Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.262
Filtrar
1.
Rev Bras Epidemiol ; 27: e240017, 2024.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-38716959

RESUMEN

OBJECTIVE: To detect spatial and spatiotemporal clusters of urban arboviruses and to investigate whether the social development index (SDI) and irregular waste disposal are related to the coefficient of urban arboviruses detection in São Luís, state of Maranhão, Brazil. METHODS: The confirmed cases of Dengue, Zika and Chikungunya in São Luís, from 2015 to 2019, were georeferenced to the census tract of residence. The Bayesian Conditional Autoregressive regression model was used to identify the association between SDI and irregular waste disposal sites and the coefficient of urban arboviruses detection. RESULTS: The spatial pattern of arboviruses pointed to the predominance of a low-incidence cluster, except 2016. For the years 2015, 2016, 2017, and 2019, an increase of one unit of waste disposal site increased the coefficient of arboviruses detection in 1.25, 1.09, 1.23, and 1.13 cases of arboviruses per 100 thousand inhabitants, respectively. The SDI was not associated with the coefficient of arboviruses detection. CONCLUSION: In São Luís, spatiotemporal risk clusters for the occurrence of arboviruses and a positive association between the coefficient of arbovirus detection and sites of irregular waste disposal were identified.


Asunto(s)
Arbovirus , Fiebre Chikungunya , Dengue , Brasil/epidemiología , Humanos , Dengue/epidemiología , Fiebre Chikungunya/epidemiología , Infecciones por Arbovirus/epidemiología , Teorema de Bayes , Infección por el Virus Zika/epidemiología , Análisis Espacio-Temporal , Factores Socioeconómicos , Instalaciones de Eliminación de Residuos , Incidencia
2.
Front Cell Infect Microbiol ; 14: 1380736, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716191

RESUMEN

Introduction: Chikungunya virus (CHIKV) infection is associated with acute clinical manifestations and chronic joint inflammation. CHIKV has emerged as a significant causative agent of central nervous system (CNS) complications, including encephalitis and related sequelae. Microglial cells, crucial for immune responses and tissue repair in the CNS, play a vital role in the host response to viral infections, with their activation potentially leading to either protection or pathology. In this study, the infection biology of CHIKV in the C20 human microglial cell line was investigated. Methods: The permissiveness of C20 cells to CHIKV infection was assessed, and viral replication kinetics were compared to Vero E6 cells. Cytopathic effects of CHIKV infection on C20 cells were examined, along with ultrastructural changes using transmission electron microscopy. Additionally, apoptosis induction, mitochondrial membrane potential, and alterations in cell surface marker expression were evaluated by flow cytometry. Results: CHIKV infection demonstrated permissiveness in C20 cells, similar to Vero cells, resulting in robust viral replication and cytopathic effects. Ultrastructural analysis revealed viral replication, mature virion formation, and distinctive cytoplasmic and nuclear changes in infected C20 cells. CHIKV infection induced significant apoptosis in C20 cells, accompanied by mitochondrial membrane depolarization and altered expression of cell surface markers such as CD11c, CD14, and HLA-DR. Notably, decreased CD14 expression was observed in CHIKV-infected C20 cells. Discussion: The study findings suggest that CHIKV infection induces apoptosis in C20 microglial cells via the mitochondrial pathway, with significant alterations in cell surface marker expression, particularly CD14 that is linked with apoptosis induction. These observations provide valuable insights into the role of human microglial cells in the host response to CHIKV infection and contribute to the knowledge on the neuropathogenesis of this virus.


Asunto(s)
Apoptosis , Fiebre Chikungunya , Virus Chikungunya , Microglía , Mitocondrias , Replicación Viral , Microglía/virología , Virus Chikungunya/fisiología , Humanos , Mitocondrias/ultraestructura , Línea Celular , Chlorocebus aethiops , Animales , Células Vero , Fiebre Chikungunya/virología , Potencial de la Membrana Mitocondrial , Efecto Citopatogénico Viral
3.
Front Immunol ; 15: 1385473, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720890

RESUMEN

Interferons (IFNs) are a family of cytokines that activate the JAK-STAT signaling pathway to induce an antiviral state in cells. Interleukin 27 (IL-27) is a member of the IL-6 and/or IL-12 family that elicits both pro- and anti-inflammatory responses. Recent studies have reported that IL-27 also induces a robust antiviral response against diverse viruses, both in vitro and in vivo, suggesting that IFNs and IL-27 share many similarities at the functional level. However, it is still unknown how similar or different IFN- and IL-27-dependent signaling pathways are. To address this question, we conducted a comparative analysis of the transcriptomic profiles of human monocyte-derived macrophages (MDMs) exposed to IL-27 and those exposed to recombinant human IFN-α, IFN-γ, and IFN-λ. We utilized bioinformatics approaches to identify common differentially expressed genes between the different transcriptomes. To verify the accuracy of this approach, we used RT-qPCR, ELISA, flow cytometry, and microarrays data. We found that IFNs and IL-27 induce transcriptional changes in several genes, including those involved in JAK-STAT signaling, and induce shared pro-inflammatory and antiviral pathways in MDMs, leading to the common and unique expression of inflammatory factors and IFN-stimulated genes (ISGs)Importantly, the ability of IL-27 to induce those responses is independent of IFN induction and cellular lineage. Additionally, functional analysis demonstrated that like IFNs, IL-27-mediated response reduced chikungunya and dengue viruses replication in MDMs. In summary, IL-27 exhibits properties similar to those of all three types of human IFN, including the ability to stimulate a protective antiviral response. Given this similarity, we propose that IL-27 could be classified as a distinct type of IFN, possibly categorized as IFN-pi (IFN-π), the type V IFN (IFN-V).


Asunto(s)
Virus Chikungunya , Virus del Dengue , Dengue , Interferones , Quinasas Janus , Macrófagos , Factores de Transcripción STAT , Transducción de Señal , Replicación Viral , Humanos , Virus Chikungunya/fisiología , Virus Chikungunya/inmunología , Virus del Dengue/fisiología , Virus del Dengue/inmunología , Quinasas Janus/metabolismo , Replicación Viral/efectos de los fármacos , Factores de Transcripción STAT/metabolismo , Macrófagos/inmunología , Macrófagos/virología , Macrófagos/metabolismo , Interferones/metabolismo , Dengue/inmunología , Dengue/virología , Fiebre Chikungunya/inmunología , Fiebre Chikungunya/virología , Interleucina-27/metabolismo , Interleucinas/metabolismo , Interleucinas/farmacología , Interleucinas/inmunología , Transcriptoma , Células Cultivadas
4.
Sci Rep ; 14(1): 10814, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734695

RESUMEN

Chikungunya virus (CHIKV) poses a significant global health threat, re-emerging as a mosquito-transmitted pathogen that caused high fever, rash, and severe arthralgia. In Thailand, a notable CHIKV outbreak in 2019-2020 affected approximately 20,000 cases across 60 provinces, underscoring the need for effective mosquito control protocols. Previous studies have highlighted the role of midgut bacteria in the interaction between mosquito vectors and pathogen infections, demonstrating their ability to protect the insect from invading pathogens. However, research on the midgut bacteria of Aedes (Ae.) aegypti, the primary vector for CHIKV in Thailand remains limited. This study aims to characterize the bacterial communities in laboratory strains of Ae. aegypti, both infected and non-infected with CHIKV. Female mosquitoes from a laboratory strain of Ae. aegypti were exposed to a CHIKV-infected blood meal through membrane feeding, while the control group received a non-infected blood meal. At 7 days post-infection (dpi), mosquito midguts were dissected for 16S rRNA gene sequencing to identify midgut bacteria, and CHIKV presence was confirmed by E1-nested RT-PCR using mosquito carcasses. The study aimed to compare the bacterial communities between CHIKV-infected and non-infected groups. The analysis included 12 midgut bacterial samples, divided into three groups: CHIKV-infected (exposed and infected), non-infected (exposed but not infected), and non-exposed (negative control). Alpha diversity indices and Bray-Curtis dissimilarity matrix revealed significant differences in bacterial profiles among the three groups. The infected group exhibited an increased abundance of bacteria genus Gluconobacter, while Asaia was prevalent in both non-infected and negative control groups. Chryseobacterium was prominent in the negative control group. These findings highlight potential alterations in the distribution and abundance of gut microbiomes in response to CHIKV infection status. This study provides valuable insights into the dynamic relationship between midgut bacteria and CHIKV, underscoring the potential for alterations in bacterial composition depending on infection status. Understanding the relationships between mosquitoes and their microbiota holds promise for developing new methods and tools to enhance existing strategies for disease prevention and control. This research advances our understanding of the circulating bacterial composition, opening possibilities for new approaches in combating mosquito-borne diseases.


Asunto(s)
Aedes , Virus Chikungunya , Microbioma Gastrointestinal , Mosquitos Vectores , Animales , Femenino , Aedes/microbiología , Aedes/virología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Fiebre Chikungunya/transmisión , Fiebre Chikungunya/virología , Virus Chikungunya/genética , Virus Chikungunya/aislamiento & purificación , Virus Chikungunya/fisiología , Mosquitos Vectores/microbiología , Mosquitos Vectores/virología , ARN Ribosómico 16S/genética , Tailandia
5.
PLoS Negl Trop Dis ; 18(4): e0012100, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38635656

RESUMEN

Zika virus (ZIKV), an arbovirus from the Flaviviridae family, is the causative agent of Zika fever, a mild and frequent oligosymptomatic disease in humans. Nonetheless, on rare occasions, ZIKV infection can be associated with Guillain-Barré Syndrome (GBS), and severe congenital complications, such as microcephaly. The oligosymptomatic disease, however, presents symptoms that are quite similar to those observed in infections caused by other frequent co-circulating arboviruses, including dengue virus (DENV). Moreover, the antigenic similarity between ZIKV and DENV, and even with other members of the Flaviviridae family, complicates serological testing due to the high cross-reactivity of antibodies. Here, we designed, produced in a prokaryotic expression system, and purified three multiepitope proteins (ZIKV-1, ZIKV-2, and ZIKV-3) for differential diagnosis of Zika. The proteins were evaluated as antigens in ELISA tests for the detection of anti-ZIKV IgG using ZIKV- and DENV-positive human sera. The recombinant proteins were able to bind and detect anti-ZIKV antibodies without cross-reactivity with DENV-positive sera and showed no reactivity with Chikungunya virus (CHIKV)- positive sera. ZIKV-1, ZIKV-2, and ZIKV-3 proteins presented 81.6%, 95%, and 66% sensitivity and 97%, 96%, and 84% specificity, respectively. Our results demonstrate the potential of the designed and expressed antigens in the development of specific diagnostic tests for the detection of IgG antibodies against ZIKV, especially in regions with the circulation of multiple arboviruses.


Asunto(s)
Arbovirus , Fiebre Chikungunya , Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Humanos , Infección por el Virus Zika/diagnóstico , Virus Zika/genética , Epítopos , Anticuerpos Antivirales , Inmunoglobulina G
6.
Reumatol Clin (Engl Ed) ; 20(4): 223-225, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38644032

RESUMEN

Paraguay is currently facing a new outbreak of Chikungunya virus. This report summarizes two severe cases of Chikungunya (CHIKV) infection, confirmed by real-time reverse transcription polymerase chain reaction. We present the cases of patients with acute CHIKV infection and multisystem involvement, with fever, rash, abdominal pain, vomiting, myocarditis, and coronary artery anomalies, very similar to the cases described in MIS-C related to SARS-CoV-2 during the COVID-19 Pandemic. Both patients received IVIG and methylprednisolone, with good clinical response. In this setting of cytokine storm in Chikungunya, can we call it "Multisystem inflammatory syndrome associated with Chikungunya"?.


Asunto(s)
Fiebre Chikungunya , Síndrome de Liberación de Citoquinas , Síndrome de Respuesta Inflamatoria Sistémica , Humanos , Fiebre Chikungunya/complicaciones , Fiebre Chikungunya/diagnóstico , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico , Masculino , Síndrome de Liberación de Citoquinas/etiología , Femenino , Adulto , Persona de Mediana Edad
7.
PLoS Negl Trop Dis ; 18(4): e0012075, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38574163

RESUMEN

Chikungunya can have longstanding effects on health and quality of life. Alongside the recent approval of the world's first chikungunya vaccine by the US Food and Drug Administration in November 2023 and with new chikungunya vaccines in the pipeline, it is important to understand the perspectives of stakeholders before vaccine rollout. Our study aim is to identify key programmatic considerations and gaps in Evidence-to-Recommendation criteria for chikungunya vaccine introduction. We used purposive and snowball sampling to identify global, national, and subnational stakeholders from outbreak prone areas, including Latin America, Asia, and Africa. Semi-structured in-depth interviews were conducted and analysed using qualitative descriptive methods. We found that perspectives varied between tiers of stakeholders and geographies. Unknown disease burden, diagnostics, non-specific disease surveillance, undefined target populations for vaccination, and low disease prioritisation were critical challenges identified by stakeholders that need to be addressed to facilitate rolling out a chikungunya vaccine. Future investments should address these challenges to generate useful evidence for decision-making on new chikungunya vaccine introduction.


Asunto(s)
Fiebre Chikungunya , Vacunas , Humanos , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/prevención & control , Lagunas en las Evidencias , Calidad de Vida , Brotes de Enfermedades/prevención & control
8.
J Neurol Sci ; 459: 122955, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593523

RESUMEN

Chikungunya fever is an arboviral illness caused by chikungunya virus (CHIKV) and transmitted by the bite of Aedes aegypti and Aedes albopictus. It is an RNA virus belonging to the genus Alphavirus and family Togaviridae. We present a case series of three patients with chikungunya illness developing para/post-infectious myeloradiculoneuropathy.These patients developed neurological symptoms in the form of bilateral lower limb weakness with sensory and bowel involvement after the recovery from the initial acute episode of chikungunya fever. Clinical examination findings suggested myeloradiculoneuropathy with normal Magnetic Resonance Imaging of the Spine, with the nerve conduction study showing sensorimotor axonal polyneuropathy. All the patients were treated with 1 g of methylprednisolone once a day for five days, and case 2 was given intravenous immunoglobulin also. In the follow-up, cases 1 and 2 showed complete recovery without recurrence, and case 3 did not show improvement at one month.


Asunto(s)
Aedes , Fiebre Chikungunya , Virus Chikungunya , Animales , Humanos , Fiebre Chikungunya/complicaciones , Fiebre Chikungunya/diagnóstico por imagen , Fiebre Chikungunya/tratamiento farmacológico , Insectos Vectores , Virus Chikungunya/genética
9.
Rev Soc Bras Med Trop ; 57: e00404, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38597523

RESUMEN

BACKGROUND: Chikungunya fever is an emerging global infection transmitted by Aedes mosquitoes that manifests as an acute febrile illness with joint pain and can lead to chronic arthritis. The mechanism underlying chronic joint damage remains unclear; however, chronic chikungunya arthritis shares similarities with rheumatoid arthritis. Disease-modifying antirheumatic drugs have revolutionized rheumatoid arthritis treatment by preventing joint damage. However, the role of these therapies in chronic chikungunya arthritis has not been determined. We conducted a systematic review to evaluate the burden of joint structural damage in chronic chikungunya arthritis to help to define the role of disease-modifying therapy in this disease. METHODS: This systematic review included retrospective and prospective studies, trials, and case reports evaluating joint damage caused by chikungunya virus. Various databases were searched without any date or language restrictions. Study selection was conducted independently by two researchers, and data were extracted from the articles selected. RESULTS: A total of 108 studies were initially evaluated, with 8 meeting the inclusion criteria. Longitudinal studies have reported persistent joint pain from chikungunya infection and the progression of radiographic joint damage up to 13 years post-infection. Joint imaging revealed synovial inflammation, bone erosion, and cartilage destruction in patients with chronic chikungunya arthritis. CONCLUSIONS: Few studies have addressed chikungunya-induced joint damage, limiting our understanding of chronic chikungunya arthritis. Nevertheless, chronic chikungunya arthritis has similarities to rheumatoid arthritis. The success of early disease-modifying antirheumatic drug therapy in rheumatoid arthritis underscores the need for comprehensive research on its role in chikungunya arthritis.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Fiebre Chikungunya , Virus Chikungunya , Humanos , Antirreumáticos/uso terapéutico , Artralgia/etiología , Artritis Reumatoide/complicaciones , Artritis Reumatoide/tratamiento farmacológico , Fiebre Chikungunya/complicaciones , Estudios Prospectivos , Estudios Retrospectivos
10.
Medicina (B Aires) ; 84(2): 189-195, 2024.
Artículo en Español | MEDLINE | ID: mdl-38683503

RESUMEN

OBJECTIVES: To monitor the oviposition activity of the mosquito Aedes aegypti and of dengue and chikungunya cases in four localities of temperate Argentina, during the 2023 epidemic. METHODS: During the summer and autumn of 2023, the oviposition activity of the mosquito vector was monitored weekly using ovitraps, and the arrival of cases with dengue or chikungunya in Tandil, Olavarría, Bahía Blanca and Laprida were registered. RESULTS: Monthly variations of the percentage of positive traps were similar in the first three locations; in Laprida the mosquito was not detected. On the contrary, a significant difference was observed in the percentage of total traps that ever tested positive in each locality, being higher in Olavarría (83.3%) than in Bahía Blanca (68.6%) and Tandil (48.7%). Regarding diseases, 18 imported cases of dengue and 3 of chikungunya were registered. In addition, the first autochthonous case of dengue in the region was recorded, being the southernmost until known. CONCLUSION: It is essential to raise awareness and train the members of the health systems of the new regions exposed to Ae. aegypti for early detection of cases, and to the general population to enhance prevention actions.


OBJETIVOS: Monitorear la actividad de oviposición del mosquito Aedes aegypti y de casos de dengue y chikungunya en cuatro localidades de Argentina templada, durante la epidemia del 2023. Métodos: Durante el verano y otoño del 2023, se monitoreó semanalmente mediante ovitrampas la actividad de oviposición del mosquito vector, y se registró el arribo de casos con dengue o chikungunya a Tandil, Olavarría, Bahía Blanca y Laprida. RESULTADOS: La variación mensual del porcentaje de trampas positivas fue similar en las tres primeras localidades; en Laprida no se detectó el mosquito. Por el contrario, se observó una diferencia significativa del porcentaje de trampas que alguna vez resultó positiva en cada localidad, siendo mayor en Olavarría (83%), que en Bahía Blanca (67%) y Tandil (49%). Respecto a las enfermedades, se registraron 18 casos importados de dengue y 3 de chikungunya. Además, se registró el primer caso autóctono de dengue en la región, siendo el más austral hasta el momento. Conclusión: Es imprescindible sensibilizar y capacitar a los integrantes de los sistemas de salud de las nuevas regiones expuestas al Ae. aegypti para la detección temprana de casos, y a la población en general para potenciar las acciones de prevención.


Asunto(s)
Aedes , Fiebre Chikungunya , Dengue , Mosquitos Vectores , Estaciones del Año , Argentina/epidemiología , Dengue/epidemiología , Dengue/transmisión , Dengue/prevención & control , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/transmisión , Fiebre Chikungunya/prevención & control , Animales , Aedes/virología , Aedes/fisiología , Mosquitos Vectores/fisiología , Humanos , Epidemias , Femenino , Oviposición/fisiología
11.
Viruses ; 16(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675976

RESUMEN

RNA viruses quickly evolve subtle genotypic changes that can have major impacts on viral fitness and host range, with potential consequences for human health. It is therefore important to understand the evolutionary fitness of novel viral variants relative to well-studied genotypes of epidemic viruses. Competition assays are an effective and rigorous system with which to assess the relative fitness of viral genotypes. However, it is challenging to quickly and cheaply distinguish and quantify fitness differences between very similar viral genotypes. Here, we describe a protocol for using reverse transcription PCR in combination with commercial nanopore sequencing services to perform competition assays on untagged RNA viruses. Our assay, called the Universal Competition Assay by Nanopore Sequencing (U-CAN-seq), is relatively cheap and highly sensitive. We used a well-studied N24A mutation in the chikungunya virus (CHIKV) nsp3 gene to confirm that we could detect a competitive disadvantage using U-CAN-seq. We also used this approach to show that mutations to the CHIKV 5' conserved sequence element that disrupt sequence but not structure did not affect the fitness of CHIKV. However, similar mutations to an adjacent CHIKV stem loop (SL3) did cause a fitness disadvantage compared to wild-type CHIKV, suggesting that structure-independent, primary sequence determinants in this loop play an important role in CHIKV biology. Our novel findings illustrate the utility of the U-CAN-seq competition assay.


Asunto(s)
Virus Chikungunya , Mutación , Secuenciación de Nanoporos , Secuenciación de Nanoporos/métodos , Virus Chikungunya/genética , Virus Chikungunya/clasificación , Humanos , Genotipo , Aptitud Genética , ARN Viral/genética , Animales , Virus ARN/genética , Virus ARN/clasificación , Fiebre Chikungunya/virología
12.
J Vector Borne Dis ; 61(1): 61-71, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648407

RESUMEN

BACKGROUND OBJECTIVES: Dengue and chikungunya infections are one of the major health problems that have plagued the human population globally. All dengue virus (DENV) serotypes circulate within Malaysia with particular serotypes dominating in different years/outbreaks. In the state of Kelantan, an increasing number of DENV and chikungunya virus (CHIKV) new cases have been reported, including several deaths. This study aimed to isolate and detect these arboviruses from adult mosquitoes in Kelantan. METHODS: Adult mo squito samples were collected from January to August 2019 and were identified according to gender, species and locality. The isolation of the virus was done in C6/36 cells. Dengue NS1 antigen was carried out using direct mosquito lysate and mosquito culture supernatant. Detection and serotyping of the DENV was performed using multiplex RT-PCR and CHIKV detection using a one-step RT-PCR assay. RESULTS: Of 91 mosquito pools, four were positive for NS1 antigen comprising two pools (2.2%) of male Ae. albopictus (Pulau Melaka and Kubang Siput) and two pools (2.2%) of Ae. aegypti (Kampung Demit Sungai). DENV 1 was detected in one pool (0.9%) of female Ae. albopictus among 114 tested Aedes pools. Two pools of 114 pools (1.7%) from both male Aedes species were positive with double serotypes, DENV 1 and DENV 2 (Pulau Melaka). However, no pool was positive for CHIKV. INTERPRETATION CONCLUSION: The presence of DENV and the main vectors of arboviruses in Kelantan are pertinent indicators of the need to improve vector controls to reduce arbovirus infections among people in the localities.


Asunto(s)
Aedes , Virus Chikungunya , Virus del Dengue , Dengue , Mosquitos Vectores , Animales , Malasia , Virus del Dengue/genética , Virus del Dengue/aislamiento & purificación , Virus del Dengue/clasificación , Virus Chikungunya/genética , Virus Chikungunya/aislamiento & purificación , Virus Chikungunya/clasificación , Masculino , Femenino , Aedes/virología , Mosquitos Vectores/virología , Dengue/virología , Fiebre Chikungunya/virología , Humanos , Proteínas no Estructurales Virales/genética , Serogrupo
13.
Artículo en Inglés | MEDLINE | ID: mdl-38594795

RESUMEN

Abstract: Timor-Leste is a mountainous, half-island nation with a population of 1.3 million, which shares a land border with Indonesia and is 550 km from Darwin, Australia. Since independence in 2002, Timor-Leste has achieved significant development; however, high levels of poverty remain. Chikungunya virus (CHIKV) is endemic in over 100 countries in Africa, Asia, Europe and in the Americas. It is transmitted by the bite of infected Aedes aegypti or Ae. albopictus mosquitoes, which are present in Timor-Leste and which contribute to annual rainy-season dengue virus (DENV) outbreaks. Symptomatic people typically suffer from acute onset of fever, usually accompanied by severe arthritis or arthralgia. Joint pain can be debilitating for several days, and may sometimes last for weeks, months or years. Unlike DENV infection which has significant mortality, most people recover completely. Between 2002 and 2023, there were 26 cases of CHIKV notified in Australia who acquired their infection in Timor-Leste; however, laboratory testing capability for CHIKV in Timor-Leste only became available in 2021 using polymerase chain reaction (PCR). The first locally diagnosed case was notified in November 2023. In January 2024, an outbreak of CHIKV was recognised in Timor-Leste for the first time, with 195 outbreak cases reported during 1-31 January 2024; all were PCR positive. There were no cases hospitalised, and no deaths. The median age of cases was 17 years (range 1-76 years); 51% were males. Cases were reported across the country; most (88/195) were from Dili, although the highest incidence was seen in the neighbouring municipality of Ermera (monthly incidence rate of 58.8 cases per 100,000 population). This first reported outbreak of CHIKV in Timor-Leste highlights the need for improved mosquito-borne illness control and response strategies, including minimising breeding sites and promoting early presentation for treatment and differential diagnosis from DENV, and consideration of the deployment of Wolbachia-infected mosquitoes, particularly as they have shown to reduce the transmission of CHIKV, DENV and Zika virus, all of which pose threats in Timor-Leste.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Infección por el Virus Zika , Virus Zika , Masculino , Animales , Humanos , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Femenino , Fiebre Chikungunya/epidemiología , Timor Oriental/epidemiología , Australia/epidemiología , Virus Chikungunya/genética , Brotes de Enfermedades , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/prevención & control
14.
PLoS One ; 19(4): e0301644, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38573991

RESUMEN

Dengue and chikungunya are co-circulating vector-borne diseases that share a significant number of clinical symptoms. To identify variables to aid physicians in making rapid and effective diagnostic decisions, we performed molecular diagnosis of the chikungunya virus and examined the clinical manifestations of chikungunya cases to identify the prevalence among dengue-negative individuals in Kolkata. Dengue suspected patients' samples were collected during January 2020-December 2021 and Enzyme-linked immunosorbent assay (ELISA) and reverse transcription-polymerase chain reaction (RT-PCR) methods have been performed to confirm the prevalence of chikungunya infection among dengue-negative patients. By performing phylogenetic analysis, comparing clinical classifications, identifying disease aetiology using clinical and laboratory factors, and evaluating the time course of several clinical variables, we have evaluated the clinical manifestations linked to dengue and chikungunya virus infections. Chikungunya infection was found in 15.1% and 6.3% of the 635 dengue-negative patients, as determined by ELISA and RT-PCR, respectively. Arthritis and myalgia were more common in chikungunya-infected patients at the time of hospital admission while conjunctivitis, photosensitivity, arthralgia, Anorexia, fatigue, retro-orbital pain, vomiting, dermatitis, or swollen glands were significantly presented as an overlapping symptom. Although dengue and chikungunya infections have significant clinical overlap, basic clinical and laboratory criteria can predict these diseases at presentation for proper management. Effective management enables doctors to treat and care for patients properly and contributes to the development of control measures for these infections in a medical setting.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Dengue , Humanos , Fiebre Chikungunya/diagnóstico , Fiebre Chikungunya/epidemiología , Filogenia , Dengue/diagnóstico , Dengue/epidemiología , Anticuerpos Antivirales , India/epidemiología
15.
Viruses ; 16(4)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38675917

RESUMEN

The incidence of chikungunya has dramatically surged worldwide in recent decades, imposing an expanding burden on public health. In recent years, South America, particularly Brazil, has experienced outbreaks that have ravaged populations following the rapid dissemination of the chikungunya virus (CHIKV), which was first detected in 2014. The primary vector for CHIKV transmission is the urban mosquito species Aedes aegypti, which is highly prevalent throughout Brazil. However, the impact of the locally circulating CHIKV genotypes and specific combinations of local mosquito populations on vector competence remains unexplored. Here, we experimentally analyzed and compared the infectivity and transmissibility of the CHIKV-ECSA lineage recently isolated in Brazil among four Ae. aegypti populations collected from different regions of the country. When exposed to CHIKV-infected AG129 mice for blood feeding, all the mosquito populations displayed high infection rates and dissemination efficiency. Furthermore, we observed that all the populations were highly efficient in transmitting CHIKV to a vertebrate host (naïve AG129 mice) as early as eight days post-infection. These results demonstrate the high capacity of Brazilian Ae. aegypti populations to transmit the locally circulating CHIKV-ECSA lineage. This observation could help to explain the high prevalence of the CHIKV-ECSA lineage over the Asian lineage, which was also detected in Brazil in 2014. However, further studies comparing both lineages are necessary to gain a better understanding of the vector's importance in the epidemiology of CHIKV in the Americas.


Asunto(s)
Aedes , Fiebre Chikungunya , Virus Chikungunya , Mosquitos Vectores , Animales , Aedes/virología , Virus Chikungunya/genética , Virus Chikungunya/clasificación , Virus Chikungunya/fisiología , Virus Chikungunya/aislamiento & purificación , Brasil/epidemiología , Fiebre Chikungunya/transmisión , Fiebre Chikungunya/virología , Fiebre Chikungunya/epidemiología , Ratones , Mosquitos Vectores/virología , Genotipo , Femenino , Filogenia
16.
PLoS Negl Trop Dis ; 18(4): e0012120, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38648230

RESUMEN

Chikungunya fever virus (CHIKV) is a mosquito-borne alphavirus that causes wide-spread human infections and epidemics in Asia, Africa and recently, in the Americas. CHIKV is considered a priority pathogen by CEPI and WHO. Despite recent approval of a live-attenuated CHIKV vaccine, development of additional vaccines is warranted due to the worldwide outbreaks of CHIKV. Previously, we developed immunization DNA (iDNA) plasmid capable of launching live-attenuated CHIKV vaccine in vivo. Here we report the use of CHIKV iDNA plasmid to prepare a novel, live-attenuated CHIKV vaccine V5040 with rearranged RNA genome. In V5040, genomic RNA was rearranged to encode capsid gene downstream from the glycoprotein genes. Attenuated mutations derived from experimental CHIKV 181/25 vaccine were also engineered into E2 gene of V5040. The DNA copy of rearranged CHIKV genomic RNA with attenuated mutations was cloned into iDNA plasmid pMG5040 downstream from the CMV promoter. After transfection in vitro, pMG5040 launched replication of V5040 virus with rearranged genome and attenuating E2 mutations. Furthermore, V5040 virus was evaluated in experimental murine models for general safety and immunogenicity. Vaccination with V5040 virus subcutaneously resulted in elicitation of CHIKV-specific, virus-neutralizing antibodies. The results warrant further evaluation of V5040 virus with rearranged genome as a novel live-attenuated vaccine for CHIKV.


Asunto(s)
Anticuerpos Antivirales , Fiebre Chikungunya , Virus Chikungunya , Genoma Viral , Vacunas Atenuadas , Vacunas Virales , Replicación Viral , Animales , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/genética , Vacunas Atenuadas/administración & dosificación , Ratones , Virus Chikungunya/genética , Virus Chikungunya/inmunología , Vacunas Virales/inmunología , Vacunas Virales/genética , Vacunas Virales/administración & dosificación , Fiebre Chikungunya/prevención & control , Fiebre Chikungunya/inmunología , Fiebre Chikungunya/virología , Anticuerpos Antivirales/sangre , Femenino , Humanos , Chlorocebus aethiops , Anticuerpos Neutralizantes/sangre , Células Vero , Ratones Endogámicos BALB C
17.
PLoS One ; 19(3): e0299521, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38507338

RESUMEN

OBJECTIVE: To define the relationship between chronic chikungunya post-viral arthritis disease severity, cytokine response and T cell subsets in order to identify potential targets for therapy. METHODS: Participants with chikungunya arthritis were recruited from Colombia from 2019-2021. Arthritis disease severity was quantified using the Disease Activity Score-28 and an Arthritis-Flare Questionnaire adapted for chikungunya arthritis. Plasma cytokine concentrations (interleukin (IL)-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, interferon-γ and tumor necrosis factor (TNF)) were measured using a Meso Scale Diagnostics assay. Peripheral blood T cell subsets were measured using flow cytometry. RESULTS: Among participants with chikungunya arthritis (N = 158), IL-2 levels and frequency of regulatory T cells (Tregs) were low. Increased arthritis disease activity was associated with higher levels of inflammatory cytokines (IL-6, TNF and CRP) and immunoregulatory cytokine IL-10 (p<0.05). Increased arthritis flare activity was associated with higher Treg frequencies (p<0.05) without affecting T effector (Teff) frequencies, Treg/Teff ratios and Treg subsets. Finally, elevated levels of IL-2 were correlated with increased Treg frequency, percent Tregs out of CD4+ T cells, and Treg subsets expressing immunosuppressive markers, while also correlating with an increased percent Teff out of live lymphocytes (p<0.05). CONCLUSION: Chikungunya arthritis is characterized by increased inflammatory cytokines and deficient IL-2 and Treg responses. Greater levels of IL-2 were associated with improved Treg numbers and immunosuppressive markers. Future research may consider targeting these pathways for therapy.


Asunto(s)
Artritis Infecciosa , Fiebre Chikungunya , Humanos , Citocinas/metabolismo , Interleucina-10/metabolismo , Estudios Transversales , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Fiebre Chikungunya/complicaciones , Linfocitos T Reguladores/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Inmunosupresores
18.
Rev Soc Bras Med Trop ; 57: e004032024, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38536999

RESUMEN

BACKGROUND: The riverine communities of the Amazon comprise different social groups that inhabit the rural areas on the banks of rivers and lakes. Residents usually travel by river to rural and urban areas and are then exposed to urbanized diseases such as those caused by arbovirus infection. In Brazil, emerging diseases such as dengue, Zika, chikungunya, and those caused by infection with Oropouche and Mayaro viruses necessitate epidemiological surveillance. This study was aimed at determining the frequency of positivity for immunoglobulin (Ig)G and IgM antibodies against Zika, chikungunya, and dengue viruses and performing molecular analyses to detect viral RNA for the Zika, chikungunya, dengue virus, Oropouche, and Mayaro viruses, in the same serum samples obtained from riverside populations. METHODS: This cross-sectional study was conducted in a riverside population in the Humaitá municipality of the Brazilian Amazon. More than 80% of the local population participated in this study. Entomological samples were collected to identify local mosquito vectors. RESULTS: Analysis of 205 human serological samples revealed IgG antibodies against the dengue virus in 85 individuals. No molecular positivity was observed in human samples. Entomological analyses revealed 3,187 Diptera species, with Mansonia being the most frequent genus. Aedes aegypti and Aedes albopictus were not detected in the two collections. CONCLUSIONS: IgG antibodies against the dengue virus were highly prevalent, suggesting previous exposure. The absence of the arbovirus vectors Aedes aegypti and Aedes albopictus in the samples supports the hypothesis that the infections recorded likely occurred outside the riverside communities investigated.


Asunto(s)
Aedes , Alphavirus , Infecciones por Arbovirus , Fiebre Chikungunya , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Fiebre Chikungunya/epidemiología , Brasil/epidemiología , Estudios Transversales , Infecciones por Arbovirus/epidemiología , Mosquitos Vectores , Inmunoglobulina G
19.
PLoS Pathog ; 20(3): e1011794, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38483968

RESUMEN

Infection by chikungunya virus (CHIKV), a mosquito-borne alphavirus, causes severe polyarthralgia and polymyalgia, which can last in some people for months to years. Chronic CHIKV disease signs and symptoms are associated with the persistence of viral nucleic acid and antigen in tissues. Like humans and nonhuman primates, CHIKV infection in mice results in the development of robust adaptive antiviral immune responses. Despite this, joint tissue fibroblasts survive CHIKV infection and can support persistent viral replication, suggesting that they escape immune surveillance. Here, using a recombinant CHIKV strain encoding the fluorescent protein VENUS with an embedded CD8+ T cell epitope, SIINFEKL, we observed a marked loss of both MHC class I (MHC-I) surface expression and antigen presentation by CHIKV-infected joint tissue fibroblasts. Both in vivo and ex vivo infected joint tissue fibroblasts displayed reduced cell surface levels of H2-Kb and H2-Db MHC-I proteins while maintaining similar levels of other cell surface proteins. Mutations within the methyl transferase-like domain of the CHIKV nonstructural protein 2 (nsP2) increased MHC-I cell surface expression and antigen presentation efficiency by CHIKV-infected cells. Moreover, expression of WT nsP2 alone, but not nsP2 with mutations in the methyltransferase-like domain, resulted in decreased MHC-I antigen presentation efficiency. MHC-I surface expression and antigen presentation was rescued by replacing VENUS-SIINFEKL with SIINFEKL tethered to ß2-microglobulin in the CHIKV genome, which bypasses the requirement for peptide processing and TAP-mediated peptide transport into the endoplasmic reticulum. Collectively, this work suggests that CHIKV escapes the surveillance of antiviral CD8+ T cells, in part, by nsP2-mediated disruption of MHC-I antigen presentation.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Humanos , Animales , Ratones , Presentación de Antígeno , Replicación Viral , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Epítopos de Linfocito T , Péptidos/metabolismo
20.
PLoS Negl Trop Dis ; 18(3): e0012013, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38484018

RESUMEN

BACKGROUND: Chikungunya virus (CHIKV) has spread across Brazil with varying incidence rates depending on the affected areas. Due to cocirculation of arboviruses and overlapping disease symptoms, CHIKV infection may be underdiagnosed. To understand the lack of CHIKV epidemics in São José do Rio Preto (SJdRP), São Paulo (SP), Brazil, we evaluated viral circulation by investigating anti-CHIKV IgG seroconversion in a prospective study of asymptomatic individuals and detecting anti-CHIKV IgM in individuals suspected of dengue infection, as well as CHIKV presence in Aedes mosquitoes. The opportunity to assess two different groups (symptomatic and asymptomatic) exposed at the same geographic region aimed to broaden the possibility of identifying the viral circulation, which had been previously considered absent. METHODOLOGY/PRINCIPAL FINDINGS: Based on a prospective population study model and demographic characteristics (sex and age), we analyzed the anti-CHIKV IgG seroconversion rate in 341 subjects by ELISA over four years. The seroprevalence increased from 0.35% in the first year to 2.3% after 3 years of follow-up. Additionally, we investigated 497 samples from a blood panel collected from dengue-suspected individuals during the 2019 dengue outbreak in SJdRP. In total, 4.4% were positive for anti-CHIKV IgM, and 8.6% were positive for IgG. To exclude alphavirus cross-reactivity, we evaluated the presence of anti-Mayaro virus (MAYV) IgG by ELISA, and the positivity rate was 0.3% in the population study and 0.8% in the blood panel samples. In CHIKV and MAYV plaque reduction neutralization tests (PRNTs), the positivity rate for CHIKV-neutralizing antibodies in these ELISA-positive samples was 46.7%, while no MAYV-neutralizing antibodies were detected. Genomic sequencing and phylogenetic analysis revealed CHIKV genotype ECSA in São José do Rio Preto, SP. Finally, mosquitoes collected to complement human surveillance revealed CHIKV positivity of 2.76% of A. aegypti and 9.09% of A. albopictus (although it was far less abundant than A. aegypti) by RT-qPCR. CONCLUSIONS/SIGNIFICANCE: Our data suggest cryptic CHIKV circulation in SJdRP detected by continual active surveillance. These low levels, but increasing, of viral circulation highlight the possibility of CHIKV outbreaks, as there is a large naïve population. Improved knowledge of the epidemiological situation might aid in outbreaks prevention.


Asunto(s)
Aedes , Fiebre Chikungunya , Virus Chikungunya , Dengue , Animales , Humanos , Virus Chikungunya/genética , Estudios Prospectivos , Brasil/epidemiología , Filogenia , Estudios Seroepidemiológicos , Fiebre Chikungunya/epidemiología , Anticuerpos Antivirales , Dengue/diagnóstico , Dengue/epidemiología , Anticuerpos Neutralizantes/genética , Inmunoglobulina G , Inmunoglobulina M
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA