Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255.430
Filtrar
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38752857

RESUMEN

Avian reoviruses continue to cause disease in turkeys with varied pathogenicity and tissue tropism. Turkey enteric reovirus has been identified as a causative agent of enteritis or inapparent infections in turkeys. The new emerging variants of turkey reovirus, tentatively named turkey arthritis reovirus (TARV) and turkey hepatitis reovirus (THRV), are linked to tenosynovitis/arthritis and hepatitis, respectively. Turkey arthritis and hepatitis reoviruses are causing significant economic losses to the turkey industry. These infections can lead to poor weight gain, uneven growth, poor feed conversion, increased morbidity and mortality and reduced marketability of commercial turkeys. To combat these issues, detecting and classifying the types of reoviruses in turkey populations is essential. This research aims to employ clustering methods, specifically K-means and Hierarchical clustering, to differentiate three types of turkey reoviruses and identify novel emerging variants. Additionally, it focuses on classifying variants of turkey reoviruses by leveraging various machine learning algorithms such as Support Vector Machines, Naive Bayes, Random Forest, Decision Tree, and deep learning algorithms, including convolutional neural networks (CNNs). The experiments use real turkey reovirus sequence data, allowing for robust analysis and evaluation of the proposed methods. The results indicate that machine learning methods achieve an average accuracy of 92%, F1-Macro of 93% and F1-Weighted of 92% scores in classifying reovirus types. In contrast, the CNN model demonstrates an average accuracy of 85%, F1-Macro of 71% and F1-Weighted of 84% scores in the same classification task. The superior performance of the machine learning classifiers provides valuable insights into reovirus evolution and mutation, aiding in detecting emerging variants of pathogenic TARVs and THRVs.


Asunto(s)
Aprendizaje Automático , Orthoreovirus Aviar , Infecciones por Reoviridae , Pavos , Animales , Orthoreovirus Aviar/genética , Orthoreovirus Aviar/clasificación , Orthoreovirus Aviar/patogenicidad , Pavos/virología , Infecciones por Reoviridae/virología , Enfermedades de las Aves de Corral/virología , Filogenia
2.
PLoS One ; 19(5): e0296547, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753661

RESUMEN

Endophytic bacteria, recognized as eco-friendly biofertilizers, have demonstrated the potential to enhance crop growth and yield. While the plant growth-promoting effects of endophytic bacteria have been extensively studied, the impact of weed endophytes remains less explored. In this study, we aimed to isolate endophytic bacteria from native weeds and assess their plant growth-promoting abilities in rice under varying chemical fertilization. The evaluation encompassed measurements of mineral phosphate and potash solubilization, as well as indole-3-acetic acid (IAA) production activity by the selected isolates. Two promising strains, tentatively identified as Alcaligenes faecalis (BTCP01) from Eleusine indica (Goose grass) and Metabacillus indicus (BTDR03) from Cynodon dactylon (Bermuda grass) based on 16S rRNA gene phylogeny, exhibited noteworthy phosphate and potassium solubilization activity, respectively. BTCP01 demonstrated superior phosphate solubilizing activity, while BTDR03 exhibited the highest potassium (K) solubilizing activity. Both isolates synthesized IAA in the presence of L-tryptophan, with the detection of nifH and ipdC genes in their genomes. Application of isolates BTCP01 and BTDR03 through root dipping and spraying at the flowering stage significantly enhanced the agronomic performance of rice variety CV. BRRI dhan29. Notably, combining both strains with 50% of recommended N, P, and K fertilizer doses led to a substantial increase in rice grain yields compared to control plants receiving 100% of recommended doses. Taken together, our results indicate that weed endophytic bacterial strains BTCP01 and BTDR03 hold promise as biofertilizers, potentially reducing the dependency on chemical fertilizers by up to 50%, thereby fostering sustainable rice production.


Asunto(s)
Alcaligenes faecalis , Endófitos , Fertilizantes , Oryza , Fosfatos , Malezas , Oryza/microbiología , Oryza/crecimiento & desarrollo , Endófitos/metabolismo , Alcaligenes faecalis/metabolismo , Alcaligenes faecalis/crecimiento & desarrollo , Malezas/microbiología , Malezas/crecimiento & desarrollo , Fosfatos/metabolismo , Ácidos Indolacéticos/metabolismo , ARN Ribosómico 16S/genética , Filogenia , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Eleusine/microbiología , Eleusine/crecimiento & desarrollo , Cynodon/microbiología , Cynodon/crecimiento & desarrollo , Potasio/metabolismo
3.
PLoS One ; 19(5): e0303838, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753834

RESUMEN

This study presents the complete genome sequence of a novel nege-like virus identified in whiteflies (Bemisia tabaci MEAM1), provisionally designated as whitefly negevirus 1 (WfNgV1). The virus possesses a single-stranded RNA genome comprising 11,848 nucleotides, organized into four open reading frames (ORFs). These ORFs encode the putative RNA-dependent-RNA-polymerase (RdRp, ORF 1), a glycoprotein (ORF 2), a structural protein with homology to those in the SP24 family, (ORF 3), and a protein of unknown function (ORF 4). Phylogenetic analysis focusing on RdRp and SP24 amino acid sequences revealed a close relationship between WfNgV1 and Bemisia tabaci negevirus 1, a negevirus sequence recently discovered in whiteflies from Israel. Both viruses form a clade sharing a most recent common ancestor with the proposed nelorpivirus and centivirus taxa. The putative glycoprotein from ORF 2 and SP24 (ORF 3) of WfNgV1 exhibit the characteristic topologies previously reported for negevirus counterparts. This marks the first reported negevirus-like sequence from whiteflies in the Americas.


Asunto(s)
Genoma Viral , Hemípteros , Sistemas de Lectura Abierta , Filogenia , Animales , Hemípteros/virología , Hemípteros/genética , Sistemas de Lectura Abierta/genética , Proteínas Virales/genética , ARN Viral/genética , Secuencia de Aminoácidos , ARN Polimerasa Dependiente del ARN/genética
4.
ScientificWorldJournal ; 2024: 3350591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756480

RESUMEN

The challenge in polystyrene disposal has caused researchers to look for urgent innovative and ecofriendly solutions for plastic degradation. Some insects have been reported to use polystyrene as their sole carbon source, and this has been linked to the presence of microbes in their guts that aid in plastic digestion. Thus, this study focuses on the molecular detection and phylogenetic analysis of the alkane-1-monooxygenase (alkB) gene in Klebsiella oxytoca strains isolated from the gut of Tenebrio molitor. The alkB gene encodes for alkane-1-monooxygenase, an enzyme involved in the oxidation of inactivated alkanes. This gene can be used as a marker to assess bacteria's ability to biodegrade polystyrene. Three bacterial strains were isolated from the guts of T. molitor mealworms and were confirmed using polymerase chain reaction (PCR) of the 16S ribosomal RNA gene. The primers used in the amplification of the 16S ribosomal RNA region were designed using NCBI, a bioinformatics tool. To detect the presence of the alkB gene in the isolated bacterial strains, a set of primers used in the amplification of this gene was manually designed from the conserved regions of the alkB nucleotide sequences of eleven bacterial species from GenBank. TCOFFE online tool was used to align the alkB sequences of the bacteria, while Jalview and ConSurf were used to view the alignment. The amplified alkB gene was then sequenced using the Sanger sequencing technique, blasted on NCBI to look for similar sequences, and a phylogenetic tree was constructed. Based on the 16S ribosomal RNA gene sequences, the isolated bacterial strains were confirmed to be Klebsiella oxytoca NBRC 102593, Klebsiella oxytoca JCM 1665, and Klebsiella oxytoca ATCC 13182. The alkB gene sequence identical to fourteen alkB gene sequences derived from Actinobacteria whole genome was detected in Klebsiella oxytoca for the first time to the best of our knowledge. The novel nucleotide sequence was published in the NCBI database under accession number OP959069. This gene sequence was found to be for the enzyme alkane-1-monooxygenase and may be one of the enzymes responsible for polystyrene degradation by the putative Klebsiella oxytoca ATCC 13182 in T. molitor.


Asunto(s)
Klebsiella oxytoca , Filogenia , ARN Ribosómico 16S , Tenebrio , Tenebrio/microbiología , Tenebrio/genética , Animales , Klebsiella oxytoca/genética , Klebsiella oxytoca/aislamiento & purificación , Klebsiella oxytoca/clasificación , ARN Ribosómico 16S/genética , Proteínas Bacterianas/genética , Citocromo P-450 CYP4A/genética
5.
Funct Plant Biol ; 512024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38758970

RESUMEN

Heat stress represents a significant environmental challenge that restricts maize (Zea mays ) growth and yield on a global scale. Within the plant kingdom, the AGC gene family, encoding a group of protein kinases, has emerged as crucial players in various stress responses. Nevertheless, a comprehensive understanding of AGC genes in Z. mays under heat-stress conditions remains elusive. A genome-wide analysis was done using bioinformatics techniques to identify 39 AGC genes in Z. mays , categorising them into three subfamilies based on their conserved domains. We investigated their phylogenetic relationships, gene structures (including intron-exon configurations), and expression patterns. These genes are likely involved in diverse signalling pathways, fulfilling distinct roles when exposed to heat stress conditions. Notably, most ZmAGC1.5, ZmAGC1.9, ZmNDR3, ZmNDR5 and ZmIRE3 exhibited significant changes in expression levels under heat stress, featuring a high G-box ratio. Furthermore, we pinpointed a subset of AGC genes displaying highly coordinated expression, implying their potential involvement in the heat stress response pathway. Our study offers valuable insights into the contribution of AGC genes to Z. mays 's heat stress response, thus facilitating the development of heat-tolerant Z. mays varieties.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/fisiología , Respuesta al Choque Térmico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Genes de Plantas , Adaptación Fisiológica/genética
6.
BMC Vet Res ; 20(1): 216, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773480

RESUMEN

BACKGROUND: In this study, we investigated the prevalence of respiratory viruses in four Hybrid Converter Turkey (Meleagris gallopavo) farms in Egypt. The infected birds displayed severe respiratory signs, accompanied by high mortality rates, suggesting viral infections. Five representative samples from each farm were pooled and tested for H5 & H9 subtypes of avian influenza viruses (AIVs), Avian Orthoavulavirus-1 (AOAV-1), and turkey rhinotracheitis (TRT) using real-time RT-PCR and conventional RT-PCR. Representative tissue samples from positive cases were subjected to histopathology and immunohistochemistry (IHC). RESULTS: The PCR techniques confirmed the presence of AOAV-1 and H5 AIV genes, while none of the tested samples were positive for H9 or TRT. Microscopic examination of tissue samples revealed congestion and hemorrhage in the lungs, liver, and intestines with leukocytic infiltration. IHC revealed viral antigens in the lungs, liver, and intestines. Phylogenetic analysis revealed that H5 HA belonged to 2.3.4.4b H5 sublineage and AOAV-1 belonged to VII 1.1 genotype. CONCLUSIONS: The study highlights the need for proper monitoring of hybrid converter breeds for viral diseases, and the importance of vaccination programs to prevent unnecessary losses. To our knowledge, this is the first study that reports the isolation of AOAV-1 and H5Nx viruses from Hybrid Converter Turkeys in Egypt.


Asunto(s)
Gripe Aviar , Filogenia , Enfermedades de las Aves de Corral , Animales , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/patología , Gripe Aviar/virología , Gripe Aviar/patología , Gripe Aviar/epidemiología , Egipto/epidemiología , Pavos/virología , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/genética , Virus de la Influenza A/clasificación
7.
ScientificWorldJournal ; 2024: 2209301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774420

RESUMEN

Ophthalmomyiasis is the result of fly larvae feeding on the tissues of the eye. Commonly associated with poor hygiene and open wounds, this condition is rare and often stigmatized. Treatment can be straightforward, and full recovery is common. Identifying the species responsible for ophthalmomyiasis is important for the medical, forensic, and entomological communities. Here, we present a case of ophthalmomyiasis where 30-40 blow fly (Diptera: Calliphoridae) larvae were removed from the eye of a human male. A representative subsample of five larvae was used for taxonomic identification via two approaches (a) DNA analysis, via sequencing of the complete mitochondrial genome (mtGenome) and comparison of the mtGenome and mitochondrial COI barcode region to GenBank, and (b) morphology, examination of the posterior spiracles using microscopy, and comparison to published larval descriptions of blow flies. Two species of blow flies were identified from the DNA analysis: Lucilia coeruleiviridis and Phormia regina. Morphological examination could only confirm L. coeruleiviridis as being present. To our knowledge, finding two blow fly species causing ophthalmomyiasis in a single individual has not been previously reported in the scientific literature. Neither P. regina nor L. coeruleiviridis prefers living tissue for larva development, but since they fill similar ecological niches, perhaps this was a show of competition rather than a normal feeding habit. Knowing these blow fly species can resort to this behavior, and that it can affect human populations, is valuable to the education of patients and providers.


Asunto(s)
Calliphoridae , Larva , Animales , Calliphoridae/genética , Masculino , Humanos , Miasis/parasitología , Miasis/diagnóstico , América del Norte , Filogenia , Dípteros/parasitología , Genoma Mitocondrial
8.
Environ Microbiol ; 26(5): e16640, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38775217

RESUMEN

Increased temperatures in Arctic tundra ecosystems are leading to higher microbial respiration rates of soil organic matter, resulting in the release of carbon dioxide and methane. To understand the effects of this microbial activity, it is important to better characterize the diverse microbial communities in Arctic soil. Our goal is to refine our understanding of the phylogenetic diversity of Terriglobia, a common but elusive group within the Acidobacteriota phylum. This will help us link this diversity to variations in carbon and nitrogen usage patterns. We used long-read Oxford Nanopore MinION sequences in combination with metagenomic short-read sequences to assemble complete Acidobacteriota genomes. This allowed us to build multi-locus phylogenies and annotate pangenome markers to distinguish Acidobacteriota strains from several tundra soil isolates. We identified a phylogenetic cluster containing four new species previously associated with Edaphobacter lichenicola. We conclude that this cluster represents a new genus, which we have named Tunturibacter. We describe four new species: Tunturibacter lichenicola comb. nov., Tunturibacter empetritectus sp. nov., Tunturibacter gelidoferens sp. nov., and Tunturibacter psychrotolerans sp. nov. By uncovering new species and strains within the Terriglobia and improving the accuracy of their phylogenetic placements, we hope to enhance our understanding of this complex phylum and shed light on the mechanisms that shape microbial communities in polar soils.


Asunto(s)
Genoma Bacteriano , Filogenia , Microbiología del Suelo , Tundra , Acidobacteria/genética , Acidobacteria/clasificación , Acidobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Regiones Árticas
9.
Parasite ; 31: 26, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38775717

RESUMEN

Several studies have shown that the euryxenic trematode Derogenes varicus (Müller, 1784) represents a species complex. Four lineages have been designated (DV1-4) with the DV1 clade corresponding to D. varicus sensu stricto. Herein, we investigate newly collected specimens of D. varicus sensu lato from Scandinavian and Arctic waters using integrative taxonomy. The trematodes were collected from Melanogrammus aeglefinus, Eutrigla gurnardus, Trachinus draco, and Merluccius merluccius off the Atlantic coast of Sweden and from Hippoglossoides platessoides from Arctic Svalbard. 28S sequences of derogenids from Sweden were identical to D. varicus sensu stricto, confirming its euryxeny. The 28S sequences of Derogenes sp. from H. platessoides were identical to Derogenes DV2 and differed from D. varicus sensu stricto by 3% and from Derogenes DV3 by 2%. The 28S sequence divergences of Derogenes sp. from H. platessoides with D. ruber and D. lacustris were 3 and 10%, respectively. ITS2 and cox1 divergences between Derogenes sp. from H. platessoides and other Derogenes species/lineages were at levels of interspecific differences. The species from H. platessoides is described here as D. abba n. sp. We also examined the type material of Progonus muelleri (Levinsen, 1881), the type and only species of the genus Progonus, with redescription and designations of paralectotypes. Based on specimens from Theodor Odhner's collections at the Swedish Museum of Natural History, SMNH, Stockholm, we provide novel morphological and anatomical data for D. varicus sensu lato species complex. Lastly, we investigated Arthur Looss's "lost collection" of Trematodes at the SMNH and characterised a putative species Derogenes sp. "limula".


Title: Démêler le complexe d'espèces Derogenes varicus dans les eaux scandinaves et arctiques : description de Derogenes abba n. sp. (Trematoda, Derogenidae) parasite d'Hippoglossoides platessoides et nouveaux signalements d'hôtes pour D. varicus (Müller, 1784) sensu stricto. Abstract: Plusieurs études ont montré que le trématode euryxene Derogenes varicus (Müller, 1784) représente un complexe d'espèces. Quatre lignées ont été désignées (DV1­4), le clade DV1 correspondant à D. varicus sensu stricto. Ici, nous étudions des spécimens nouvellement collectés de D. varicus sensu lato dans les eaux scandinaves et arctiques en utilisant la taxonomie intégrative. Les trématodes ont été collectés de Melanogrammus aeglefinus, Eutrigla gurnardus, Trachinus draco et Merluccius merluccius au large de la côte atlantique de la Suède et d'Hippoglossoides platessoides du Svalbard arctique. Les séquences 28S des Derogenidae de Suède étaient identiques à D. varicus sensu stricto, confirmant son euryxénie. Les séquences 28S de Derogenes sp. de H. platessoides étaient identiques à Derogenes DV2 et différaient de D. varicus sensu stricto par 3% et de Derogenes DV3 par 2%. Les divergences des séquence 28S de Derogenes sp. de H. platessoides avec D. ruber et D. lacustris étaient respectivement de 3 et 10%. Les divergences ITS2 et cox1 entre Derogenes sp. de H. platessoides et d'autres espèces/lignées de Derogenes se situaient à des niveaux de différences interspécifiques. L'espèce de H. platessoides est décrite ici comme Derogenes abba n. sp. Nous avons également examiné le matériel type de Progonus muelleri (Levinsen, 1881), type et seule espèce du genre Progonus, avec une redescription et des désignations de paralectotypes. Sur la base de spécimens des collections de Theodor Odhner au Musée suédois d'histoire naturelle (SMNH), Stockholm, nous fournissons de nouvelles données morphologiques et anatomiques sur le complexe d'espèces de D. varicus sensu lato. Enfin, nous avons étudié la « collection perdue ¼ de Trématodes d'Arthur Looss au SMNH et caractérisé une espèce putative, Derogenes sp. « limula ¼.


Asunto(s)
Filogenia , Trematodos , Infecciones por Trematodos , Animales , Trematodos/clasificación , Trematodos/anatomía & histología , Trematodos/aislamiento & purificación , Trematodos/genética , Regiones Árticas , Infecciones por Trematodos/veterinaria , Infecciones por Trematodos/parasitología , Suecia , Enfermedades de los Peces/parasitología , ARN Ribosómico 28S/genética , Gadiformes/parasitología , Svalbard , ADN de Helmintos
10.
Curr Microbiol ; 81(7): 186, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775831

RESUMEN

The Exiguobacterium genus comprises Gram-stain-positive and facultatively anaerobic bacteria. Some Exiguobacterium species have previously shown significant high 16S rRNA gene sequence similarities with each other. This study evaluates the taxonomic classification of those Exiguobacterium species through comprehensive genome analysis. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values were determined for various Exiguobacterium species pairs. The ANI and dDDH values between Exiguobacterium enclense and Exiguobacterium indicum, Exiguobacterium aquaticum and Exiguobacterium mexicanum, Exiguobacterium soli and Exiguobacterium antarcticum, and Exiguobacterium sibiricum and Exiguobacterium artemiae were above the cut-off level (95-96% for ANI and 70% for dDDH) for species delineation. Based on the findings, we propose to reclassify Exiguobacterium enclense as a later heterotypic synonym of Exiguobacterium indicum, Exiguobacterium aquaticum as a later heterotypic synonym of Exiguobacterium mexicanum, Exiguobacterium soli as a later heterotypic synonym of Exiguobacterium antarcticum and Exiguobacterium sibiricum as a later heterotypic synonym of Exiguobacterium artemiae.


Asunto(s)
ADN Bacteriano , Exiguobacterium , Genoma Bacteriano , Filogenia , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Exiguobacterium/genética , Exiguobacterium/clasificación , Análisis de Secuencia de ADN , Hibridación de Ácido Nucleico , Técnicas de Tipificación Bacteriana
11.
Planta ; 260(1): 4, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775846

RESUMEN

MAIN CONCLUSION: Natural selection influenced adaptive divergence between Cereus fernambucensis and Cereus insularis, revealing key genes governing abiotic stress responses and supporting neoteny in C. insularis. Uncovering the molecular mechanisms driving adaptive divergence in traits related to habitat adaptation remains a central challenge. In this study, we focused on the cactus clade, which includes Cereus sericifer F.Ritter, Cereus fernambucensis Lem., and Cereus insularis Hemsley. These allopatric species inhabit distinct relatively drier regions within the Brazilian Atlantic Forest, each facing unique abiotic conditions. We leveraged whole transcriptome data and abiotic variables datasets to explore lineage-specific and environment-specific adaptations in these species. Employing comparative phylogenetic methods, we identified genes under positive selection (PSG) and examined their association with non-synonymous genetic variants and abiotic attributes through a PhyloGWAS approach. Our analysis unveiled signatures of selection in all studied lineages, with C. fernambucensis northern populations and C. insularis showing the most PSGs. These PSGs predominantly govern abiotic stress regulation, encompassing heat tolerance, UV stress response, and soil salinity adaptation. Our exclusive observation of gene expression tied to early developmental stages in C. insularis supports the hypothesis of neoteny in this species. We also identified genes associated with abiotic variables in independent lineages, suggesting their role as environmental filters on genetic diversity. Overall, our findings suggest that natural selection played a pivotal role in the geographic range of these species in response to environmental and biogeographic transitions.


Asunto(s)
Adaptación Fisiológica , Cactaceae , Bosques , Perfilación de la Expresión Génica , Filogenia , Brasil , Cactaceae/genética , Cactaceae/fisiología , Adaptación Fisiológica/genética , Selección Genética , Transcriptoma , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
12.
Plant Cell Rep ; 43(6): 148, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775862

RESUMEN

KEY MESSAGE: Identification of selenium stress-responsive expression and molecular docking of serine acetyltransferase (SAT) and O-acetyl serine (thiol) lyase (OASTL) in Cardamine hupingshanensis. A complex coupled with serine acetyltransferase (SAT) and O-acetyl serine (thiol) lyase (OASTL) is the key enzyme that catalyzes selenocysteine (Sec) synthesis in plants. The functions of SAT and OASTL genes were identified in some plants, but it is still unclear whether SAT and OASTL are involved in the selenium metabolic pathway in Cardamine hupingshanensis. In this study, genome-wide identification and comparative analysis of ChSATs and ChOASTLs were performed. The eight ChSAT genes were divided into three branches, and the thirteen ChOASTL genes were divided into four branches by phylogenetic analysis and sequence alignment, indicating the evolutionary conservation of the gene structure and its association with other plant species. qRT-PCR analysis showed that the ChSAT and ChOASTL genes were differentially expressed in different tissues under various selenium levels, suggesting their important roles in Sec synthesis. The ChSAT1;2 and ChOASTLA1;2 were silenced by the VIGS system to investigate their involvement in selenium metabolites in C. hupingshanensis. The findings contribute to understanding the gene functions of ChSATs and ChOASTLs in the selenium stress and provide a reference for further exploration of the selenium metabolic pathway in plants.


Asunto(s)
Cardamine , Regulación de la Expresión Génica de las Plantas , Simulación del Acoplamiento Molecular , Filogenia , Proteínas de Plantas , Selenio , Selenio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cardamine/genética , Cardamine/metabolismo , Redes y Vías Metabólicas/genética , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Liasas/metabolismo , Liasas/genética
13.
Sci Rep ; 14(1): 11650, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38773187

RESUMEN

Cancer is a disease that many multicellular organisms have faced for millions of years, and species have evolved various tumour suppression mechanisms to control oncogenesis. Although cancer occurs across the tree of life, cancer related mortality risks vary across mammalian orders, with Carnivorans particularly affected. Evolutionary theory predicts different selection pressures on genes associated with cancer progression and suppression, including oncogenes, tumour suppressor genes and immune genes. Therefore, we investigated the evolutionary history of cancer associated gene sequences across 384 mammalian taxa, to detect signatures of selection across categories of oncogenes (GRB2, FGL2 and CDC42), tumour suppressors (LITAF, Casp8 and BRCA2) and immune genes (IL2, CD274 and B2M). This approach allowed us to conduct a fine scale analysis of gene wide and site-specific signatures of selection across mammalian lineages under the lens of cancer susceptibility. Phylogenetic analyses revealed that for most species the evolution of cancer associated genes follows the species' evolution. The gene wide selection analyses revealed oncogenes being the most conserved, tumour suppressor and immune genes having similar amounts of episodic diversifying selection. Despite BRCA2's status as a key caretaker gene, episodic diversifying selection was detected across mammals. The site-specific selection analyses revealed that the two apoptosis associated domains of the Casp8 gene of bats (Chiroptera) are under opposing forces of selection (positive and negative respectively), highlighting the importance of site-specific selection analyses to understand the evolution of highly complex gene families. Our results highlighted the need to critically assess different types of selection pressure on cancer associated genes when investigating evolutionary adaptations to cancer across the tree of life. This study provides an extensive assessment of cancer associated genes in mammals with highly representative, and substantially large sample size for a comparative genomic analysis in the field and identifies various avenues for future research into the mechanisms of cancer resistance and susceptibility in mammals.


Asunto(s)
Evolución Molecular , Mamíferos , Neoplasias , Filogenia , Animales , Mamíferos/genética , Neoplasias/genética , Humanos , Selección Genética , Oncogenes/genética , Genes Supresores de Tumor , Predisposición Genética a la Enfermedad
14.
Sci Rep ; 14(1): 11634, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773202

RESUMEN

Oribatid mites are an ancient group that already roamed terrestrial ecosystems in the early and middle Devonian. The superfamily of Ameronothroidea, a supposedly monophyletic lineage, represents the only group of oribatid mites that has successfully invaded the marine coastal environment. By using mitogenome data and nucleic ribosomal RNA genes (18S, 5.8S, 28S), we show that Ameronothroidea are a paraphyletic assemblage and that the land-to-sea transition happened three times independently. Common ancestors of the tropical Fortuyniidae and Selenoribatidae were the first to colonize the coasts and molecular calibration of our phylogeny dates this event to a period in the Triassic and Jurassic era (225-146 mya), whereas present-day distribution indicates that this event might have happened early in this period during the Triassic, when the supercontinent Pangaea still existed. The cold temperate northern hemispheric Ameronothridae colonized the marine littoral later in the late Jurassic-Early Cretaceous and had an ancient distribution on Laurasian coasts. The third and final land-to-sea transition happened in the same geological period, but approx. 30 my later when ancestors of Podacaridae invaded coastal marine environments of the Gondwanan landmasses.


Asunto(s)
Metagenómica , Ácaros , Filogenia , Animales , Ácaros/genética , Ácaros/clasificación , Metagenómica/métodos , Genoma Mitocondrial , Mitocondrias/genética , Metagenoma , Evolución Molecular , Ecosistema
15.
Sci Rep ; 14(1): 11587, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773239

RESUMEN

Peptide deformylase can catalyse the removal of formyl groups from the N-terminal formyl methionine of the primary polypeptide chain. The peptide deformylase genes of a few herbaceous plants have been studied to some extent, but the peptide deformylase genes of woody plants have not been studied. In this study, we isolated EuPDF1B from Eucommia ulmoides Oliv. The full-length sequence of EuPDF1B is 1176 bp long with a poly-A tail and contains an open reading frame of 831 bp that encodes a protein of 276 amino acids. EuPDF1B was localized to the chloroplast. qRT‒PCR analysis revealed that this gene was expressed in almost all tissues tested but mainly in mature leaves. Moreover, the expression of EuPDF1B was enhanced by ABA, MeJA and GA and inhibited by shading treatment. The expression pattern of EuPDF1B was further confirmed in EuPDF1Bp: GUS transgenic tobacco plants. Among all the transgenic tobacco plants, EuPDF1Bp-3 showed the highest GUS histochemical staining and activity in different tissues. This difference may be related to the presence of enhancer elements in the region from - 891 bp to - 236 bp of the EuPDF1B promoter. In addition, the expression of the chloroplast gene psbA and the net photosynthetic rate, fresh weight and height of tobacco plants overexpressing EuPDF1B were greater than those of the wild-type tobacco plants, suggesting that EuPDF1B may promote the growth of transgenic tobacco plants. This is the first time that PDF and its promoter have been cloned from woody plants, laying a foundation for further analysis of the function of PDF and the regulation of its expression.


Asunto(s)
Amidohidrolasas , Clonación Molecular , Eucommiaceae , Regulación de la Expresión Génica de las Plantas , Nicotiana , Plantas Modificadas Genéticamente , Eucommiaceae/genética , Eucommiaceae/metabolismo , Plantas Modificadas Genéticamente/genética , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Nicotiana/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Filogenia , Secuencia de Aminoácidos , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Oxilipinas/farmacología , Oxilipinas/metabolismo
16.
BMC Genomics ; 25(1): 502, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773367

RESUMEN

BACKGROUND: Fusarium zanthoxyli is a destructive pathogen causing stem canker in prickly ash, an ecologically and economically important forest tree. However, the genome lack of F. zanthoxyli has hindered research on its interaction with prickly ash and the development of precise control strategies for stem canker. RESULTS: In this study, we sequenced and annotated a relatively high-quality genome of F. zanthoxyli with a size of 43.39 Mb, encoding 11,316 putative genes. Pathogenicity-related factors are predicted, comprising 495 CAZymes, 217 effectors, 156 CYP450s, and 202 enzymes associated with secondary metabolism. Besides, a comparative genomics analysis revealed Fusarium and Colletotrichum diverged from a shared ancestor approximately 141.1 ~ 88.4 million years ago (MYA). Additionally, a phylogenomic investigation of 12 different phytopathogens within Fusarium indicated that F. zanthoxyli originated approximately 34.6 ~ 26.9 MYA, and events of gene expansion and contraction within them were also unveiled. Finally, utilizing conserved domain prediction, the results revealed that among the 59 unique genes, the most enriched domains were PnbA and ULP1. Among the 783 expanded genes, the most enriched domains were PKc_like kinases and those belonging to the APH_ChoK_Like family. CONCLUSION: This study sheds light on the genetic basis of F. zanthoxyli's pathogenicity and evolution which provides valuable information for future research on its molecular interactions with prickly ash and the development of effective strategies to combat stem canker.


Asunto(s)
Evolución Molecular , Fusarium , Genoma Fúngico , Genómica , Filogenia , Enfermedades de las Plantas , Fusarium/genética , Fusarium/patogenicidad , Genómica/métodos , Enfermedades de las Plantas/microbiología , Virulencia/genética
17.
BMC Genomics ; 25(1): 497, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773372

RESUMEN

BACKGROUND: Alfalfa (Medicago sativa L.) is the most cultivated forage legume around the world. Under a variety of growing conditions, forage yield in alfalfa is stymied by biotic and abiotic stresses including heat, salt, drought, and disease. Given the sessile nature of plants, they use strategies including, but not limited to, differential gene expression to respond to environmental cues. Transcription factors control the expression of genes that contribute to or enable tolerance and survival during periods of stress. Basic-leucine zipper (bZIP) transcription factors have been demonstrated to play a critical role in regulating plant growth and development as well as mediate the responses to abiotic stress in several species, including Arabidopsis thaliana, Oryza sativa, Lotus japonicus and Medicago truncatula. However, there is little information about bZIP transcription factors in cultivated alfalfa. RESULT: In the present study, 237 bZIP genes were identified in alfalfa from publicly available sequencing data. Multiple sequence alignments showed the presence of intact bZIP motifs in the identified sequences. Based on previous phylogenetic analyses in A. thaliana, alfalfa bZIPs were similarly divided and fell into 10 groups. The physico-chemical properties, motif analysis and phylogenetic study of the alfalfa bZIPs revealed high specificity within groups. The differential expression of alfalfa bZIPs in a suite of tissues indicates that bZIP genes are specifically expressed at different developmental stages in alfalfa. Similarly, expression analysis in response to ABA, cold, drought and salt stresses, indicates that a subset of bZIP genes are also differentially expressed and likely play a role in abiotic stress signaling and/or tolerance. RT-qPCR analysis on selected genes further verified these differential expression patterns. CONCLUSIONS: Taken together, this work provides a framework for the future study of bZIPs in alfalfa and presents candidate bZIPs involved in stress-response signaling.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Regulación de la Expresión Génica de las Plantas , Medicago sativa , Filogenia , Estrés Fisiológico , Medicago sativa/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simulación por Computador , Perfilación de la Expresión Génica , Biología Computacional/métodos
18.
BMC Plant Biol ; 24(1): 436, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38773361

RESUMEN

BACKGROUND: E2F/DP (Eukaryotic 2 transcription factor/dimerization partner) family proteins play an essential function in the cell cycle development of higher organisms. E2F/DP family genes have been reported only in a few plant species. However, comprehensive genome-wide characterization analysis of the E2F/DP gene family of Solanum lycopersicum has not been reported so far. RESULTS: This study identified eight nonredundant SlE2F/DP genes that were classified into seven groups in the phylogenetic analysis. All eight genes had a single E2F-TDP domain and few genes had additional domains. Two segmental duplication gene pairs were observed within tomato, in addition to cis-regulatory elements, miRNA target sites and phosphorylation sites which play an important role in plant development and stress response in tomato. To explore the three-dimensional (3D) models and gene ontology (GO) annotations of SlE2F/DP proteins, we pointed to their putative transporter activity and their interaction with several putative ligands. The localization of SlE2F/DP-GFP fused proteins in the nucleus and endoplasmic reticulum suggested that they may act in other biological functions. Expression studies revealed the differential expression pattern of most of the SlE2F/DP genes in various organs. Moreover, the expression of E2F/DP genes against abiotic stress, particularly SlE2F/DP2 and/or SlE2F/DP7, was upregulated in response to heat, salt, cold and ABA treatment. Furthermore, the co-expression analysis of SlE2F/DP genes with multiple metabolic pathways was co-expressed with defence genes, transcription factors and so on, suggested their crucial role in various biological processes. CONCLUSIONS: Overall, our findings provide a way to understand the structure and function of SlE2F/DP genes; it might be helpful to improve fruit development and tolerance against abiotic stress through marker-assisted selection or transgenic approaches.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Solanum lycopersicum , Estrés Fisiológico , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Familia de Multigenes , Filogenia , Genoma de Planta , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo
19.
BMC Ecol Evol ; 24(1): 66, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773381

RESUMEN

BACKGROUND: Dorcus stag beetles in broad sense are one of the most diverse group in Lucanidae and important saproxylic insects playing a crucial role in nutrient recycling and forest biomonitoring. However, the dazzling morphological differentiations have caused numerous systematic confusion within the big genus, especially the puzzlingly generic taxonomy. So far, there is lack of molecular phylogenetic study to address the chaotic situation. In this study, we undertook mitochondrial genome sequencing of 42 representative species including 18 newly-sequenced ones from Eastern Asia and reconstructed the phylogenetic framework of stag beetles in Dorcus sensu lato for the first time. RESULTS: The mitogenome datasets of Dorcus species have indicated the variable mitogenomic lengths ranged from 15,785 to 19,813 bp. Each mitogenome contained 13 PCGs, 2 rRNAs, 22 tRNAs, and a control region, and all PCGs were under strong purifying selection (Ka/Ks < 1). Notably, we have identified the presence of a substantial intergenic spacer (IGS) between the trnAser (UCN) and NAD1 genes, with varying lengths ranging from 129 bp (in D. hansi) to 158 bp (in D. tityus). The mitogenomic phylogenetic analysis of 42 species showed that Eastern Asia Dorcus was monophyletic, and divided into eight clades with significant genetic distance. Four of them, Clade VIII, VII, VI and I are clustered by the representative species of Serrognathus Motschulsky, Kirchnerius Schenk, Falcicornis Séguy and Dorcus s.s. respectively, which supported their fully generic positions as the previous morphological study presented. The topology also showed the remaining clades were distinctly separated from the species of Dorcus sensu lato, which implied that each of them might demonstrate independent generic status. The Linnaeus nomenclatures were suggested as Eurydorcus Didier stat. res., Eurytrachellelus Didier stat. res., Hemisodorcus Thomson stat. res. and Velutinodorcus Maes stat. res. For Clade V, IV, III and II respectively. CONCLUSION: This study recognized the monophyly of Dorcus stag beetles and provided a framework for the molecular phylogeny of this group for the first time. The newly generated mitogenomic data serves as a valuable resource for future investigations on lucanid beetles. The generic relationship would facilitate the systematics of Dorcus stag beetles and thus be useful for exploring their evolutionary, ecological, and conservation aspects.


Asunto(s)
Escarabajos , Genoma Mitocondrial , Filogenia , Animales , Escarabajos/genética , Escarabajos/clasificación , Genoma Mitocondrial/genética , Asia Oriental
20.
BMC Plant Biol ; 24(1): 432, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773389

RESUMEN

The VIM (belonged to E3 ubiquitin ligase) gene family is crucial for plant growth, development, and stress responses, yet their role in salt stress remains unclear. We analyzed phylogenetic relationships, chromosomal localization, conserved motifs, gene structure, cis-acting elements, and gene expression patterns of the VIM gene family in four cotton varieties. Our findings reveal 29, 29, 17, and 14 members in Gossypium hirsutum (G.hirsutum), Gossypium barbadense (G.barbadense), Gossypium arboreum (G.arboreum), and Gossypium raimondii (G. raimondii), respectively, indicating the maturity and evolution of this gene family. motifs among GhVIMs genes were observed, along with the presence of stress-responsive, hormone-responsive, and growth-related elements in their promoter regions. Gene expression analysis showed varying patterns and tissue specificity of GhVIMs genes under abiotic stress. Silencing GhVIM28 via virus-induced gene silencing revealed its role as a salt-tolerant negative regulator. This work reveals a mechanism by which the VIM gene family in response to salt stress in cotton, identifying a potential negative regulator, GhVIM28, which could be targeted for enhancing salt tolerance in cotton. The objective of this study was to explore the evolutionary relationship of the VIM gene family and its potential function in salt stress tolerance, and provide important genetic resources for salt tolerance breeding of cotton.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Familia de Multigenes , Filogenia , Proteínas de Plantas , Estrés Salino , Gossypium/genética , Gossypium/fisiología , Estrés Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Genes de Plantas , Tolerancia a la Sal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA