we suggest Mn2+ as an effective antiviral additive for controlling FMDV infection.


Asunto(s)
Antivirales , Virus de la Fiebre Aftosa , Fiebre Aftosa , Manganeso , Animales , Bovinos , Ratones , Antivirales/farmacología , Antivirales/uso terapéutico , Interferones , Manganeso/farmacología , Manganeso/uso terapéutico , Ratones Endogámicos C57BL , Ovinos , Porcinos , Fiebre Aftosa/tratamiento farmacológico , Fiebre Aftosa/virología , Línea Celular
8.
Prev Vet Med ; 202: 105615, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35339769

RESUMEN

The global interconnectedness of the pig-production industry and the diversity of foot-and-mouth disease (FMD) viruses (FMDVs) currently circulating, makes modeling disease spread and control in FMD-free areas challenging. However, advances in experimental design and transmission studies create opportunities to strengthen our understanding and ability to model FMD transmission. In the current study, we estimated the duration of defined phases of FMDV infection in pigs by using data from a large collection of controlled in vivo experiments. Because the detection of low-levels of viral RNA does not correspond to infectiousness, an experimentally defined minimum threshold of FMDV RNA shedding in oropharyngeal fluids was used to estimate the onset of infectiousness in experiments in which transmission was not evaluated. Animal-level data were used in Accelerated Failure Time models to assess the effect of experimental design factors in the duration of defined phases of FMDV infection: latent, incubation, pre-clinical infectious, clinical infectious, and total infectious periods. The estimated means of the phases were latent: 25 h (95%CI 21, 29), incubation: 70 h (95%CI 64, 76), pre-clinical infectious: 36 h (95%CI 32, 41), clinical infectious: 265 h (95%CI 258, 272) and total infectious: 282 h (95%CI 273, 290). Virus strains and exposure methods had no significant influence on the duration of latency, incubation, or clinical infectious phases. By contrast, the estimated means of the duration of the pre-clinical infectious and total infectious phases were significantly influenced by virus strains, and the duration of the pre-clinical infectious phase was significantly influenced by exposure methods. This study provides disease parameters based on an estimated threshold of the onset of infectiousness and a probability distribution representing the end of infectiousness. Disease parameters that incorporate experimentally-based quantitative proxies to define phases of FMDV infection may improve planning and preparedness for FMD.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa/prevención & control , Enfermedades de los Porcinos/virología , Animales , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/aislamiento & purificación , ARN Viral/análisis , Porcinos , Enfermedades de los Porcinos/prevención & control , Factores de Tiempo , Esparcimiento de Virus
9.
Viruses ; 14(1)2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-35062300

RESUMEN

The recent emergence and circulation of the A/ASIA/G-VII (A/G-VII) lineage of foot-and-mouth disease virus (FMDV) in the Middle East has resulted in the development of homologous vaccines to ensure susceptible animals are sufficiently protected against clinical disease. However, a second serotype A lineage called A/ASIA/Iran-05 (A/IRN/05) continues to circulate in the region and it is therefore imperative to ensure vaccine strains used will protect against both lineages. In addition, for FMDV vaccine banks that usually hold a limited number of strains, it is necessary to include strains with a broad antigenic coverage. To assess the cross protective ability of an A/G-VII emergency vaccine (formulated at 43 (95% CI 8-230) PD50/dose as determined during homologous challenge), we performed a heterologous potency test according to the European Pharmacopoeia design using a field isolate from the A/IRN/05 lineage as the challenge virus. The estimated heterologous potency in this study was 2.0 (95% CI 0.4-6.0) PD50/dose, which is below the minimum potency recommended by the World Organisation for Animal Health (OIE). Furthermore, the cross-reactive antibody titres against the heterologous challenge virus were poor (≤log10 0.9), even in those cattle that had received the full dose of vaccine. The geometric mean r1-value was 0.2 (95% CI 0.03-0.8), similar to the potency ratio of 0.04 (95% CI 0.004-0.3). Vaccination decreased viraemia and virus excretion compared to the unvaccinated controls. Our results indicate that this A/G-VII vaccine does not provide sufficient protection against viruses belonging to the A/IRN/05 lineage and therefore the A/G-VII vaccine strain cannot replace the A/IRN/05 vaccine strain but could be considered an additional strain for use in vaccines and antigen banks.


Asunto(s)
Enfermedades de los Bovinos/prevención & control , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Inmunidad Heteróloga , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/virología , Protección Cruzada , Fiebre Aftosa/inmunología , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/aislamiento & purificación , ARN Viral/análisis , Serogrupo , Potencia de la Vacuna , Viremia/prevención & control , Viremia/veterinaria , Esparcimiento de Virus
10.
Sci Rep ; 11(1): 23494, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873184

RESUMEN

Foot-and-mouth disease virus (FMDV) is a picornavirus that exhibits an extremely acid sensitive capsid. This acid lability is directly related to its mechanism of uncoating triggered by acidification inside cellular endosomes. Using a collection of FMDV mutants we have systematically analyzed the relationship between acid stability and the requirement for acidic endosomes using ammonium chloride (NH4Cl), an inhibitor of endosome acidification. A FMDV mutant carrying two substitutions with opposite effects on acid-stability (VP3 A116V that reduces acid stability, and VP1 N17D that increases acid stability) displayed a rapid shift towards acid lability that resulted in increased resistance to NH4Cl as well as to concanamicyn A, a different lysosomotropic agent. This resistance could be explained by a higher ability of the mutant populations to produce NH4Cl-resistant variants, as supported by their tendency to accumulate mutations related to NH4Cl-resistance that was higher than that of the WT populations. Competition experiments also indicated that the combination of both amino acid substitutions promoted an increase of viral fitness that likely contributed to NH4Cl resistance. This study provides novel evidences supporting that the combination of mutations in a viral capsid can result in compensatory effects that lead to fitness gain, and facilitate space to an inhibitor of acid-dependent uncoating. Thus, although drug-resistant variants usually exhibit a reduction in viral fitness, our results indicate that compensatory mutations that restore this reduction in fitness can promote emergence of resistance mutants.


Asunto(s)
Sustitución de Aminoácidos/genética , Proteínas de la Cápside/genética , Virus de la Fiebre Aftosa/genética , Fiebre Aftosa/virología , Animales , Línea Celular , Cricetinae , Endosomas/genética , Mutación/genética
11.
Viruses ; 13(12)2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34960627

RESUMEN

Foot-and-mouth disease (FMD) is characterized by a pronounced lymphopenia that is associated with immune suppression. However, the mechanisms leading to lymphopenia remain unclear. In this study, the number of total CD4+, CD8+ T cells, B cells, and NK cells in the peripheral blood were dramatically reduced in C57BL/6 mice infected with foot-and-mouth disease virus (FMDV) serotype O, and it was noted that mice with severe clinical symptoms had expressively lower lymphocyte counts than mice with mild or without clinical symptoms, indicating that lymphopenia was associated with disease severity. A further analysis revealed that lymphocyte apoptosis and trafficking occurred after FMDV infection. In addition, coinhibitory molecules were upregulated in the expression of CD4+ and CD8+ T cells from FMDV-infected mice, including CTLA-4, LAG-3, 2B4, and TIGIT. Interestingly, the elevated IL-10 in the serum was correlated with the appearance of lymphopenia during FMDV infection but not IL-6, IL-2, IL-17, IL-18, IL-1ß, TNF-α, IFN-α/ß, TGF-ß, and CXCL1. Knocking out IL-10 (IL-10-/-) mice or blocking IL-10/IL-10R signaling in vivo was able to prevent lymphopenia via downregulating apoptosis, trafficking, and the coinhibitory expression of lymphocytes in the peripheral blood, which contribute to enhance the survival of mice infected with FMDV. Our findings support that blocking IL-10/IL-10R signaling may represent a novel therapeutic approach for FMD.


Asunto(s)
Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/virología , Interleucina-10/inmunología , Linfopenia/virología , Animales , Apoptosis , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Citocinas/inmunología , Interleucina-10/genética , Células Asesinas Naturales/inmunología , Recuento de Linfocitos , Linfopenia/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
12.
Viruses ; 13(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34960676

RESUMEN

Endemic foot and mouth disease (FMD) in East African cattle systems is one factor that limits access to export markets. The probability of FMD transmission associated with export from such systems have never been quantified and there is a need for data and analyses to guide strategies for livestock exports from regions where FMD remains endemic. The probability of infection among animals at slaughter is an important contributor to the risk of FMD transmission associated with the final beef product. In this study, we built a stochastic model to estimate the probability that beef cattle reach slaughter while infected with FMD virus for four production systems in two East African countries (Kenya and Uganda). Input values were derived from the primary literature and expert opinion. We found that the risk that FMD-infected animals reach slaughter under current conditions is high in both countries (median annual probability ranging from 0.05 among cattle from Kenyan feedlots to 0.62 from Ugandan semi-intensive systems). Cattle originating from feedlot and ranching systems in Kenya had the lowest overall probabilities of the eight systems evaluated. The final probabilities among cattle from all systems were sensitive to the likelihood of acquiring new infections en route to slaughter and especially the probability and extent of commingling with other cattle. These results give insight into factors that could be leveraged by potential interventions to lower the probability of FMD among beef cattle at slaughter. Such interventions should be evaluated considering the cost, logistics, and tradeoffs of each, ultimately guiding resource investment that is grounded in the values and capacity of each country.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Fiebre Aftosa/epidemiología , Mataderos/estadística & datos numéricos , Animales , Bovinos , Enfermedades de los Bovinos/transmisión , Enfermedades de los Bovinos/virología , Fiebre Aftosa/transmisión , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/aislamiento & purificación , Virus de la Fiebre Aftosa/fisiología , Kenia/epidemiología , Factores de Riesgo , Uganda/epidemiología
13.
Viruses ; 13(12)2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34960702

RESUMEN

Foot-and-mouth disease, caused by foot-and-mouth disease virus (FMDV), is an economically devastating disease affecting several important livestock species. FMDV is antigenically diverse and exists as seven serotypes comprised of many strains which are poorly cross-neutralised by antibodies induced by infection or vaccination. Co-infection and recombination are important drivers of antigenic diversity, especially in regions where several serotypes co-circulate at high prevalence, and therefore experimental systems to study these events in vitro would be beneficial. Here we have utilised recombinant FMDVs containing an HA or a FLAG epitope tag within the VP1 capsid protein to investigate the products of co-infection in vitro. Co-infection with viruses from the same and from different serotypes was demonstrated by immunofluorescence microscopy and flow cytometry using anti-tag antibodies. FLAG-tagged VP1 and HA-tagged VP1 could be co-immunoprecipitated from co-infected cells, suggesting that newly synthesised capsids may contain VP1 proteins from both co-infecting viruses. Furthermore, we provide the first demonstration of trans-encapsidation of an FMDV genome into capsids comprised of proteins encoded by a co-infecting heterologous virus. This system provides a useful tool for investigating co-infection dynamics in vitro, particularly between closely related strains, and has the advantage that it does not depend upon the availability of strain-specific FMDV antibodies.


Asunto(s)
Cápside/metabolismo , Virus de la Fiebre Aftosa/fisiología , Fiebre Aftosa/virología , ARN Viral/metabolismo , Empaquetamiento del Genoma Viral , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Línea Celular , Coinfección , Epítopos , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/inmunología , Genoma Viral , Hemaglutininas Virales/genética , Hemaglutininas Virales/inmunología , ARN Viral/genética , Serogrupo
14.
Viruses ; 13(11)2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34834926

RESUMEN

Foot-and-mouth-disease virus (FMDV) is a picornavirus that causes a highly contagious disease of cloven-hoofed animals resulting in economic losses worldwide. The 3C protease (3Cpro) is the main protease essential in the picornavirus life cycle, which is an attractive antiviral target. Here, we used computer-aided virtual screening to filter potential anti-FMDV agents from the natural phytochemical compound libraries. The top 23 filtered compounds were examined for anti-FMDV activities by a cell-based assay, two of which possessed antiviral effects. In the viral and post-viral entry experiments, luteolin and isoginkgetin could significantly block FMDV growth with low 50% effective concentrations (EC50). Moreover, these flavonoids could reduce the viral load as determined by RT-qPCR. However, their prophylactic activities were less effective. Both the cell-based and the fluorescence resonance energy transfer (FRET)-based protease assays confirmed that isoginkgetin was a potent FMDV 3Cpro inhibitor with a 50% inhibition concentration (IC50) of 39.03 ± 0.05 and 65.3 ± 1.7 µM, respectively, whereas luteolin was less effective. Analyses of the protein-ligand interactions revealed that both compounds fit in the substrate-binding pocket and reacted to the key enzymatic residues of the 3Cpro. Our findings suggested that luteolin and isoginkgetin are promising antiviral agents for FMDV and other picornaviruses.


Asunto(s)
Proteasas Virales 3C/antagonistas & inhibidores , Antivirales/farmacología , Biflavonoides/farmacología , Inhibidores Enzimáticos/farmacología , Virus de la Fiebre Aftosa/efectos de los fármacos , Virus de la Fiebre Aftosa/enzimología , Fiebre Aftosa/virología , Luteolina/farmacología , Proteasas Virales 3C/química , Proteasas Virales 3C/genética , Proteasas Virales 3C/metabolismo , Animales , Antivirales/química , Biflavonoides/química , Simulación por Computador , Inhibidores Enzimáticos/química , Virus de la Fiebre Aftosa/química , Virus de la Fiebre Aftosa/genética , Humanos , Luteolina/química , Fitoquímicos/química , Fitoquímicos/farmacología
15.
Viruses ; 13(11)2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34835001

RESUMEN

The livestock industry supports livelihood and nutritional security of at least 42% of people in the Southern African Development Community region. However, presence of animal diseases such as foot-and-mouth disease poses a major threat to the development of this industry. Samples collected from FMD outbreaks in Zambia during 2015-2020, comprising epithelial tissues samples (n = 47) and sera (n = 120), were analysed. FMD virus was serotyped in 26 samples, while 92 sera samples tested positive on NSP-ELISA. Phylogenetic analysis revealed notable changes in the epidemiology of FMD in Zambia, which included: (i) introduction of a novel FMDV SAT-3 (topotype II) causing FMD cases in cattle in Western Province; (ii) emergence of FMDV serotype O (topotype O/EA-2) in Central, Southern, Copperbelt, Western, Lusaka Provinces; and (iii) new outbreaks due to SAT -2 (topotypes I) in Eastern Zambia. Together, these data describe eight different epizootics that occurred in Zambia, four of which were outside the known FMD high-risk areas. This study highlights the complex epidemiology of FMD in Zambia, where the country represents an interface between East Africa (Pool 4) and Southern Africa (Pool 6). These changing viral dynamics have direct impacts on FMD vaccine selection in the SADC region.


Asunto(s)
Brotes de Enfermedades/veterinaria , Virus de la Fiebre Aftosa/clasificación , Fiebre Aftosa/epidemiología , Fiebre Aftosa/virología , Filogenia , África Oriental , África Austral , Animales , Búfalos , Bovinos , Enfermedades de los Bovinos/virología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Virus de la Fiebre Aftosa/genética , Ganado/virología , Serogrupo , Zambia
16.
Viruses ; 13(11)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34835007

RESUMEN

The genetic diversity of foot-and-mouth disease virus (FMDV) poses a challenge to the successful control of the disease, and it is important to identify the emergence of different strains in endemic settings. The objective of this study was to evaluate the sampling of clinically healthy livestock at slaughterhouses as a strategy for genomic FMDV surveillance. Serum samples (n = 11,875) and oropharyngeal fluid (OPF) samples (n = 5045) were collected from clinically healthy cattle and buffalo on farms in eight provinces in southern and northern Vietnam (2015-2019) to characterize viral diversity. Outbreak sequences were collected between 2009 and 2019. In two slaughterhouses in southern Vietnam, 1200 serum and OPF samples were collected from clinically healthy cattle and buffalo (2017 to 2019) as a pilot study on the use of slaughterhouses as sentinel points in surveillance. FMDV VP1 sequences were analyzed using discriminant principal component analysis and time-scaled phylodynamic trees. Six of seven serotype-O and -A clusters circulating in southern Vietnam between 2017-2019 were detected at least once in slaughterhouses, sometimes pre-dating outbreak sequences associated with the same cluster by 4-6 months. Routine sampling at slaughterhouses may provide a timely and efficient strategy for genomic surveillance to identify circulating and emerging FMDV strains.


Asunto(s)
Mataderos , Enfermedades de los Bovinos/epidemiología , Virus de la Fiebre Aftosa/genética , Fiebre Aftosa/epidemiología , Genómica , Animales , Búfalos , Bovinos , Enfermedades de los Bovinos/virología , Brotes de Enfermedades/veterinaria , Fiebre Aftosa/virología , Ganado , Epidemiología Molecular , Orofaringe/virología , Proyectos Piloto , Serogrupo , Vietnam/epidemiología
17.
Viruses ; 13(11)2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34834919

RESUMEN

Countries in which foot-and-mouth disease (FMD) is endemic may face bans on the export of FMD-susceptible livestock and products because of the associated risk for transmission of FMD virus. Risk assessment is an essential tool for demonstrating the fitness of one's goods for the international marketplace and for improving animal health. However, it is difficult to obtain the necessary data for such risk assessments in many countries where FMD is present. This study bridged the gaps of traditional participatory and expert elicitation approaches by partnering with veterinarians from the National Veterinary Services of Kenya (n = 13) and Uganda (n = 10) enrolled in an extended capacity-building program to systematically collect rich, local knowledge in a format appropriate for formal quantitative analysis. Participants mapped risk pathways and quantified variables that determine the risk of infection among cattle at slaughter originating from each of four beef production systems in each country. Findings highlighted that risk processes differ between management systems, that disease and sale are not always independent events, and that events on the risk pathway are influenced by the actions and motivations of value chain actors. The results provide necessary information for evaluating the risk of FMD among cattle pre-harvest in Kenya and Uganda and provide a framework for similar evaluation in other endemic settings.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Virus de la Fiebre Aftosa/aislamiento & purificación , Fiebre Aftosa/epidemiología , Mataderos/estadística & datos numéricos , Animales , Bovinos , Enfermedades de los Bovinos/virología , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/clasificación , Virus de la Fiebre Aftosa/genética , Humanos , Kenia/epidemiología , Autoinforme/estadística & datos numéricos , Uganda/epidemiología , Veterinarios/estadística & datos numéricos
18.
Vet Microbiol ; 263: 109247, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34649012

RESUMEN

Foot-and-mouth disease virus (FMDV) infection can be either persistent or acute in susceptible animals. The mechanisms involved in FMDV replication and clearance during persistent infection remain unclear. To identify host factors that are critical for FMDV replication during persistent infection, we used RNA-seq to compare the transcriptomes of infected (BHK-Op) cells and bystander (BHK-VEC) cells, which are exposed to FMDV but not infected. In total, 1917 genes were differentially expressed between BHK-Op cells and BHK-VEC cells, which were involved in ribosome biogenesis, cell cycle, and dilated cardiomyopathy. We further identified host genes potentially involved in viral clearance during persistent FMDV infection by comprehensive crossover analysis of differentially expressed genes in ancestral host cells, evolved infected host cells, and evolved bystander cells, which are resistant to infection by wild-type FMDV and FMDV-Op that co-evolved with host cells during persistent infection. Among the identified genes were Cav1 and Ccnd1. Subsequent experiments showed that knockdown of Cav1 and Ccnd1 in host cells significantly promoted and inhibited FMDV replication, respectively, confirming that the overexpression of Cav1 and the downregulation of Ccnd1 contribute to virus clearance during persistent FMDV infection. In addition, we found that BHK-Op cells contained mixtures of multiple genotypes of FMDV viruses, shedding light on the diversity of FMDV genotypes during persistent infection. Our findings provide a detailed overview of the responses of infected cells and bystander cells to persistent FMDV infection.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Interacciones Microbiota-Huesped , Animales , Línea Celular , Fiebre Aftosa/genética , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Replicación Viral
19.
Science ; 374(6563): 104-109, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34591637

RESUMEN

Extremely contagious pathogens are a global biosecurity threat because of their high burden of morbidity and mortality, as well as their capacity for fast-moving epidemics that are difficult to quell. Understanding the mechanisms enabling persistence of highly transmissible pathogens in host populations is thus a central problem in disease ecology. Through a combination of experimental and theoretical approaches, we investigated how highly contagious foot-and-mouth disease viruses persist in the African buffalo, which serves as their wildlife reservoir. We found that viral persistence through transmission among acutely infected hosts alone is unlikely. However, the inclusion of occasional transmission from persistently infected carriers reliably rescues the most infectious viral strain from fade-out. Additional mechanisms such as antigenic shift, loss of immunity, or spillover among host populations may be required for persistence of less transmissible strains.


Asunto(s)
Búfalos/virología , Enfermedades Endémicas/veterinaria , Virus de la Fiebre Aftosa/patogenicidad , Fiebre Aftosa/transmisión , Fiebre Aftosa/virología , Animales , Virus de la Fiebre Aftosa/aislamiento & purificación , Población , Zoonosis/virología
20.
J Virol ; 95(23): e0112021, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34524915

RESUMEN

Foot-and-mouth disease virus (FMDV) infection in cloven-hoofed animals causes severe inflammatory symptoms, including blisters on the oral mucosa, hoof, and breast; however, the molecular mechanism underlying the inflammatory response is unclear. In this study, we provide the first evidence that the FMDV protein VP3 activates lipopolysaccharide-triggered Toll-like receptor 4 (TLR4) signaling. FMDV VP3 increased the expression of TLR4 by downregulating the expression of the lysozyme-related protein Rab7b. Additionally, Rab7b can interact with VP3 to promote the replication of FMDV. Our findings suggested that VP3 regulates the Rab7b-TLR4 axis to mediate the inflammatory response to FMDV. IMPORTANCE Foot-and-mouth disease virus (FMDV) infection causes a severe inflammatory response in cloven-hoofed animals, such as pigs, cattle, and sheep, with typical clinical manifestations of high fever, numerous blisters on the oral mucosa, hoof, and breast, as well as myocarditis (tigroid heart). However, the mechanism underlying the inflammatory response caused by FMDV is enigmatic. In this study, we identified the VP3 protein of FMDV as an important proinflammatory factor. Mechanistically, VP3 interacted with TLR4 to promote TLR4 expression by inhibiting the expression of the lysozyme-related protein Rab7b. Our findings suggest that FMDV VP3 is a major proinflammatory factor in FMDV-infected hosts.


Asunto(s)
Proteínas de la Cápside/metabolismo , Virus de la Fiebre Aftosa/metabolismo , Fiebre Aftosa/metabolismo , Transducción de Señal/fisiología , Receptor Toll-Like 4/metabolismo , Animales , Proteínas de la Cápside/genética , Bovinos , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/genética , Expresión Génica , Células HEK293 , Humanos , Ovinos , Transducción de Señal/genética , Porcinos , Receptor Toll-Like 4/genética , Replicación Viral , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA